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A B S T R A C T

In this report, we present a neural process model that explains visual dimensional attention and changes in visual
dimensional attention over development. The model is composed of an object representation system that binds
visual features such as shape and color to spatial locations and a label learning system that associates labels such
as “color” or “shape” with visual features. We have previously demonstrated that this model explains the de-
velopment of flexible dimensional attention in a task that requires children to switch between shape and color
rules for sorting cards. In the model, the development of flexible dimensional attention is a product of
strengthening associations between labels and features. In this report, we generalize this model to also explain
development of stable and selective dimensional attention. Specifically, we use the model to explain a previously
reported developmental association between flexible dimensional attention and stable dimensional attention.
Moreover, we generate predictions regarding developmental associations between flexible and selective di-
mensional attention. Results from an experiment with 3- and 4-year-olds supported model predictions: children
who demonstrated flexibility also demonstrated higher levels of selectivity. Thus, the model provides a frame-
work that integrates various functions of dimensional attention, including implicit and explicit functions, over
development. This model also provides new avenues of research aimed at uncovering how cognitive functions
such as dimensional attention emerge from the interaction between neural dynamics and task structure, as well
as understanding how learning dimensional labels creates changes in dimensional attention, brain activation,
and neural connectivity.

1. Introduction

Executive function (EF) refers to the collection of mechanisms that
give rise to goal-directed cognition and behavior. Measures of EF during
early childhood are predictive of later quality of life outcomes (Moffitt
et al., 2011) and academic achievement (Blair, Zelazo, & Greenberg,
2005; Bull, Espy, & Wiebe, 2008; Lee, Ng, Bull, Pe, & Ho, 2011; St Clair-
Thompson & Gathercole, 2006; Swanson, Jerman, & Zheng, 2008),
suggesting that EF is a foundational aspect of cognition. Although these
studies suggest that strengthening EF could serve as a leverage point to
improve developmental outcomes across multiple cognitive domains,
efforts to improve EF through intervention have had only limited suc-
cess (Diamond & Lee, 2011). Such efforts are complicated by a lack of
consensus regarding the mechanisms that are involved in performance
on specific tasks that are aimed to measure EF (Garon, Bryson, & Smith,
2008; Hanania & Smith, 2010; Happaney & Zelazo, 2003; Kirkham &
Diamond, 2003; Munakata, Morton, & Yerys, 2003). Thus, it is not clear

which mechanisms of EF should be targeted to expect gains in perfor-
mance on EF tasks or in real-world behavior, suggesting that our cur-
rent understanding of EF is incomplete.

Previous research has taken steps toward identifying mechanisms of
EF using a latent variable approach (Miyake et al., 2000). This work has
demonstrated that measures from batteries of EF tasks load onto factors
that can be described as inhibition, memory updating, and set-shifting
or switching. Developmentally, it has been demonstrated that EF skills
differentiate over time. During early childhood a single factor typically
explains performance on EF tasks (Fuhs & Day, 2011; Shing,
Lindenberger, Diamond, Li, & Davidson, 2010; Wiebe et al., 2011;
Wiebe, Espy, & Charak, 2008; Willoughby, Blair, Wirth, & Greenberg,
2010; Willoughby, Wirth, Blair, & Family Life Project Investigators,
2012). During later childhood two distinct factors are typically evident
(Huizinga, Dolan, & van der Molen, 2006; Lee, Bull, & Ho, 2013;
McAuley & White, 2011; Shing et al., 2010; van der Sluis, de Jong, &
van der Leij, 2007; Van der Ven, Kroesbergen, Boom, & Leseman,
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2012). Finally, during adolescence latent factors similar to those of
adults are observable (Agostino, Johnson, & Pascual-Leone, 2010; Lee
et al., 2013; Lehto, Juujarvi, Kooistra, & Pulkkinen, 2003; Rose,
Feldman, & Jankowski, 2011; Wu et al., 2011). This literature is not
without controversy, however. For instance, there is evidence for
multiple components during early childhood, suggesting that the factor
structure is impacted by the tasks, as well as which dependent variables
are measured from those tasks (Miller, Giesbrecht, Müller, McInerney,
& Kerns, 2012).

The latent variable approach is a data-driven method for identifying
components of EF by determining how variance among measures from
cognitive tasks cluster together. This approach is useful for describing
the structure of EF, but it does not shed light on how EF works. To
better understand the mechanisms and processes that give rise to EF, we
instead take a theoretical approach to explore an alternative me-
chanism of EF: dimensional attention to visual features. To achieve these
goals, we take a process-based approach to understand the dynamics that
give rise to performance on tasks that require controlled processing of
the visual features of objects. Previously, we have used neurocompu-
tational simulations to develop a dimensional attention mechanism in
the context of a canonical probe of EF during early childhood. In his
report, our aim is to demonstrate how the processes that give rise to
dimensional attention generalize to explain development across tasks
that have distinct, and often competing, cognitive demands.

Attention is one of the most widely studied topics in cognitive de-
velopment, so it is important to distinguish our definition of dimen-
sional attention within this broader literature. Attention and EF are
related to one another in many ways. For example, previous examina-
tions of attention development have incorporated some aspect of en-
dogenous control over attention as a central aspect of attentional de-
velopment (Colombo & Cheatham, 2006; Sheese, Rothbart, Posner,
White, & Fraundorf, 2008). Research has examined the foundations of
attentional skills, including changes in the ability to orient, select, and
control the allocation of attention from infancy through early childhood
(e.g., Rueda, Posner, & Rothbart, 2005). Research has also examined
the central role attention plays in the formation and maintenance of
working memory for objects (Ross-Sheehy, Oakes, & Luck, 2011) and
spatial locations (Schutte, Keiser, & Beattie, 2017), and the role of at-
tention in inhibitory control (Reck & Hund, 2011). Much effort has also
been given to examining the neural basis of attention development
(Amso & Scerif, 2015; Richards, Reynolds, & Courage, 2010). Although
these aspects of attention are likely foundational for the form of at-
tention that we aim to study (Cuevas & Bell, 2014), in the current report
we focus on dimensional attention during early childhood as a me-
chanism of EF. In particular, we explore the allocation of processing
resources between different visual dimensions such as shape and color.

