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Abstract

■ Visual working memory (VWM) is essential for executive func-
tion and is known to be compromised in older adults. Yet, the
cognitive and neural processes associated with these age-related
changes remain inconclusive. The purpose of this study was to
explore such factors with a dynamic neural field (DNF) model
that was manipulated to replicate the behavioral performances
of younger and older adults in a change detection task. Although
previous work has successfully modeled children and younger
adult VWM performance, this study represents the first attempt
to model older adult VWM performance within the DNF architec-
ture. In the behavioral task, older adults performed worse than

younger adults and exhibited a characteristic response bias that
favored “same” over “different” responses. The DNF model was
modified to capture the age group differences, with three param-
eter manipulations producing the best fit for the behavioral per-
formances. The best-fitting model suggests that older adults
operate through altered excitatory and inhibitory coupling and
decreased inhibitory signals, resulting in wider and weaker neural
signals. These results support a dedifferentiation account of brain
aging, with older adults operating with wider and weaker neural
signals because of decreased intracortical inhibition rather than
increased stochastic neural noise. ■

INTRODUCTION

One of the most consistent areas of cognitive decline for
older adults is visual working memory (VWM), a critically
important function that allows the temporary storage
and retrieval of short-term visual representations. VWM
is essential for keeping track of objects in a dynamic en-
vironment and detecting changes in objects when they
occur. The canonical measure of VWM has been the
change detection task, in which participants are briefly
shown an initial stimulus display, followed by a blank
screen mask, and then quickly followed by a test display
that may or may not match the initial display. Participants
indicate whether the test display matches (“same”) or
differs (“different”) from the initial stimuli display.

Older adults have marked declines in VWM (Brockmole
& Logie, 2013) and appear particularly susceptible to
failures in change detection (Ko et al., 2014; Sander,
Werkle-Bergner, & Lindenberger, 2011; Costello, Madden,
Mitroff, & Whiting, 2010; Caird, Edwards, Creaser, &
Horrey, 2005). Discerning the specific causal mechanisms
for this age effect is complicated by the fact that age-related
changes in VWM have been identified at multiple process-
ing stages, including the encoding, maintenance, and
recall of stimuli sets (Read, Rogers, & Wilson, 2016;
Schwarzkopp, Mayr, & Jost, 2016; Ko et al., 2014; Peich,
Husain, & Bays, 2013; Jost, Bryck, Vogel, & Mayr, 2011;
Gazzaley et al., 2008; Fabiani, Low, Wee, Sable, & Gratton,

2006; Mitchell, Johnson, Raye, & D’Esposito, 2000;
Mitchell, Johnson, Raye, Mather, & D’Esposito, 2000).
The effect of aging, in other words, may not be tied to a
particular processing stage but instead point to a global
deterioration of the quality of VWM representations. For
instance, Noack, Lövdén, and Lindenberger (2012) identi-
fied an age-related decline in representational precision in
a change detection task that assessed color–location
detectability. Bayesian mixed models applied to the
behavioral data found an age-related increase in discrimi-
nable dispersion (i.e., reduced distinctiveness of the neu-
ral representations for visual features) at the higher set
sizes (SSs). Such reductions in VWM representation qual-
ity are thought to produce a reduced signal-to-noise ratio
and thereby decrease efficiency in change detection.
Similarly, Pertzov, Heider, Liang, and Husain (2015)
found that older adult VWM performance decreases
when even only one item was assessed, indicating that
their VWM representations were overall less precise, an
effect exacerbated with an increased SS.

Neural Basis of Age-related Changes to VWM

The underlying neural basis for the processing stages en-
gaged during change detection is distributed across mul-
tiple cortical systems, including frontal, parietal, and
temporal areas (see Ma, Husain, & Bays, 2014, for a re-
view). Neural factors operative in age-related changes in
VWM point to a failure to coordinate the brain regions1University of Hartford, 2University of Tennessee
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responsible for efficient performance (Salthouse, 2011).
Diffusion tensor imaging studies have documented age-
related declines in the white matter pathways that would
effectively connect the different brain regions necessary
for VWM (Zahr, Rohlfing, Pfefferbaum, & Sullivan, 2009).
Neural factors may also be related to changes in local
regions of cortex. Aging effects have been documented
on the structure of frontal cortex, which is associated with
age-related working memory (WM) decline (Heinzel,
Lorenz, Duong, Rapp, &Deserno, 2017; Nissimet al., 2017).
Perhaps, in response to such structural issues, older

adult brains display characteristic patterns of functional
overactivation. For example, Wijeakumar, Magnotta, and
Spencer (2017) reported increased frontal activation in
an elderly group of participants relative to a group of
young adults during a change detection task. Such changes
in activation have been interpreted as reflecting compen-
satory processes associated with aging. Indeed, there is
abundant evidence for compensatory recruitment in
older adults particularly within the frontal cortex (Reuter-
Lorenz & Cappell, 2008; Reuter-Lorenz & Lustig, 2005).
Older adults have also been found to draw on both frontal
areas more so than posterior regions (Davis, Dennis,
Daselaar, Fleck, & Cabeza, 2008) and greater bilateral
regional activity under conditions in which younger
adults only require unilateral activations (Cabeza, 2002).
Mechanistically, age-related decline in VWM may

reflect a decline in the specificity of neural populations
coding for remembered items, resulting in broader
activation for visual representations. This account is
known as dedifferentiation (Park, Polk, Mikels, Taylor,
& Marshuetz, 2001) and is thought to arise from one of
two potential mechanisms. First, older adults may oper-
ate with a reduced signal-to-noise ratio, resulting in
noisier mental representations that lack stimulus specific-
ity (Li, Lindenberger, & Sikstrom, 2001). Evidence for an
age-related increase in neural noise has been found in both
animal (Schmolesky, Wang, Pu, & Leventhal, 2000) and
human (Roski et al., 2014; Arena, Hutchinson, Shimozaki,
& Long, 2013; Goh, 2011) models. For example, neural
network modeling has found that increased noise at the
synaptic level translates into less-defined mental repre-
sentations (Braver & Barch, 2002; Li & Sikström, 2002;
Li et al., 2001; Li, Lindenberger, & Frensch, 2000). In this
case, neuronal noise would reflect the fluctuations of
firing rates that have been documented under WM con-
ditions in animal models (Shafi et al., 2007). Indeed,
Welford’s (1981, 1984) influential neural noise hypothe-
sis argues that neural noise is a central influence on
cognitive aging due to a variety of physiological changes
that occur to the neural tissue. Second, aging is also
thought to yield degeneration of the intracortical inhibi-
tion that can allow for the constrained activation pat-
terns needed for precise representation of the stimuli
features. Supporting this idea is evidence that older
participants display decreased selectivity in visual pro-
cessing areas and higher levels of spontaneous (non-

selective) activity (Yang et al., 2008; Schmolesky et al.,
2000). Cortical overactivity in older adults, in other
words, may reflect neural populations that are less
inhibited (relative to younger adults) and that respond
with wider (i.e., less precise) excitation patterns.