The dimensional attention mechanism that we have developed is
grounded in a label system that is reciprocally connected to an object
representation system. Dimensional labels, such as “color” or “shape”,
modulate the activation of visual features within the object

representation system. As associations are strengthened between neural
representations for visual features and neural representations for labels
of those features, the model comes to more strongly attend to visual
features. One assumption of the model is that populations in frontal
cortex are sensitive to both auditory and visual information which
would allow neural representations to link labels with visual features
and dimensions. In this way, labels act simply as another feature that is
bound to visual features (Gliozzi, Mayor, Hu, & Plunkett, 2009). We
have previously demonstrated that this mechanism unifies diverse be-
havioral findings and generates quantitative behavioral predictions
(Buss & Spencer, 2014), as well as explains brain-behavior associations
in early childhood (Buss & Spencer, 2018). Here, we explore whether
this mechanism can generalize to explain performance on tasks that
that require controlled processing of object features, but which are not
typically characterized as EF tasks and do not use explicit verbal labels
to instruct performance.

2. Theories of EF development

Various theories have been put forth to explain developmental
changes in EF. These theories often focus on individual tasks as a
benchmark measure of development. For example, the dimensional
change card sort (DCCS) task has been the focus of many developmental
theories and is often presented as a canonical probe of EF development.
In this task, children are instructed to sort bi-dimensional test cards by
either shape or color and then to switch and sort by the other dimen-
sion. Target cards are displayed at the trays where children sort to show
which features go to which location for the shape or color rules (see
Fig. 1A). The test cards children sort are constructed to contain conflict
by matching both target cards along different dimensions.

The DCCS task has been a central focus in the literature for several
reasons. First, it reveals a qualitative shift in children’s abilities: 3-year-
olds tend to perseverate and continue using the first set of rules when
instructed to switch, but 4- to 5-year-olds have little difficultly
switching rules. Thus, the task reveals the emergence of a new skill over
a relatively short period of time. Second, subtle manipulations to the
task can have amplified effects on children’s performance (for a review,
see Buss & Spencer, 2014; Zelazo, Muller, Frye, & Marcovitch, 2003).
That is, children’s abilities during this period are volatile and manip-
ulations to different aspects of the task can illuminate the processes
underlying performance. Finally, neuroimaging data have demon-
strated that the development of flexible rule use is dependent upon
activation in frontal cortex (Buss & Spencer, 2018; Moriguchi & Hiraki,
2009), which is widely regarded as the source of mature EF (e.g.,
Fuster, 2000). Thus, the DCCS task provides a wealth of behavioral and
neural data to draw upon when explaining the development of di-
mensional attention.

The DCCS is an explicit dimensional attention task which requires
children to understand and make use of verbal rules to sort cards ac-
cording to the relevant dimension. Explaining performance in this task,

Fig. 1. Illustration of stimuli used in the DCCS (A), dimensional priming (B), and triad classification (C) tasks.
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however, is particularly challenging because it involves the coordina-
tion of multiple cognitive skills (Garon et al., 2008). First, the task re-
quires an active representation of the currently relevant rules in
working memory. This representation must then be used to selectively
process the relevant feature of the test card and inhibit processing the
irrelevant dimension. After the rules change, these processes must be
updated—children must now form an active representation of the
newly relevant dimension, selectively process the other dimension on
the test card, inhibit processing of the previously relevant dimension,
and inhibit the habits accumulated from the pre-switch phase. Thus,
dimensional attention in the DCCS task involves the different compo-
nents of EF that have been identified in the factor analyses approach:
active working memory representations, inhibition, and switching. As
we detail below, all of these functions are achieved by the processes
that give rise to dimensional attention.

Explanations of performance in the DCCS task have centered on the
mechanisms mentioned above. For example, it has been suggested that
children fail during the post-switch phase due to a failure to inhibit
attention to the pre-switch dimension which leads to attention being
stuck on that pre-switch dimension (attentional inertia; Kirkham,
Cruess, & Diamond, 2003; Rennie, Bull, & Diamond, 2004). Further, a
connectionist model has been used to demonstrate that flexibility may
develop from strengthening the active representations of the relevant
rules (Chatham, Yerys, & Munakata, 2012; Morton & Munakata, 2002;
Yerys & Munakata, 2006). Lastly, cognitive complexity and control
(CCC) theory suggests that children have a limited ability to shift be-
tween representations of abstract rules created by a failure to reflect on
the rules of the task (Zelazo et al., 2003). Although these accounts focus
on specific mechanisms of EF, such as inhibition, representation
strength, or shifting, they do not typically explain the processes that
give rise to these mechanisms or developmental changes in these me-
chanisms. Consequently, these accounts of development are limited in
their ability to generalize to other versions of the DCCS task or other
types of tasks.

One perspective which expands beyond mechanisms and ad-
ditionally emphasizes the processes underlying EF is dynamic field
theory. Buss and Spencer (2014) presented a dynamic neural field
(DNF) model that simulates real-time neural dynamics to explain the
quantitative details of performance of 3- to 5-year-olds across a wide
array of manipulations to the DCCS task. In the model, flexible rule-use
arises from object representation processes which bind visual features
(e.g., shapes and colors) to spatial locations (e.g., sorting locations).
These object representation processes are coupled to a system which
forms representations of dimensional labels (e.g., “shape” and “color”).
Dimensional labels are instantiated as associations between labels and
visual dimensions such as shape and color. For example, by activating a
representation of the label “color”, the processing of color features in
the object representation system of the model becomes enhanced. By
enhancing the task-relevant visual dimension, the object representation
system can overcome the conflict inherent to the task (i.e., the test card
matches both target cards along different dimensions). As the model
sorts during the pre-switch phase, memory traces accumulate which
create biases to sort by the pre-switch dimension. These biases create an
additional source of conflict that interferes with sorting by the post-
switch dimension. Development in this task is implemented by in-
creasing the strength of associations between label and visual feature
representations. With weak associations, the model can sort by the pre-
switch dimension but will perseverate when instructed to switch to sort
by the other dimension. As the associations between labels and features
are strengthened, the model transitions from performing like 3-year-
olds to performing like 5-year-olds during the post-switch phase. That
is, with strong associations, the model overcomes the biases that ac-
cumulate from the initial sorting phase and displays flexible sorting
behavior in the DCCS task.

This theoretical perspective is unique for many reasons. Most no-
tably, the model explains flexibility through general perception/action

systems rather than abstract cognitive processes or cognitive re-
presentations, such as those used by the previously mentioned ac-
counts. Specifically, flexible rule-use is emergent from the interactions
between a system that builds representations of objects and a system
that learns associations between labels and visual features. Second, the
flow of information in the model is not unidirectional as in typical
theories of EF. Rather, activation between the object and label systems
flows in both directions between visual features and labels. Thus, in
contrast to previous theories which frame mechanisms of EF around
top-down mechanisms, the DNF model implements a dimensional at-
tention mechanism that depends on reciprocal interactions between
different levels of representations (i.e., labels and features). Lastly,
flexible rule-use is emergent from real-time neural dynamics. Therefore,
this perspective allows us to explain not only behavioral developmental
results but also associated neural activation across different conditions
of the DCCS (Buss & Spencer, 2018).

To better understand the processes involved in the development of
dimensional attention, we look beyond the DCCS task and examine
other tasks which also involve attention to visual features of objects but
with other distinct processing demands. The DCCS task is an explicit
rule-use task that requires using verbal rules to attend to the task-re-
levant dimension. The primary developmental achievement revealed by
the DCCS task is the ability to flexibly shift attention between dimen-
sions. To test the generalizability of this model, we included two other
tasks which are measures of implicit dimensional attention. In these
implicit dimensional attention tasks, participants must infer the re-
levant dimension from the configuration of the stimuli. This demand
places a strong emphasis on the bi-directionality of interactions be-
tween visual features and labels because the processing of object fea-
tures must be used to recruit attention to the relevant dimension.
Moreover, these tasks reveal developmental improvements in other
distinct functions of dimensional attentional, namely selectivity and
stability. In the next section, we discuss developmental improvements
in other aspects of dimensional attention.

3. Beyond flexibility

3.1. Stability

Stability is another function of dimensional attention that shows
developmental improvements during early childhood. This function of
dimensional attention has been previously assessed with a dimensional
priming (DP) task (Medin, 1973). In this task, children are first shown a
reference object (e.g., a blue square) and are then shown two choice
objects. Children are instructed to pick the choice object that goes best
with the reference object. The first two trials children receive in this
task are called priming trials (see Fig. 1B). Priming trials are configured
such that there is only one matching option among the choice objects. If
the child is being primed on the color dimension, for example, then the
choice objects could be composed of a red triangle and a blue circle, as
shown in Fig. 1B. In this configuration, only one object matches the
reference object and it does so along the color dimension. After two
priming trials with only a color matching choice object, children are
then given a series of ten test trials in which the shape and color di-
mensions are pitted against one another (see Fig. 1B). On these test
trials, the two choice objects match the reference object along different
dimensions. The typical finding in this priming task is that 5-year-olds
are more likely to continue selecting the primed dimension compared to
3-year-olds.

Recently, Benitez, Vales, Hanania, and Smith (2017) demonstrated
that stability in the DP task is related to flexibility in the DCCS task.
Children were given the DP and DCCS task, both with the shape and
color dimensions counterbalanced. Children who flexibly switched
rules in the DCCS task were more likely to be primed and select based
on the primed dimension for more consecutive test trials (see Fig. 2).
These results lead to challenging questions. How can the same
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neurocognitive system give rise to flexibility in one context but stability
in another? That is, stability in the DP task would seem to work in
opposition to flexibility in the DCCS task—children who perseverate in
the DCCS task would be more likely to continue selecting along the
primed dimension in the DP task since children would be perseverating
on a visual dimension in both cases. These data suggest that a more
nuanced process drives the relationship in performance between these
tasks. Additionally, if performance on these tasks tap into common
aspects of dimensional attention over development, how is it that di-
mensional attention is driven explicitly in one task but implicitly in
another? No previous theories have addressed these distinctions.

3.2. Selectivity

The development of dimensional attention has also been measured
with a free classification task called the triad classification (TC) task
(Smith & Kemler, 1977). The TC task is aimed at measuring implicit,
selective dimensional attention. Similar to the DP task, children are
given a series of trials in which they are shown a reference object and
asked to pick which of two choice objects goes with the reference ob-
ject. The stimuli are configured such that on every trial one object
shares exactly the same feature of the reference object along one di-
mension while being maximally different along the other dimension.
This object is called the identity (ID) choice object (object shown at the
right in Fig. 1C). In contrast, the other choice object does not exactly
match the reference object along either dimension but is overall more
similar to the reference object when considering both dimensions (see
object at the left in Fig. 1C). This object is called the holistic (H) choice
object. Thus, the H object would be deemed a better match to the re-
ference object if information is integrated across both dimensions.
However, the ID object would be deemed a better match to the re-
ference object if information is selectively considered along a single
dimension. Previous studies have demonstrated that children’s dimen-
sional attention becomes more selective over development such that
older children more frequently select the ID object over the H object
compared to younger children (Smith & Kemler, 1977).

As with the DP task, the relevant dimension in the TC task must be
determined implicitly based on the configuration of the stimuli since no
explicit instructions are provided. In the TC task, the relevant dimen-
sion defined by the ID matching features is randomly assigned from
trial to trial. Thus, there is no systematic dimension that is task-relevant
as in the DP task. In this way, the TC task not only requires selectivity as
described above, but also requires flexibly shifting attention between
dimensions from trial to trial. No study has yet explored whether a

relationship exists between performance on the DCCS and TC tasks (see
Hanania & Smith, 2010). However, other research with the DCCS task
suggests that selectivity and flexibility influence one another. For ex-
ample, decreasing the demands on selective dimensional attention im-
proves switching in 3-year-olds (Diamond, Carlson, & Beck, 2005; Kloo
& Perner, 2005), and increasing the demands on selective dimensional
attention makes switching more difficult for younger children (Fisher,
2011). These findings suggest that common processes might also un-
derlie the development of flexibility and selectivity.