As this summary indicates, there is substantial evi-
dence concerning the cognitive, neural, and systems level
changes associated with age-related impairments of
VWM. However, it is not clear how or why the neural
dynamics explained above would give rise to the pattern
of decline in older adult VWM abilities. Explaining what
specific neurocognitive dynamics are responsible for this
brain–behavior relationship requires a bridge theory that
can specify how neural processes give rise to cognitive
functioning. One way to explore these possibilities lies
in computational modeling. Modifications to structured
mathematical models can simulate age group perfor-
mances in change detection, and the resulting model
architecture can offer insight into how neural factors pro-
duce patterns of performance as a function of aging.

This is the theoretical justification for the current study,
which will apply a dynamic neural field (DNF) model to
simulate older and younger adult change detection per-
formance to probe whether this model can provide in-
sight to the neural processes underlying neurocognitive
decline in older age. Although DNF models have been
used to simulate and predict the aspects of VWM from in-
fancy to young adulthood (Simmering & Patterson, 2012;
Perone, Simmering, & Spencer, 2011; Schutte & Spencer,
2009), to date, they have never been applied to an older
adult population during VWM performance.

Dynamic Field Theory

The DNF model of VWM is composed of a set of neural
fields that explain how items are encoded into WM, how
representations are maintained in WM, and how items in
WM are compared with items in the test array to generate
a “same” or “different” response in change detection
tasks (for a general review, see Johnson, Simmering, &
Buss, 2014). The DNF model of change detection perfor-
mance is composed of three interconnected DNFs whose
activation unfolds in real time (see Figure 1). These fields
interact through the dynamics of local excitations (i.e.,
neural units that are tuned to similar stimulus values ex-
cite one another) and lateral inhibition (i.e., neural units
that are tuned to different stimulus values inhibit one
another). These interactions give rise to “peaks” of acti-
vation that are a basic representational unit. The DNF
model is implemented at the level of population dy-
namics and builds upon the concept of an activation field
(for a review, see Trappenberg, 2010). Formulated at
this level, the model simulates not only behavioral re-
sponses but also the associated hemodynamics (see
Buss, Magnotta, Huppert, Schöner, & Spencer, under re-
vision; Wijeakumar, Ambrose, Spencer, & Curtu, 2017;
Buss, Wifall, Hazeltine, & Spencer, 2015). In this way,
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DNF models integrate neural mechanisms, cognitive
processes, and functional activation.

Figure 1 shows the architecture of the DNF model of
change detection. In this figure, excitatory neural connec-
tions are marked with green arrows, whereas inhibitory
neural connections are marked with red arrows. The
three-layered DNF model operates as follows. First, the
contrast field (CF) has local excitatory connections,
meaning that neural units in this field share excitation
with nearby neighbors, which are tuned to similar fea-
tural properties (see green circular arrow). Second, exci-
tation from CF is passed to the inhibitory (Inh) and WM
layers. Similar to the CF layer, the WM layer has self-
excitatory connections and passes activation into the
Inh layer. Third, the Inh layer passes inhibition to both
the CF and WM layers. Stimuli are presented as Gaussian
inputs that stimulate a subset of neural units tuned to
specific feature values (see example stimuli at the top).
Stimuli are given strongly into the CF layer but weakly
into the WM layer. CF and Inh interact to stabilize encod-
ing of stimuli within the CF layer. This allows CF to pass
excitation into the WM layer. As representations are built
within the WM layer, the Inh layer is engaged more
strongly and suppresses further encoding of the items
in the CF layer. Self-excitation within the WM layer inter-
acts with lateral inhibition from the Inh layer to create
self-sustaining activation that can maintain representa-
tions in the WM layer even after the stimulus has been
removed. Thus, these dynamics allow for stimuli to acti-
vate neural units within the CF layer, which leads to the
stable maintenance of activation within the WM layer that
persists after the stimuli are removed.

The model generates “same” or “different” decisions
through the activation of decision units. During the test
phase of change detection, stimuli are again presented to
the CF layer. If a stimulus is presented at a location that is

activated within the WM layer, then the stimulus will be
strongly inhibited. However, if a stimulus is presented at
a location that is not activated within the WM layer, then
encoding of the stimulus will not be inhibited. To gener-
ate active decisions from the model, the “same” decision
unit is coupled to the WM layer, and the “different” deci-
sion unit is coupled to the CF layer. The activation of
these decision units operates in a winner-take-all fashion
based on self-excitation and mutual inhibition. That is,
when one unit is activated, it suppresses the activation
of the other. As described below, this configuration of
coupling allows the model to generate an active decision
during the test phase of the change detection task.
A last component of the model is a gate node that al-

lows the model to autonomously shift between activation
modes for consolidating information into WM or compar-
ing WM to the contents of a stimulus array to generate a
decision. Specifically, a gate node receives two inputs,
one in the form of a transient associated with the onset
of a stimulus and another from the summed activation
within the WM layer. The gate node is tuned such that
it only becomes activated when there are items in WM
during the transient associated with the presentation of
an input. Thus, the gate node will not become activated
during the memory array because WM will not yet have
memory representations active. Rather, it will only be-
come activated during the presentation of the test array
once items have been consolidated into the WM layer.
The gate node controls the flow of activation between
the decision nodes and the CF/WM layers. When the gate
node is activated, the nodes are allowed to interact with
the layers, and the model generates a decision. Further-
more, the gate node prevents the updating of WM during
comparison by shutting off the flow of activation from the
CF layer to the WM layer.
Figure 2 demonstrates a sequence of events as the

model is given a trial with four items. In Figure 2A, the
inputs have been presented to the model for the encod-
ing phase of a trial. In this panel, the model has begun to
consolidate items into WM. At this time point, activation
“peaks” have been built in the WM layer and the encod-
ing of those items is being suppressed in the CF layer.
Figure 2B shows the model during the test array. Two im-
portant aspects of the model’s dynamics are displayed
here. First, the WM field has maintained activation asso-
ciated with the items in the memory array. This is
achieved through the balance of excitation and inhibition
within the WM layer. Second, the CF layer is suppressed
at the locations of the memory array items. This estab-
lishes a filter that will be critical for change detection dur-
ing the test array. In this panel, the test array is shown for
a “same” trial. All the inputs in the test array are pres-
ented at locations that are experiencing strong inhibitory
suppression in CF. As a result, activation does not pierce
threshold and no changes are detected. Here, the model
responses “same” (see activation of decision units at the
top) based on the interaction between the “same”

Figure 1. Architecture of the DNF model of change detection.
Excitatory connections are marked with green arrows, whereas
inhibitory connections are marked with red arrows. Parallel lines mark
connections that are engaged when the gate node is activated. Crossed
lines mark connections that are turned off when the gate node is
activated. Numbers mark connections for reference when explaining
which parameters were modified for different runs of the model.
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decision unit and the activated being received from the
WM layer. In contrast, Figure 2C and D shows the model
during a “different” trial. The same events unfold during
the encoding phase in Figure 2C. In Figure 2D, a new
item has been presented (marked with a black asterisk).
This input is presented at a location that is not under-
going inhibitory suppression, and activation crosses the
activation threshold, leading to a detection of a change.
Here, the model responds “different” (see activation of
decision units at the top).