3.3. Summary

As this discussion reveals, various functions emerge over develop-
ment in the context of attention to visual dimensions. Most theories of
EF development are framed in such a way that they explain perfor-
mance on individual tasks but do not offer insight as to how or why
these functions of dimensional attention might be related from one task
to another. For example, the attentional inertia account suggests that
‘sticky’ attention impairs DCCS performance, but it is not clear how the
demands on stability in one task might be related to the demands on
flexibility in another task. Further, these tasks involve either explicit or
implicit dimensional attention which creates additional challenges for
accounts of EF development that are centered on the DCCS task. For
instance, the CCC account frames the development of cognitive flex-
ibility in terms of reflection on the nature of the objects and the rules to
be used when sorting. Thus, it is not clear how this account would
explain performance on implicit measures of dimensional attention
which do not specify any rules. Further, the connectionist model of the
DCCS task implements a top-down mechanism but does not have a
mechanism for bottom-up influences that would be required for these
measures of implicit dimensional attention. Indeed, none of these ac-
counts explain how bottom-up factors, such as the color and shape of
the stimuli, can lead to the deployment of top-down dimensional at-
tention.

In this report, our aim is to explore whether these functions of di-
mensional attention can be integrated within a common framework.
The primary question we ask is whether the DNF model can explain
how multiple cognitive functions arise from a common set of neural
process. In the next section, we describe the DNF model that has been
used to explain brain and behavior development in the DCCS task. We
then describe how the dimensional attention mechanism adapts in the
context of the DP and TC tasks. A key aspect of this mechanism is that it
is driven through reciprocal connectivity between the object re-
presentation system and the dimensional label system. Specifically,
recruitment of top-down modulation of information processing in the
object representation system is dependent upon bottom-up signals from
the object representation system. Across these different tasks, functions
of dimensional attention emerge based on the demands imposed by a
specific task and the developmental status of the neurocognitive
system.

4. The dynamic neural field model

Dynamic Field Theory is a class of neural process models (called
dynamic neural field, DNF, models) that explains how cognition arises
from neural dynamics (for a review, see Schoner & Spencer, 2016).
Dynamic Field Theory has a substantial history in being applied to the
development of dimensional attention. Buss and Spencer (2014) first
developed a DNF model to simulate the performance of 3- to 5-year-olds
in an unprecedented 14 different variations of the DCCS task. Moreover,
this model has also been used to predict: behavioral data in new var-
iations of the DCCS task (Buss & Spencer, 2014), how prior exposure to
visual dimension influences DCCS performance (Perone, Molitor, Buss,
Spencer, & Samuelson, 2015; Perone, Plebanek, Lorenz, Spencer, &
Samuelson, 2017), and neural activation across frontal, parietal, and
temporal regions (Buss & Spencer, 2018). Thus, the DNF model offers
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Fig. 2. Data from Benitez et al. (2017). Proportion of children who continued to
select along the primed dimension in the dimensional priming (DP) task is
higher among the children who switched rules in the DCCS task (Switchers)
compared to children who perseverated in the DCCS task (Perseverators).
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the most comprehensive explanation available of the behavioral and
neural data from the DCCS task.

4.1. Model architecture

The DNF model is composed of populations of neural units that
correspond to frontal, temporal, or parietal cortical processing. Neural
units interact through local-excitation and lateral-inhibition to create
‘peaks’ of activation that correspond to cognitive representations or
decisions about stimuli. Neural units have a learning mechanism which
gradually increases the baseline level of activation for these units as
they are activated over the course of a task.

Fig. 3 shows the architecture of the model and the mapping of
model components to cortical regions. The parietal cortex component
(purple) is composed of a population of neural units that is tuned to the
spatial information of the task. Peaks within this field reflect re-
presentations of the spatial locations of objects or spatial decisions
about objects in the context of the task-space. This component is cou-
pled to a temporal cortex component (yellow and green) composed of a
set of 2-dimensional fields. These fields are tuned to a combination of
feature information (color or shape) and spatial information. The par-
ietal and temporal fields share activation with one another along the
spatial dimension. That is, when neural units are activated within the
model, they pass activation to other units that are tuned to similar
spatial information. Through this spatial coupling, these fields imple-
ment an object representation system that forms representations of
objects by binding representations of shape and color features to spatial
locations.

The parietal and temporal components are reciprocally connected to
a frontal cortex component (blue). The frontal component implements
representations of labels for features, dimensions, or objects. In the
model used for the following simulations, the frontal component con-
sists of units corresponding to “shape” and “color” labels. These label
units have reciprocal connectivity to their corresponding feature po-
pulation in the temporal component. Additionally, these label units are
homogenously connected to the parietal component. This connectivity

Fig. 3. Architecture of the DNF model and mapping to cortical regions. The
spatial field is shown at top (purple). Below the spatial field is the color-space
field (yellow) and shape-space field (green). On the left are the dimensional
label units (blue) which represent labels for “color” and “shape”. Inset brain
image illustrates the mapping of model components to cortical regions. The
double-headed arrows in the figure represent reciprocal relationship between
the regions. Looped arrows in the dimensional label units represent self-ex-
citation within each unit. The double headed arrow between the dimensional
label units represents lateral inhibitions between each unit. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. Model performing a trial during the pre-
switch of the DCCS task. Top: A representation of
the stimuli shown to the model. Middle row:
Activation profiles in the spatial field with the
horizontal line representing the activation
threshold (at 0). Bottom panels: Color-space
(top) and shape-space (bottom) fields, along
with their dimensional label units (C and S).
When the label units are above the activation
threshold (horizontal line at 0), activation is sent
to the associated feature-space fields. In all fig-
ures, the thickness of the arrows is used to in-
dicate the strength of activation with bolder ar-
rows representing stronger activation than
thinner arrows. (A) Model is shown the target
cards and sorting trays. The ‘color’ label unit on
the activation map (C) is at a higher level of
activation due to a direct input reflecting that
the model has been instructed to sort by color.
(B) The model is presented with a blue star test
card. Activation in the spatial field is equally
strong at the left and right locations because the

test card overlaps with both target cards along different dimensions (note the arrows below the spatial field). Further, activation is also equally strong within both the
color and shape systems because the test card overlaps with the target cards within each dimension (note the arrows from the feature-space fields to their dimensional
label units). The “color” label unit (C) has a competitive advantage due to the direct input and is sending activation back to the color-space field (note the arrow from
the C label unit to the color-space field). (C) The model sorts the test card to the leftward location. (D) The model is shown at the beginning of the post-switch phase.
The target card inputs and memory traces (illustrated as yellow ovals, the darker the color the stronger the memory trace) overlap with one another in the pre-switch
field (noted with cooperation) whereas the memory traces are at the opposite location of the target card inputs within the post-switch field (noted with competition).
The input to the C label unit is now removed, and a direct input is now given to the S label unit. The advantage provided to the S label unit, however, is not as strong
due to the memory trace that has accumulated on the C label unit during the pre-switch phase. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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serves to build responses within the parietal component when a sti-
mulus is presented.

4.2. Implementing the DCCS task

Fig. 4 shows the model over a sequence of events as it performs the
DCCS task. Note that the arrows in this and subsequent figures of the
model illustrate the strength of interactions along the spatial dimension
and between labels and features. These are meant to facilitate com-
prehension of the model dynamics that are important in each task. The
arrows illustrate the direction of interaction that is present at each time
point and the boldness of the arrow is meant to illustrate the relative
strength of interactions. In Fig. 4A, the model is displayed with inputs
corresponding to the target cards (displayed at top). The model has
small bumps of input at the left and right locations, corresponding to
the locations of the sorting trays. Across the shape and color fields, the
model has bumps of input at the leftward location for the blue and
circle features in the color and shape fields, respectively. At the right-
ward location, the model has bumps of input corresponding to the red
and star features in the color and shape fields, respectively. These in-
puts are sub-threshold and do not induce activation. Rather, these in-
puts served to pre-shape the fields based on the structure of the task.
For this trial, the model is instructed to sort by color; thus, the “color”
label unit, plotted in the bottom left of Fig. 4A, has a boosted level of
activation from a direct input. As with the target card inputs, this rule
input pre-shapes activation of the dimensional labels but does not in-
duce activation.

In Fig. 4B, the model is given a blue star test card to sort by color.
The test card is presented as a ridge of activation at the relevant feature
values within the shape and color fields (note the horizontal stripe of
activation). In this way, the test card contains no spatial information
regarding where it is to be sorted. Rather, the model must use the
overlap of the target card inputs and test card inputs along with the
instructed dimension to make a decision. At this point in time, the
“color” label unit and “shape” label unit are both being boosted in a
bottom-up fashion due to the build-up of activation within the shape
and color fields at the presentation of a test card (note the arrows drawn
between the feature fields and the dimensional label units). However,
the “color” label unit has an advantage from the input provided by the
instructions to sort by color. The arrows drawn below the spatial field in
this panel indicate the ambiguity in the stimuli—that is, the contribu-
tions of input across all fields at the left and right spatial locations are
equivalent. Through activating the label for “color”, however, the
model enhances processing of color features and makes a decision based
on color information. Specifically, the model uses the overlap of the
inputs from the target card and test card to bind the features of the test
card to the leftward location as illustrated in Fig. 4C. This decision is
reflected by the peak of activation at the leftward location in the par-
ietal field and the combination of peaks for the blue and star features at
the left location in the feature space fields.

Fig. 4D shows the consequences of making decisions during the pre-
switch phase. As mentioned above, the model has a learning mechanism
which results the build-up of memory traces associated with the acti-
vated feature-space conjunctions. Within the color-space field, the
memory traces overlap with the target input for the blue feature at the
leftward location and the red feature at the rightward location. How-
ever, within the shape-space field, the memory traces are at the oppo-
site location of the target card input. These memory traces create co-
operation within the pre-switch color field, meaning that activation will
build more quickly at these locations on subsequent test card pre-
sentations. These memory traces, however, create competition within
the post-switch shape field. In this case, activation will build more
slowly in this field at the target card location due to the location of the
memory trace generating lateral inhibition when a test card is pre-
sented. Specifically, because the model has built a memory of sorting
the start to the leftward location during the pre-switch phase, it will be

more difficult for the model to build activation at the rightward loca-
tion for this feature.

The original implementation of the model did not use active units
for the “shape” and “color” labels of the frontal component. Buss and
Spencer (2014) directly modulated the activation within the color and
shape dimensions to reflect changes in the strength of dimensional at-
tention. More recent instantiations of the model have used active units
for the frontal component to simulate hemodynamic responses in
frontal cortex (Buss & Spencer, 2018) as well as the influence of prior
exposure to visual dimension on DCCS performance (Perone et al.,
2015, 2017). Here, we continue using the model architecture with ac-
tive frontal units to enable simulating both explicit and implicit di-
mensional attention tasks. These more recent instantiations of the
model used a ‘young’ and an ‘old’ model to simulate the performance of
3.5- and 4.5-year-olds on the DCCS, respectively. These models were
defined based on parameter differences for two different types of cou-
pling within the model. First, relative to the ‘old’ model, the ‘young’
model had weaker local-excitation/lateral-inhibition within the frontal
component of the model. Second, relative to the ‘old’model, the ‘young’
model had weaker reciprocal connectivity between the frontal and
posterior systems. Taken together, the ‘old’ model activated re-
presentations in the frontal component more quickly and strongly and
was able to boost activation within the posterior system more strongly.
As a consequence, the ‘young’ model produced low rates of switching
similar to 3.5-year-olds, while the ‘old’ model showed higher rates of
switching similar to 4.5-year-olds.

This model is the first computational framework to simulate the
trial-to-trial response of children in a way that captures both pre- and
post-switch performance. Aside from the explanation offered for the
existing literature, our theory has also been used to generate data that
calls into question assumptions of previous accounts, motivating a re-
interpretation of the cognitive processes giving rise to performance on
the DCCS task over development. First, the emergence of flexibility in
the DCCS task is not only associated with increased involvement of
frontal cortex as suggested by previous theories (Bunge & Zelazo, 2006;
Moriguchi & Hiraki, 2009; Morton & Munakata, 2002), but also in-
creases in activation of parietal and temporal regions (Buss & Spencer,
2018). Moreover, frontal cortex activity can be influenced by manip-
ulations to the task. For example, children who perseverate in the
standard condition, and show weak frontal activity when doing so,
produce strong activation of frontal cortex in an easier version of the
DCCS task in which they can correctly switch rules (Buss & Spencer,
2018). This pattern of data is explained by stronger activation sent to
the frontal label system from the posterior object system in the easier
version of the task.