Importantly, the model also explains sources of errors
in change detection tasks. Figure 3 demonstrates the se-
quence of events that unfold in relation to false alarms
(FAs) and miss errors. In Figure 3A, the model is again
shown during the encoding phase of the trial. In
Figure 3B, however, the model loses a peak during the
memory delay (marked with an asterisk). During the test
phase, there is no inhibitory suppression at the location
of the forgotten item and the model responds “different”
(see activation of decision units at the top). In contrast,

Figure 2. Sequence of events during correct trials in the model. The “same” decision node is plotted in orange at the top, and the “different”
decision node is plotted in purple.

Figure 3. Sequence of events during incorrect trials in the model. The “same” decision node is plotted in orange at the top, and the “different”
decision node is plotted in purple.
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Figure 3C and D shows the model during a miss trial.
Misses result from overly robust peaks of activation that
lead to stronger inhibitory suppression in CF. During the
test phase shown in Figure 3D, the input at a new loca-
tion is partially inhibited and the model fails to generate
a sufficiently strong change signal to respond “different”
(see activation of decision units at the top). Thus, the
DNF model explains how a common set of neural pro-
cesses gives rise to both correct responses and errors.
Moreover, the model also suggests that the comparison
process is imperfect and errors can arise even when all
items are remembered. By simulating real-time activation
dynamics in a noisy, stochastic system, the model gener-
ates active decisions from trial to trial.

Age Effects in DNF Models

The DNF model has simulated developmental improve-
ments in change detection performance from infancy to
adulthood by modifying the coupling parameters for neu-
ral interactions. Specifically, these applications have
found that replicating age effects between children and
younger adults requires an increase in the strength of
the excitatory and inhibitory coupling between all three
layers (WM, Inh, and CF). With stronger interactions,
activation patterns become more stable and precise. As
a result, the model maintains more peaks in WM with
higher precision and becomes more sensitive to changes.
These changes have reproduced developmental improve-
ments in change detection performance and feature
estimation for both color and space memory (Perone
et al., 2011; Schutte & Spencer, 2009; Simmering, Schutte,
& Spencer, 2008). A central question for this study is
whether similar manipulations will capture the decline
in older adult VWM performance.

Although older adult VWM performance has never
been applied to the DNF model, a recent study by Pleger
et al. (2016) applied a DNF model to simulate age-related
neurocognitive decline in a perceptual discrimination
task. In this task, participants experience a propriocep-
tive stimulus that could contain either a single point of
contact or two points of contact separated by varying
distances, and participants reported whether they experi-
enced a single point or two points of contact. The result
showed that the threshold of the separation needed for
discriminating two points of contact increased with age,
suggesting that there is an age-related decline in propri-
oception. To simulate this decline, Pleger et al. (2016)
implemented a DNF model composed of an excitatory
layer and an inhibitory layer. The excitatory layer received
inputs similar to those given in the task. Either a single
input was presented at a location in the field or two
inputs were presented with varying separation. The
model’s performance was determined by whether two
peaks or a single peak was built from the inputs. To sim-
ulate differences between younger and older adults, the

synaptic tuning of the model was modified in two ways:
(1) The width of self-excitation in the excitatory layer was
increased (i.e., neural units shared excitation with a wider
range of neighbors in the field), and (2) the width of
inhibitory interactions within the excitatory layer was
increased (i.e., inhibition was passed to a broader set of
neurons within the excitatory field). This manipulation
implemented the hypothesis that neural interactions
become less precise with advanced age. With these ma-
nipulations, the model explained the quantitative details
of the decline in proprioceptive discrimination in old age.
Thus, in addition to explaining the complexities of per-
formance across different trial types, DNF models have
also been used to address changes in performance as a
function of development and aging.

The Current Project

The current project takes initial steps toward understand-
ing the neural mechanisms associated with VWM decline
in older age. We applied the DNF model to simulate age
group differences in a behavioral VWM task to discover
which manipulations to the model dynamics best ex-
plained patterns of performance differences. Below, we
will first detail the behavioral change detection experi-
ment conducted with both younger and older adults
and, second, describe manipulations to a DNF model
used to replicate younger and older adult human
performances.
In the behavioral experiment, younger and older adults

performed a 2AFC change detection task that featured
simple geometrical shapes under two task conditions:
an easier color task (in which shapes were held constant
and color targets varied) and a more difficult shape task
(in which colors were held constant and shape targets
varied). Previous research has found that, in the context
of change detection, color detection is easier in relation
to shape detection (Wijeakumar, Magnotta, et al., 2017;
Alvarez & Cavanagh, 2004) and that these two feature
types are processed in differing cortical regions (Ambrose,
Wijeakumar, Buss, & Spencer, 2016; Song & Jiang, 2006).
These two levels of difficulty will allow us to distinguish
separable neural signatures under these differing process-
ing demands.
The DNF model is manipulated in multiple ways to

achieve an optimal fit with the behavioral data. We
explore several parameter manipulations of the model
(including those manipulated in Pleger et al., 2016) to de-
termine which parameter changes best explain age group
differences. This project establishes the groundwork
needed to explore model-based predictions in neural
activation associated with VWM decline (see Buss et al.,
under revision; Wijeakumar, Magnotta, et al., 2017). We
believe that the DNF models presented below can offer
a key bridge between aging, behavioral performance, and
the brain regions that underlie VWM.
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BEHAVIORAL EXPERIMENT

Method

Participants

Twenty-six older adults (mean age = 70.03 years, age
range = 62–86 years) and 26 younger adults (mean
age = 19.88 years, age range = 18–27 years) participated
in the study. Younger adults were drawn from an under-
graduate student population and older adults were drawn
from local newspaper ads. All research procedures were
approved by the Indiana University South Bend institu-
tional review board, and all participants provided written
informed consent. Two older adults were dropped be-
cause of problems with color vision at screening, and
one younger adult was dropped because of excessive er-
rors. These dropped participants were later replaced for
the 52 participant total. Testing took place in one session
of approximately 1.5 hr. Participant characteristics in a
range of cognitive and perceptual capacities were as-
sessed before the change detection experiment and are
presented in Table 1. All participants possessed distance
visual acuity (corrected) of at least 20/40 (Bach, 1996)
and at least 27 of 30 points on the Mini-Mental State Ex-
amination (MMSE; Folstein, Folstein, & McHugh, 1975).

Stimuli and Apparatus

Stimuli consisted of eight simple geometrical target
shapes (spiral, star, triangle, I-block, circle, square, cross,
and upside-down U) adapted from Simmering (2016) with
eight potential RGB color values of red (255, 0, 0), yellow
(255, 255, 0), green (0, 255, 0), cyan (0, 255, 255), blue
(0, 0, 255), violet (238, 130, 238), white (255, 255, 255),
and black (0, 0, 0). Items appeared against a gray (RGB:
150, 150, 150) background and appeared randomly
around an invisible centered circular frame and against
a black background. Individual items were 3.18 cm in
length and appeared as ∼3° visual angle. The invisible

circular frame was designed to fit up to six items and
measured 12.7 cm or ∼12° visual angle. Items were sep-
arated from one another by at least 1.27 cm or 1.2° visual
angle, with minor spatial jitter added between them.

The experiment consisted of 240 trials, broken into a
120-trial block of the color task (in which changes were
specific for color) and a 120-trial block of the shape task
(in which changes were specific for shape). In the color-
task-type block, all targets displayed were the spiral
shape but varied based on the eight varying colors. In
the shape-task-type block, all targets displayed were col-
ored blue but varied based on the eight shape types.
Across both task type blocks, different trials featured a
change of only one target item from the stimuli array.
Each 120-trial task block were composed of 40 trials for
each SS (one, three, and five items per trial), with these
40 trials composed of 20 “same” trials (in which there
were no differences between the two display screens)
and 20 “different” trials (in which one item from the
display was changed). For each participant and within
each task type block, the SS blocks were sequentially
presented from 1 to 3 to 5. The order of the task type
block presentation (color/shape vs. shape/color) was
counterbalanced across participants.

Participants were tested in a small quiet room designed
specifically for experimental psychology research. Stimuli
were presented on a Dell Optiplex 780 running Windows 7
with an Intel Core Duo CPU E8500. The monitor was a
17-in. Dell 1704FPV with a 1280 × 1024 resolution. Stimuli
were presented, and behavioral responses collected
with E-Prime 2.0 (Psychology Software Tools, Inc.).

Procedure

A sample trial is illustrated in Figure 4. Participants were
alerted to the upcoming trial with a centered X figure for
1000 msec, followed by a second alerting cue of a center
cross hair for 1500 msec. The initial display screen then
followed for 500 msec, followed by an ISI blank screen of
1200 msec. Finally, the test screen appeared in which
participants responded to whether the test screen was
the same or different from the initial display screen.
Change trials featured changes to one item within the ar-
ray at one feature dimension. Thus, in a color block, the
changed target altered in color but remained constant in
shape, whereas in a shape block, the changed target
altered in shape but remained constant in color. Re-
sponses were made using the keyboard, with the 1-key
signifying “same” and the 2-key signifying “different.”
The maximum response duration was 3000 msec, and
there was no feedback provided in cases of errors or
no-response trials. After responding, a blank screen inter-
trial interval (1000, 2500, or 3500 msec) was followed by
the subsequent trial.

Participants received on-screen instructions on the
task, and all participants reported verbally that they un-
derstood the instructions. The basic instructions were

Table 1. Participant Characteristics by Age Group for
Experiment 1

M SD

Younger Older Younger Older

Age (years) 19.88a 70.08b 2.14 7.02

Education (years) 13.12a 15.88b 1.31 2.29

FRACT −0.08a −0.06a 3.72 5.16

Color 13.92a 13.40b 0.39 0.79

MMSE 29.81a 28.89a 2.17 0.97

n = 26 per age group. FRACT = visual acuity in logMar, with 0.0 equiv-
alent to Snellen 20/20 (Bach, 1996); Color = modified version of
Dvorine color test (ref ), with a maximum score of 14; MMSE = score
(maximum of 30) on the MMSE (Folstein et al., 1975). Means in the
same row that do not share subscripts differ by t test at p < .05.
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similar across the two task type blocks, although modi-
fied for the specific target type. Participants were
instructed to respond as quickly yet accurately as possi-
ble. There were no practice trials given the relative ease
of the initial SS1 displays. The test took approximately
30 min to complete.

Results

Repeated-measures ANOVA was performed on the accu-
racy scores with the between-participant factor of Age
group (younger and older) and the within-participant
factors of Difficulty (easy color task and difficult shape
task), SS (one, three, and five items), and Type (“same”
and “different” trial types). There was a main effect of
Difficulty, F(1, 50) = 109.25, partial η2 = .69, p < .001,
supporting our a priori assumption that the shape task
block (M = 0.84) would be more difficult than the color
task block (M = 0.91). Another expected main effect was
SS, F(2, 100) = 369.53, partial η2 = .88, p < .001, with
statistically significant differences in performance across
SS1 (M = 0.97) to SS3 (M = 0.90) to SS5 (M = 0.75).
Difficulty and SS significantly interacted with one an-
other, F(2, 100) = 51.39, partial η2 = .51, p > .001, with
exacerbated inaccuracy by increasing SS for the shape
task block relative to the color task block. There was a
main effect of Type, F(1, 50) = 244.88, partial η2 = .83,
p < .001, with superior performance for “same” trials
(M = 0.95) compared with “different” trials (M = 0.80).
Type and SS yielded a significant interaction, F(2, 100) =
186.45, partial η2 = .79, p < .001, with the SS effect
stronger for the “different” trials (mean values: SS1 =
0.97, SS3 = 0.85, SS5 = 0.58) compared with the “same”
trials (mean values: SS1 = 0.97, SS3 = 0.96, SS5 = 0.93).
The difficult shape task block also yielded significantly
greater errors for “different” versus “same” trials (M =
0.21 greater errors) compared with the easy color task
block (M = 0.10 greater errors), as per a significant
Difficulty × Type interaction, F(1, 50) = 57.79, partial