Behaviorally, it has also been demonstrated that giving children pre-
exposure to the post-switch dimension can facilitate performance of 3-
year-olds in the DCCS task. Perone et al. (2015, 2017) administered a
memory game where children flipped over cards to find matching
features before performing the standard DCCS task. If the memory game
involved the same dimension used during the post-switch phase of the
DCCS task, children performed significantly better in the DCCS task
compared to when the matching task did not involve the post-switch
dimension. Again, this change in performance occurs through boosting
activation for the relevant dimension in the posterior object system
which increases the strength of interaction between the frontal and
posterior systems. Lastly, (Buss & Spencer, 2014) directly manipulated
the spatial configuration of the DCCS task to either increase activation
within the posterior system which facilitated switching of 3-year-olds or
increase inhibitory competition in the posterior system which impaired
switching of 3-year-olds. These studies were all based on predictions
generated by the same model regarding the behavior or hemodynamic
activity which were supported by data from 3.5- and 4.5-year-olds. In
summary, the model performs the DCCS task and its variants in a si-
milar fashion as children and replicates patterns of hemodynamic ac-
tivity across frontal and posterior regions.
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An important assumption of the DNF model is that EF skills are built
from the perceptual and motor processes involved in specific tasks. If
this is the case, then the same model should be able to simulate beha-
vioral performance from other tasks that are not explicitly EF tasks, but
still require attention to visual dimensions. Next, we test the general-
izability of this model in the context of other dimensional attention
tasks. First, we describe the inputs provided to simulate the DP and TC
tasks and how the dynamics of the model generate responses in these
tasks. We then run batches of the ‘young’ and ‘old’ model to determine

whether these models explain quantitative associations in performance
across tasks.

4.3. Implementing the DP task

Fig. 5 shows the sequence of events as the DNF model performs the
DP task. Fig. 5A shows the input for the reference object. Similar to the
test card input in the DCCS task, the reference object input is given as a
ridge of activation (note the horizontal stripes of activation) to the
shape and color fields without specifying location. This input does not
induce above threshold activation, but instead serves to pre-shape ac-
tivation in the field. Fig. 5B–C shows the presentation of a priming trial.
The choice objects are administered as a set of spatially localized inputs
at a leftward and rightward location. These inputs are strong and in-
duce above-threshold activation. In the color field, the leftward object
overlaps with the ridge for the reference object while the rightward
object is at a different color value. In the shape field, both objects are at
a different feature value than the shape feature on the reference object.
The arrows drawn below the spatial field indicate that the inputs ag-
gregated across all fields are stronger at the leftward location compared
to the rightward location. This is due to the overlap of the reference
object feature with the choice object feature at the leftward loca-
tion—that is, both objects are blue. In this way, the imbalance of spatial
activation associated with the stimuli indicate which object is the cor-
rect choice.

The activation of the “shape” and “color” label units is plotted at the
bottom left of each panel. When the choice objects are presented, as
shown in Fig. 5B, the “color” label unit gains stronger activation than
the “shape” label unit. As indicated by the arrows drawn between the
feature fields and the dimensional label units, the overlap of the re-
ference and target input creates stronger synaptic output from the color
field to its associated dimensional label unit. Note that this is an implicit
dimensional attention task; therefore, the model is not given a direct
input to the dimensional labels as in the DCCS task. The configuration
of stimuli creates a signal regarding which dimension is relevant.
Fig. 5C shows the model selecting the color-matching object on the
leftward location which is indicated by the peak in the spatial field. At
this point in time, the model has strongly activated the “color” label
unit and is attending to the color dimension.

Recall that in the DP task, children are first given two priming trials
followed by ten test trials. Fig. 5D–F illustrate the sequence of events on
a test trial in the DP task. First, Fig. 5D shows that the activation of the
“color” label unit is stronger than that of the “shape” label unit. This
difference is due to the accumulation of a memory trace for this di-
mensional unit during the priming trials. In Fig. 5E, the model is given
stimuli corresponding to the test items. Now, the reference object
overlaps with a choice object input within each field (note the arrows
below the spatial field indicating equal input strength at each spatial
location across fields). Specifically, the reference object overlaps with
the choice object on the left within the color field and overlaps with the
choice object on the right within the shape field. In Fig. 5E, the “color”
label unit is at an advantage relative to the “shape” label unit due to the
memory trace. In Fig. 5F, the model has selected the choice object at the
leftward location which matches along color. Thus, in this example, the
model has become primed on the relevant dimension and has selected
the choice object that matches along color. It is important to point out
one difference in the implementation of this task relative to the DCCS
task. Although memory traces accumulate within the label units, the
accumulation of memory traces within the feature fields is disabled for
this task. This change was implemented for practical purposes. The DP
task uses different features from trial-to-trial and there is no feature-
space conjunction built into the task as there is with the DCCS. Rather
than implementing a larger field that would allow for sampling a wider
range of features but would require more time to perform the field
computations, we opted to eliminate the accumulation of feature-space
memories. Thus, from the model’s perspective, new features are

Fig. 5. Model performing the dimensional priming task. A–C illustrate a
priming trial and D–F illustrate a test trial. (A) Model is shown the reference
object. In contrast to the DCCS task, the model is not provided with a direct
input to the dimensional label units. Therefore, the activation levels of the C
label unit and S label unit are the same. (B) Model is shown the two choice
objects. Spatial activation is stronger at the leftward location where the choice
object matches the reference object (note the bold arrow at the leftward loca-
tion under the spatial field). Activation is stronger within the color system due
to the overlap of color features between the reference object and the choice
object (note the bold arrow from the color-space field to the C label unit). (C)
Model selects the choice object on the left (note the reciprocal interactions
within the color system). (D) Model is shown the reference object after two
priming trials. Note that C label unit has stronger resting-state activation due to
memory traces that accumulated during the priming trial. (E) Model is pre-
sented with the choice objects. Spatial activation is equally strong at both
spatial locations because the choice objects both match the reference object
along one dimension. Activation is also equally strong from the shape-space and
color-space fields to their label units because there is overlap between the re-
ference object and choice objects within both dimensions. Due to its higher
resting-state activation, the C label unit passes the activation threshold and
sending activation to the color-space field. (F) The model selects the choice
object on the left that matches along the color dimension.