η2 = .54, p < .001. The Difficulty × SS × Type interac-
tion was also significant, F(2, 100) = 26.07, partial η2 =
.34, p < .001, with the same–different difference increas-
ing by SS, although more so in the difficult shape task
block compared with the color task block.
The effect of Age group on accuracy yielded a number

of significant effects, starting with a main effect of Age
group, F(1, 50) = 41.61, partial η2 = .45, p < .001, as
older adults performed worse in the task (M = 0.85)
compared with younger adults (M = 0.90). Age group
yielded multiple interactive effects. There was an Age
Group × SS interaction, F(2, 100) = 13.87, partial η2 =
.22, p < .001, with the age effect exacerbated by increas-
ing SSs. There was an Age Group × Type interaction,
F(1, 50) = 43.96, partial η2 = .47, p < .001, indicating
that, whereas older adults were performing equiv-
alently to younger adults in “same” trials (Myounger =
0.95, Molder = 0.96), older adults were significantly worse
than younger adults under “different” trials (Myounger =
0.86, Molder = 0.74). There was a significant three-way in-
teraction of Age Group × Type × SS, F(2, 100) = 25.63,
partial η2 = .34, p < .001, indicating that age group dif-
ferences in accuracy were exacerbated by increasing SS
but only in the “different” trial types. This finding is illus-
trated in Figure 5. Thus, whereas older adults performed
similarly to younger adults during same trials, during dif-
ferent trials, performance declined as a function of in-
creasing VWM demands. We characterize this result as
an older adult “same bias.” There was an Age Group ×
SS × Difficulty interaction, F(2, 100) = 5.88, partial
η2 = .11, p< .01, indicating that the age group difference
of increasing inaccuracies by SS was greater in the color
task block compared with the shape task block. There
were significant interactions for neither Age Group × Dif-
ficulty nor Age Group × Type × Difficulty. Finally, the
four-way Age Group × Difficulty × SS × Type interaction
was significant, F(2, 100) = 3.7, partial η2 = .07, p < .05,
indicating that older adults yielded exacerbated (com-
pared with younger adults) same–different differences
by increasing SS, but more so in the difficult shape task
block relative to the easier color task block.

DNF SIMULATION

The behavioral experiment results highlight important
changes in VWM performance as a function of aging. El-
derly participants performed worse than younger partic-
ipants as SS increased, an effect exacerbated during the
different trial types and in the more challenging shape
change detection task. Not only did the performance of
elderly participants decline, but also their performance
declined in a systematic fashion. Specifically, elderly par-
ticipants exhibited a same bias in which they struggled
detecting changes. In the following section, we explore
different parameter manipulations to determine whether
the DNF model can explain these declines in VWM
performance across dimensions and age.

Figure 4. Sample of an SS3 “different” trial during a color block for the
behavioral experiment.
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Method

We initialized the model with parameters from the
change detection model reported by Buss et al. (under
revision). We chose to start with the model of color
change detection with young adults because the DNF
model has been most extensively applied to this type
of data set (cf. Johnson, Spencer, Luck, & Schoner,
2009). In DNF models, the equations describing activa-
tion are nonlinear differential equations, and thus the
influence of any individual parameter is dependent on
all the other parameters of the model. Although it is
possible that another combination of parameters could
provide a reasonable starting point and an equally good
fit to the young-color data set, all of the parameter adjust-
ments we explored below did not yield a better fit to the
young-color data set. Thus, we are confident that the
parameters we started with are unique for the area of
parameter space that we are exploring.
We initially adjusted these parameters to fit the perfor-

mance of the young adults in the color change detection
task (see Supplementary Information can be found at
https://abclabutk.weebly.com/uploads/6/0/4/7/60476297/
jcn_2018.zip, for full equations and parameters). We then
systematically modified the tuning of the model to test
how well different mechanisms explained the pattern of
responses for young adults in the more challenging
shape task and older adults in both the shape and color
tasks.
We then tested the role of excitatory and inhibitory

interactions in the model relative to the fit to the differ-
ent data sets above. Table 2 shows the 10 different
models that were generated. We manipulated the shape
of five interaction kernels: excitation within the model
layers (marked with “1” in Figure 1), inhibition within
the model layers (marked with “2” in Figure 1), excitation
and inhibition (both “1” and “2”) within the model layers,
to-inhibition (connections marked “3”) operative be-

tween the model layers, and noise administered both
within and across model layers. These kernels are de-
fined by two parameters corresponding to the strength
and width of a Gaussian curve defining these interac-
tions. The interaction kernels are not normalized. Both
the strength and width parameters were independently
manipulated for each kernel (as evident in Table 2).
Note, however, that an increase in width of an interaction
necessarily increased the strength at longer-range con-
nections. For the purposes of discussing the results be-
low, we refer to these models based on the parameters
that were manipulated (e.g., the excitation width model
or the to-inhibition strength model). For all the parame-
ters that were manipulated, we modified the parameter
values going both stronger and weaker in steps of
0.025 from the base parameters used to simulate the
young-color data set. For example, to explore increases
in a parameter value, it would be multiplied by 1.025,
1.05, and so on. To explore decreases in a parameter
value, it would be multiplied by 0.975, 0.95, and so on.
This allowed us to determine local maxima in the fits to
the three target data sets.

Simulations were conducted in MATLAB 7.5.0 (The
MathWorks, Inc.) on a PC with an Intel i7 3.5 GHz
quad-core processor (the MATLAB code is available from
the authors on request). For each parameter step, we
conducted batches of 20 simulations (equivalent to indi-
vidual participants) with 100 trials at each SS of 1, 3, and
5. Half of these trials were same trials, and half were dif-
ferent trials. Stimuli were given to the model to replicate
the task parameters that human participants received.
Stimuli consisted of Gaussian inputs centered on a set
of color values. Inputs were randomly selected from an
array of eight equally spaced Gaussians that had a width
of 3 and an amplitude that scaled with SS (see Supplemen-
tary Information, https://abclabutk.weebly.com/uploads/6/
0/4/7/60476297/jcn_2018.zip). Model dynamics were
mapped to real time with 1 time step in the model equal

Figure 5. Mean accuracy for the
behavioral experiment, broken
down by SS, type, task and age
group.
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to 2 msec. To implement the trials, the model was given
Gaussian inputs corresponding to the number of items in
the memory or test array (e.g., 3 colors = 3 Gaussian
inputs centered at different hue values). The experimen-
tal task featured the timing of 500 msec for the memory
array, 1200 msec for the memory delay, and 1500 msec
for the test phase. In the model, this translated to 250,
600, and 750 time steps, respectively. The model gener-
ated an active response on every trial determined by
which decision unit became stably activated during the
test array.

Results

The model parameters were initially fit to the data from
the young-color data set, based on the a priori assump-
tion that this data set would represent superior perfor-
mance. Figure 6 shows the fit of the model to the six
data points in this condition. The model fit the data well
with a root mean square error (RMSE) of 0.048. Thus,
the model captures the pattern of responses that partic-
ipants made across both same and different trials as SS
increased.

To compare the fit produced by the model to the dif-
ferent sets of data, we computed an RMSE value for the
models’ fit to the test data sets. Figure 7 shows an exam-
ple of how the RMSE changed as a result of the parame-

ter manipulations for the excitation and inhibition width
model. The RMSE was initially poor around the 0-step
difference. This is expected—the parameters that fit the
young-color data set fit the other data sets poorly. As
these parameters were scaled, the RMSE systematically
improved. This illustrates that the RMSE progressed to
a local minimum, which we identified as the optimal
parameter values for each data set. In the following

Figure 6. Fit of the model to the behavioral younger adult data set for
the color task.

Table 2. Description of Parameters Manipulated for Each Model

Model Description of Manipulation

Excitation width The width of self-excitatory interactions within the CF and WM layers
(connections marked “1” in Figure 1).

Excitation strength The strength of self-excitatory interactions within the CF and WM layers
(connections marked “1” in Figure 1).

Inhibition width The width of inhibitory interactions from Inh to both CF and WM
(connections marked “2” in Figure 1).

Inhibition strength The strength of inhibitory interactions from Inh to both CF and WM
(connections marked “2” in Figure 1).

Excitation and inhibition width The width of self-excitatory interactions within the CF and WM layers
(connections marked “1” in Figure 1) and the width of inhibitory interactions
from Inh to both CF and WM (connections marked “2” in Figure 1).

Excitation and inhibition strength The strength of self-excitatory interactions within the CF and WM layers
(connections marked “1” in Figure 1) and the strength of inhibitory interactions
from Inh to both CF and WM (connections marked “2” in Figure 1).

To-inhibition width The width of the excitatory interactions from both CF and WM to Inh
(connections marked “3” in Figure 1).

To-inhibition strength The strength of the excitatory interactions from both CF and WM to Inh
(connections marked “3” in Figure 1).

Noise width The width of noise (stochastic fluctuations in activation) within the CF, Inh,
and WM layers (not marked in Figure 1).

Noise strength The strength of noise (stochastic fluctuations in activation) within the CF, Inh,
and WM layers (not marked in Figure 1).
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analyses, we used the best-fitting set of parameters for
each data set and each model.
Table 3 shows the best RMSE values for each data set

and each model. Fits of the model to the young-shape
and old-color data sets were overall very similar, ranging
between 0.047 and 0.056. As can be seen in this figure,
the data set that produced the highest RMSE was old-
shape. The model that produced the smallest average
RMSE across the three test data sets was excitation
and inhibition width with a value of 0.076, followed by
the inhibition width model at a value of 0.088 and the
to-inhibition strength model with an RMSE of 0.100. To

statistically assess the fits of the different models, we con-
ducted repeated-measures ANOVAs. First, we can ask
whether performance across the different data sets could
be explained by variation along a continuum of a specific
parameter or a set of parameters. To do this, we com-
pared the 20 runs of each model to assess their fit relative
to the other model with a Model × Data Set ANOVA. We
started by comparing the three best-fitting models with
each other (excitation and inhibition width, inhibition
width, and to-inhibition strength). In these comparisons,
the fits provided by these models were not statistically
different, F(1, 19) = 2.048, p = .138. However, there

Figure 7. RMSEs of the models
as parameters were iteratively
stepped. x Axis shows the
parameter scaling relative
to the base parameters (1).
Scaling was executed in 0.025
increments. The lowest RMSE
was considered the optimum
fit for the other age–task
combinations. o = old;
y = young.

Table 3. Summary of the Best RMSE for Each Parameter Manipulation, With the Parameter Scaling Shown in Brackets for
Each Model

Model Young-Shape Old-Color Old-Shape

Excitation width 0.047 [1.150] 0.052 [1.150] 0.086 [1.250]

Excitation strength 0.050 [1.175] 0.053 [1.175] 0.091 [1.275]

Inhibition width 0.048 [1.325] 0.056 [1.300] 0.060 [1.550]a

Inhibition strength 0.061 [0.650] 0.072 [0.675] 0.144 [0.650]

Excitation and inhibition width 0.046 [1.150] 0.051 [1.125] 0.051 [1.225]b

Excitation and inhibition strength 0.057 [1.325] 0.047 [1.250] 0.072 [1.775]

To-inhibition width 0.052 [1.175] 0.056 [1.175] 0.095 [1.275]

To-inhibition strength 0.051 [0.875] 0.048 [0.900] 0.060 [0.825]b

Noise width 0.125 [1.050] 0.111 [1.050] 0.123 [1.325]

Noise strength 0.136 [1.075] 0.129 [1.050] 0.130 [1.125]

aModel that statistically outperformed the next best-fitting model.

bModels that statistically outperformed the other models for the old-shape data set ( p < .001) and were not statistically different from one another.
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Figure 8. Pattern of accuracy
from the model compared
to behavioral data sets. The
three best-performing models
are presented here.
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was a main effect of Data set, F(1, 19) = 15.859, p< .001.
Follow-up analyses revealed that the old-shape data set
was fit significantly more poorly than the young-shape
data set, t(118) = 2.051, p = .001. No other comparisons
reached significance. The poorest fitting model of this
group (inhibition width model) fit the data better than
the next best-fitting model (excitation width), F(1, 19) =
5.07, p = .030, supporting the cutoff we used.
Because the old-shape data set was the most challeng-

ing to fit, we performed a focused comparison on this
data set. This analysis revealed that the excitation and in-
hibition width model had a significantly lower RMSE com-
pared with the inhibition width model, t(38) = 2.421,
p = .02, but was not significantly better than the to-
inhibition strength model, t(38) = 1.875, p = .07. The
fit of the to-inhibition strength model to the old-shape
data set was not better than that of the inhibition width
model, t(38) = 0.393, p = .70. The inhibition width
model fit better than the next best-fitting model, which
was the excitation and inhibition strength model, t(38) =
3.593, p < .01. Figure 8 shows the details of the models’
performance across the different trial types for each
data set. As can be seen, these models fit the pattern of
accuracy on specific trial types well.
Figure 9 plots the interaction kernels used to define

the shape of the neural interactions for the models that
best fit the four data sets (i.e., younger color and shape,
and older color and shape). In Figure 9A, the interaction
kernels for the excitatory and inhibitory interactions are
plotted for the excitation and inhibition width model.
This illustrates the profile of local excitation and lateral
inhibition interactions within the WM and CF layers. To
explain changes in performance as a function of dimen-
sion and age, the interaction kernel increased in width

relative to the model that fits the young-color data set.
In Figure 9B, the interaction kernels are plotted for the
to-inhibition strength model. This illustrates the shape of
excitatory neural interactions from the WM and CF layers
into the Inh layer. To explain changes in performance
as a function of dimension and age, the interaction kernel
became weaker relative to the model that fits the young-
color data set. Finally, Figure 9C plots the interaction
kernel that was modified for the inhibition width model.
This illustrates the profile of inhibitory interactions
from the Inh layer to the CF and WM layers. To explain
changes in performance as a function of dimension and
age, the interaction kernel became wider relative to the
model that fits the young-color data set.