A.T. Buss and A. Kerr-German Cognition 192 (2019) 104003

7



presented on every trial since it does not have a mechanism to re-
member which specific features were presented on previous trials. As
illustrated by this example, however, the key property of the model that
creates dimensional priming is the strength of the memory traces ac-
cumulated on the dimensional label units during the priming trials.

4.4. Implementing the TC task

Now we turn to the TC task. This task is similar to the DP task in
terms of the demands on implicit dimensional attention. In both tasks,
the relevant dimension must be deduced from the configuration of
stimuli. However, there are new demands placed on flexibility in the TC
task. That is, in the TC task, the relevant dimension is randomly se-
lected from trial to trial; thus, children must be able to not only de-
termine which dimension is relevant based on the configuration of
stimuli but must also be able to selectively attend to shapes or colors in
a flexible manner. Further, the source of competition induced by the
non-target object is different than in the DP task. Specifically, the H
object is similar to the reference object along both the relevant and
irrelevant dimension.

Fig. 6 illustrates the sequence of events and configuration of stimuli
in this task. In Fig. 6A the model is given the reference object similar to
the priming task (note the horizontal stripes of activation). Again, this is
a pre-shaping input that does not induce above-threshold activation. In
Fig. 6B, the model is shown the ID choice object on the left and the H
choice object on the right. Note that the ID choice object directly
overlaps with the ridge for the reference object in the color field but is
maximally far away from the reference object input within the shape
field. The H choice object, on the other hand, is just adjacent to and
partially overlapping with the reference object input within both the
shape and the color fields. The source of competition is illustrated with
the arrows at the bottom of the spatial field. Specifically, there is
stronger excitation from the stimuli at the rightward location due to the
partial overlap of the features of the H choice and the reference objects
at the rightward location. Selective dimensional attention in the model

is illustrated with the arrows between the feature fields and the di-
mensional label units. Specifically, there is stronger activation within
the field containing the ID choice object because of the direct overlap of
the ridge input for the reference object and the feature-space input of
the identity choice object. In contrast, the other field generates weaker
excitation because only one of the inputs for the two choice objects
overlaps with the reference object input. Thus, at the point in time il-
lustrated in Fig. 6B, the “color” label unit has a competitive advantage
due to the stronger input being received from the color feature field. In
Fig. 6C, the model is shown selecting the ID choice object. This is re-
flected by the presence of an activation peak within the spatial field at
the location of the ID choice object. At this point, the model has also
activated the “color” label unit and is attending to the color dimension
to make this decision.

As with the DP task, the formation of memories within the feature
fields is disabled for this task. Again, this is a simplification is for
practical purposes, reflects the random variation in features from trial
to trial, and is based on the assumption that children do not form sys-
tematic feature-space biases in this task. However, memory formation
on the dimensional label units is enabled since the same dimensions are
retained across trials.

4.5. Summary

As illustrated above, the model that explains development in the
DCCS task is also able to perform the DP and TC tasks. Modeling these
new tasks required no modification to the model architecture, but
simply a reconfiguration of the stimuli to reflect the implementation of
each task. Although these example illustrations are useful to think
about the common and distinct processing demands across tasks, they
do not tell us the nature of associations in performance between tasks.
That is, at the individual level, is performance on these tasks associated
with one another? In the next section, we present the results of batches
of the ‘young’ and ‘old’ models which have distributions of parameters
corresponding to the strength of local-excitation/lateral-inhibition
within the frontal component and the strength of reciprocal con-
nectivity between the frontal and posterior systems. These distributions
reflect individual differences in the developmental status of children
between the ages of 3 and 5. We use these ‘young’ and ‘old’ models to
determine whether the model is able to explain the existing association
between performance in the DCCS and DP tasks (Benitez et al., 2017).
Further, we use these models to make formal predictions regarding the
relationship between DCCS and TC tasks.

5. Explaining and predicting dimensional attention development

In this section, we ask whether the model can provide a formal
account of dimensional attention development that goes beyond the
DCCS task. First, we determine whether the model replicates the data
presented by Benitez et al. (2017). Specifically, children who showed
stable dimensional attention in the DP task were more likely to switch
rules in the DCCS task. Do models that switch in the DCCS task also
become primed in the DP task? Considering the processing demands
imposed by the DP task, it is not trivial that a model should be able to
simulate these effects. In particular, the DP task taps into implicit di-
mensional attention whereas the DCCS task measures explicitly cued
dimensional attention. Additionally, these tasks require distinct dy-
namics of dimensional attention: stability is required in the DP task, but
flexibility is required for the DCCS task. Can the model show stability in
the DP task while showing flexibility in the DCCS task? Second, we
examine the predictions the model makes regarding associations in
performance between the DCCS and TC tasks. The TC task is also a
measure of implicit dimensional attention that requires selectively
processing a single visual dimension. Can the model that shows flex-
ibility in an explicit rule-use task also show selectivity and flexibility in
the TC task?