To explore the relative contribution of these different
parameters of the model, we combined the inhibition
width model parameters that best explained performance
in the young-shape data set and the to-inhibition strength
model parameters that best explained performance in the
old-color data sets to determine whether these factors
could be combined to explain performance on the old-
shape data set. The motivation for this comparison is to
explore whether different factors could explain differences
between dimensions and differences between ages. Com-
parison of this hybrid model against the excitation and
inhibition width model relative to the old-shape data
set is plotted in Figure 10. There were no significant
differences in model fits between these models for this
data set, t(19) = 0.473, p = .642.

Next, we explored the properties of the model associ-
ated with errors and correct responding at the highest SS
(SS5), which had the most number of incorrect trials. The
top row of Figure 11 plots the number of peaks within
the WM layer at the end of the delay phase immediately

Figure 9. Visualization of
interaction kernels for the
three best-performing models.
(A) Excitation and inhibition
width with zoom-in on kernel
on the right. (B) To-inhibition
strength. (C) Inhibition width.
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before presentation of the test array. Data are plotted for
correct rejections (correct same trials), hits (correct
change trials), FAs (incorrect same trials), and misses (in-
correct different trials) for each data set and each model.
As can be seen, the excitation and inhibition width model

and the inhibition width model had fewer peaks for
shape relative to color trials and fewer peaks from old
models compared with young models. However, the to-
inhibition strength model produced a full set of five
peaks nearly every trial for all three test data sets. In ad-
dition, the models tended to have fewer peaks on FA tri-
als compared with other trial types. The bottom row in
Figure 11 illustrates the average number of neural units
participating in each peak at this same point in time of
the simulation immediately before the presentation of
the test array. We observed an increase in the number
of activated units for the shape relative to the color sim-
ulations and for the old relative to the young simulations
for the excitation and inhibition width model and the to-
inhibition strength model. However, we observed a de-
crease in the number of units activated for all test data
sets relative to the young-color data set for the inhibition
width model.
These results point to three possibilities. It could be

that performance across difficulty and age is explained
along a continuum of parameters for the models ex-
plored here. Alternatively, the effect of dimension and
age might be explained by distinct mechanistic changes
to the inhibitory system: The effect of dimension was
best explained by increases in the width of inhibition,
and the effect of age was best explained by decreased
strength of input into the inhibitory system. In this case,

Figure 11. Number of peaks for each trial type (top) and number of activated units per peak (bottom) formodels that best fit the young-color (solid black),
young-shape (dashed black), old-color (solid gray), and old-shape (dashed gray). CR = correct rejection trials; FA = false alarm trials; Avg = average.

Figure 10. RMSE for the model fits to the old-shape data set. The
three best-fitting models and a hybrid model are presented. The hybrid
model combined the parameters from the inhibition width model
that best fit the young-shape data set and the parameters from the
to-inhibition strength model that best fit the old-color data set.
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performance in the old-shape data set would reflect the
combination of these two factors. Indeed, when these
factors were combined, the model explained the be-
havioral data in the old-shape data set as well as the
excitation and inhibition width model. Thus, model fits
to these behavioral data cannot differentiate between
the explanation offered by the excitation and inhibition
width or to-inhibition strength models or a combination
of to-inhibition strength and inhibition width manipula-
tions. Future work can further examine age-related
effects to determine if these models can be differen-
tiated relative to their fit to behavioral data in other
VWM tasks or hemodynamic data collected during VWM
tasks. We further address this in the Discussion section
below.

Discussion

VWM is of critical importance to cognitive function, and its
decline in older adults offers a window into age-related
neural degeneration. In our VWM task, the elderly group
of participants performed worse than the young adult
group, with a characteristic same bias that was especially
evident at higher SSs. Although both age groups re-
sponded more accurately to the same trials compared
with the different trials, older adults displayed exac-
erbated performance decline under the “different” con-
ditions, especially with increasing VWM (SS) loads.
Furthermore, although both age groups performed
worse under “different” conditions with the shape task
relative to the color task, older adult decline was exacer-
bated under the shape task with increasing VWM de-
mands. These results suggest that the age effect and
difficulty effect may fall along a continuum. That is, de-
clines in performance as a function of dimension and
declines in performance as a function of age may arise
from the same mechanism. Alternatively, it may be that
distinct mechanisms mediate differences based on diffi-
culty of the dimension and age. This is suggested by
the improved fit to the old-shape behavioral data when
combining the to-inhibition strength parameters that fit
the old-color behavioral data (i.e., an aging effect) with
the inhibition width parameters that fit the young-shape
behavioral data (i.e., a dimension effect).
Our modeling results demonstrated how both of these

possibilities provide viable explanations of age-related
decline in VWM performance. The excitation and in-
hibition width model (wider excitatory and inhibitory
interactions) explained the pattern of performance ac-
ross dimensions and age equally well as the inhibition
strength model (weaker excitatory input into the inhibi-
tory field). Combining these models for the old-shape
data set yielded an equally good fit as the other two
models. Despite this relative ambiguity regarding which
mechanism or mechanisms best explain performance
across dimensions and age, an important contribution
of the simulations presented here is to provide con-

straints on the types of mechanisms that can give rise
to degenerations in performance across these factors.
That is, three mechanisms provided superior fits to the
performance of older adults in the shape change detec-
tion condition relative to the 10 mechanisms that were
explored.

Importantly, the simulations that yielded the best fits
to the data sets are consistent with various observations
of the neural dynamics associated with cognitive decline.
For example, older adults have well-documented de-
clines in inhibitory control (McDowd, 1997). Our results
suggest that this would be a natural consequence of the
to-inhibition model, which has weaker engagement of
the inhibitory field. Moreover, functional overactivation
is common in older adults, particularly in frontal recruit-
ment and bilateral activation patterns, when performing
in challenging cognitive conditions (Davis et al., 2008;
Cabeza, 2002). Such results are thought to arise from
dedifferentiation of neural connectivity (Goh, 2011;
Park et al., 2001). Dedifferentiation is generally thought
to result from deterioration of the functional response,
with one major neurophysiological explanation being
the impairment of white matter connections allowing
efficient cross-regional communication. Our results offer
an important bridge between these brain and behavioral
results. First, the mechanisms implemented to explain
performance implemented deteriorated connectivity
between neural populations, which could arise from such
impairments in white matter connections. Second, a
natural consequence of the excitation and inhibition
width model would be the recruitment of more cortical
resources with aging. Relatedly, the to-inhibition model
reduced the recruitment of inhibitory signals in the
models. As a consequence of this manipulation, excita-
tion will tend to be stronger and more diffuse. In this
regard, our modeling results are consistent with the
dedifferentiation account of aging given the broader
or weaker connectivity implemented between neural
populations.

Our model results also argue against a currently dom-
inant theoretical perspective on the decline in cognitive
processes as a function of aging, which suggests that an
increase in neural noise is a primary mechanism of cog-
nitive decline (Welford, 1984). The model that directly
manipulated the properties of noise in the model did
not yield systematic changes in the quality of the model’s
fit to the behavioral data. It is possible, though, that the
models that were able to explain the behavioral data
could yield representations that are less precise and less
consistent over time. For example, the inhibition and ex-
citation width model made neural interactions wider,
which means that more neurons would become engaged
for a given representation. In this case, “noise” pertains
to the neural response width, rather than stochastic
noise pervading the model. On the basis of our results,
an age-related increase in neural noise would reflect dis-
rupted connectivity between model layers (and, by
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extension, between cortical regions) necessary for effi-
cient performance. By our account, neural noise is a sec-
ondary expression of alterations to the excitation and
inhibition width changes in the older model that resulted
in broader neural interactions. This means that specific
colors and shapes are encoded more diffusely and re-
quire greater population activation to achieve the
coded representation.

Our results are less specific with regard to compensa-
tory models of cognitive aging (such as HAROLD and
PASA), although this reflects the limitations of the change
detection task. Compensatory explanations typically refer
to increased top–down attention needed to offset age-
related declines in sensory processing. Our change detec-
tion task design offered minimal top–down control, given
that the participants had no knowledge of the targets
beyond the prechange and postchange comparison.
Therefore, although our results are strongly supportive
of neural accounts such as dedifferentiation, they are
neutral on the question of age-related compensatory
mechanisms.

The current study is limited in the degree to which we
can specify cortical mechanisms at work in the age effect
of VWM, for our data types are behavioral and computa-
tional, rather than neurophysiological. Nevertheless, our
results speak indirectly to support investigations in the
neurophysiological causes of age effects. Our modeling
results found an age-related decrease in inhibitory sig-
nals, similar to Schmolesky et al. (2000) who found that
the reduced stimulus selectivity in aged rhesus monkeys
was due to deterioration of intracortical inhibition. They
hypothesized that this increased excitability in the older
monkeys was due to reductions in the neurotransmitter
GABA, although other researchers have targeted the do-
pamine system operative within frontal cortical regions.
Optimal WM performance has been linked to the inhibi-
tory D1 receptors in the pFC (cf. Durstewitz, Seamans, &
Sejnowski, 2000; Muller, von Cramon, & Pollmann, 1998;
Seamans, Floresco, & Phillips, 1998), and reductions in
dopamine levels in older adults have been linked with a
decrease in cognitive processes including WM (for a re-
view, cf. Backman, Nyberg, Lindenberger, Li, & Farde,
2006). Although speculative, our work is largely consis-
tent with the possibility that the age effect in VWM is
due to deteriorating inhibitory signals operative within
frontal regions.

However, this project is only a first step in understand-
ing how the dynamic connectivity between neural layers
can account for the age-related decline in VWM. One as-
pect of performance that has been explored with young
adults is the influence of metric similarity of items in WM.
This work has demonstrated that change detection is en-
hanced when memory items are close together in feature
space compared with when they are far apart (Johnson
et al., 2009). Furthermore, items that are close together
in feature space tend to repel one another when probed
with a color estimation procedure such that color estima-

tion responses are biased away from the metrically simi-
lar item (Johnson, Ambrose, van Lamsweerde, Dineva, &
Spencer, submitted). Johnson et al. (submitted) demon-
strated that the neural interactions implemented by the
DNF model of VWM replicated this pattern of color esti-
mation data. Thus, future work can probe differences in
color estimation between young and old adults. Results
from a study such as this can provide further tests of
the mechanisms proposed here to explain differences
between age and feature dimensions in VWM.
Previous work suggests that the DNF model can serve

as an essential bridge between behavioral and functional
neural data. The equivocal results regarding the fit of the
model to the behavioral data point to the importance of
model-based fMRI studies. For instance, we could extend
the simulation results here to generate hemodynamic re-
sponses from the different models that fit the behavioral
data with superior RMSEs. Using an established method
of simulating hemodynamic responses from the literature
on the neurophysiological basis of the hemodynamic re-
sponse (Deco, Rolls, & Horwitz, 2004; Logothetis, Pauls,
Augath, Trinath, & Oeltermann, 2001), Buss et al. (under
revision) applied the DNF model to explain both young
adults’ performance in a change detection task and their
associated neural measures obtained from fMRI. In this
project, the model was used not only to simulate patterns
of behavioral responses from young adults but also to pre-
dict patterns of hemodynamic responses. These analyses
revealed that the pattern of hemodynamic activation gen-
erated by different components of the model predicted
patterns of activation across distinct neural networks previ-
ously implicated in VWM.
Future work can use this model-based approach in

conjunction with fMRI to further constrain the models ex-
plored here and better understand the functional signifi-
cance of changes in cortical activation. That is, we can
explore the cognitively functional aspects of shifts in neu-
ral activation using the model to bridge between behav-
ioral and neural data. First, we could identify regions that
show changes in activation between young and old adults
across stimulus dimensions. Second, we can determine
which model (i.e., neural mechanism) best predicts these
patterns of activation across age and stimulus type. Third,
we can then explore which model components show cor-
respondence with regions in which activation shifts as a
function of aging. For example, if these regions show cor-
respondence with the WM layer, this may suggest that
shifts in activation result from sustained maintenance pro-
cesses. However, if these regions show correspondence
with the CF layer, this may suggest that these regions are
compensating during the comparison process. Finally,
these regions may show correspondence with the decision
units in the model, which may implicate these regions in
the decision-making process and the allocation of atten-
tion to memory and comparison processes. Future work
applying a model-based approach to fMRI with aging
populations will be required to address these issues.
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To conclude, the results presented here point toward a
limited subset of neural mechanisms that can plausibly
explain VWM decline across stimulus difficulty and aging
factors. The model results suggest that age-related de-
clines arise not from circumscribed effects to specific
stages of processing or cognitive components but instead
from degradation to the dynamic neural processes that
give rise to representations in VWM and the decision-
making process that compares the contents of VWM to
stimuli in the environment. Future work with this model-
ing framework will focus on neural dynamics across
stimulus difficulty and aging to examine whether the
model can shed light on the pattern of activation across
these factors.

Reprint requests should be sent to Matthew C. Costello, Depart-
ment of Psychology, University of Hartford, 200 Bloomfield
Avenue, West Hartford, CT 06117, or via e-mail: mcostello@
hartford.edu.
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