Fig. 6. Model performing the triad classification task. (A) Model is shown the
reference object. As in the dimensional priming task, the model is not provided
with a direct input, so the activation levels of the C label unit and S label unit
are the same. (B) Model is presented with the choice objects (H item on the
right, ID item on the left). Activation is stronger at the location of the holistic
object (note bold arrow at rightward location under the spatial field) due to the
partial overlap of features with the reference object within both dimensions.
Activation is also stronger within the color system (note the bolder arrow from
the color-space field to the C label unit) because of the direct overlap of the
color feature on the ID object (left) with the reference color feature. (C) Model
selecting the ID object (note reciprocal interactions within the color system).
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5.1. Simulation methods

Simulations were conducted in Matlab 8.4 (Mathworks, Inc.) on a
PC with an Intel® i7™ 3.5 GHz quad-core processor. We defined ‘young’
and ‘old’ models based on distributions of parameters for four interac-
tions that are critical for the model’s performance: from feature fields to
associated dimensional units, from dimensional units to associated
feature fields, the strength of self-excitation on the dimensional units,
and the strength of mutual inhibition on the dimensional units. Fig. 7
shows the distributions used for these parameters (see Table 1 for the
parameters defining these distributions). As illustrated in these plots,
these parameters become stronger from the ‘young’ to the ‘old’ model.
The full set of parameters for the model is shown in Tables S1–S3. The
equations were the same as reported by Buss and Spencer (2014). The
‘old’ and ‘young’models were iterated for 200 runs each (corresponding
to 200 participants). For a given run, a parameter was generated from
each of the four distributions that defined the ‘young’ and ‘old’ models.
Each run of the model was given the DCCS, the DP, and the TC tasks.

5.1.1. The DCCS task
The DCCS task was simulated in the same manner as in Buss and

Spencer (2014; 2017). The model was given five trials during each of
the pre- and post-switch phases. To ‘instruct’ the model about which
dimension is relevant for each sorting phase, the model was given an
input of strength 0.5 to one of the dimensional units during the pre-
switch phase. During the post-switch phase, the input was removed
from this dimensional unit and given to the other dimensional unit.
Throughout each simulation, target inputs were presented at specific
feature and spatial values to capture the relevant details of the targets
cards for the pre-switch and post-switch phases. After 500 time-steps,
the model was presented with ridges of input for the features displayed
on the test cards. Each trial was simulated for 1500 time-steps, with the
test card stimulus presented for 1000 time-steps. The models always
generated an active response by the end of the trial.

5.1.2. The DP task
The sequence of inputs for DP task was administered to mimic key

properties of the task. It should be noted that no inputs were given to
the dimensional units in this task since it is a measure of implicit di-
mensional attention and no direct instructions are given to children.
First, inputs were presented that represented the reference object. This
was administered as a ‘ridge’ at the target feature value across all
spatial locations (see Fig. 5). After 500 time-steps, inputs were pre-
sented that corresponded to the choice objects. During the first two
trials (the priming trials), the choice objects only overlapped with the
reference ridge in one field. During the subsequent ten test trials, the
model was given inputs for choice objects that each overlapped with the
ridge in one field. The model always generated a response by the end of
the 1500 time-steps trial.

5.1.3. The TC task
The sequence of inputs for the TC task was administered to mimic

key properties of the task described in the experiment reported below.
First, inputs were presented that represented the reference object. This
was administered as a ‘ridge’ at the target feature value across all
spatial locations (see Fig. 6). After 500 time-steps, the choice objects
were presented. These inputs are spatially-localized and the features
were configured to reflect either the ID choice object or the H choice
object. The inputs for the H choice object were centered 5 units away
from the center of the reference ridge. The input for the ID match was
centered on the center of the reference ridge in one field but was cen-
tered maximally far away (20 units) from the center of the reference
field in the other field. The relevant dimension in which the ID choice
object matched the reference ridge was randomly selected on each trial
with the constraint that the trials were evenly divided between the
shape and color dimensions. To match the properties of the other two
tasks, the TC was administered with 12 trials.

It is important to note that different strengths were used for dif-
ferent inputs. However, these strengths were matched across tasks to
constrain these simulations. The target card inputs in the DCCS and the
reference object input for the DP task and TC task were a strength of 2
and width of 4 units. Importantly, these inputs were sub-threshold and
would not induce a peak of activation by themselves. Rather, they serve
to pre-shape activation within the neural fields based on the structure of
the task. However, the test card input in the DCCS and the choice object
inputs for the DP and TC tasks had a strength of 7.75 and a width of 6.
Based on this configuration, the test card input and choice object inputs
would induce a peak of activation based on their interaction with the
pre-shaping inputs.

5.2. Results

Simulation results for the DCCS task replicated previous simulation
and behavioral results (e.g., Buss & Spencer, 2014, 2018). All models
sorted correct during all pre-switch trials. Models were scored as pas-
sing the DCCS task if they sorted at least 4 out of 5 trials correctly
during the post-switch phase and as perseverating if it sorted 1 or fewer
correctly during the post-switch phase. The majority of runs of the

Fig. 7. Probability density functions for the parameters manipulated to explain performance of 3.5-year-olds (“Young” model) and 4.5-year-olds (“Old” model). See
Table 1 for lists of parameters used to define these distributions.

Table 1
Parameters defining the probability density functions for developmental para-
meters manipulated in the model.

Mean St-Dev Skew Kurtosis

Label→ Feature “Old” 0.9 1 2.5 11
“Young” 0.6 1 2.95 11

Feature→ Label “Old” 0.52 0.35 2.15 10
“Young” 0.3 0.3 2.75 10

Label Self-Exc “Old” 7 0.05 0.8 18
“Young” 6 0.05 1 18

Label-Inhib “Old” 38 1 −1 12
“Young” 15 15 3 12
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‘young’ model failed to switch rules (67.5%), relatively few correctly
switch rules (27.5%), and even fewer showed mixed responding (5%).
The majority of runs of the ‘old’ model correctly switched rules (64%),
relatively few failed to switch rules (27%), and even fewer showed
mixed responding (9%). Fig. 8 illustrates the relationship between
model parameters and performance on the DCCS task using the para-
meter for the strength of connection from the dimensional label units to
the feature-space fields as an example. At low parameter values, the
model tends to perseverate, but at high values the model tends to switch
rules. Mixed performance occurs within a range of parameters values
where neither switching nor perseverating are stable.

Compared to the findings of Benitez et al. (2017), the model pro-
duced a similar relationship between performance on the DCCS and the
DP tasks. Fig. 9 represents proportion of models that selected along the
primed dimension over the course of the full experiment. That is,
models that switched rules in the DCCS task continued to select along
the primed dimension in the DP task for more consecutive trials
(M=8.07), compared to models that perseverated (M=3.95) (t
(3 6 9)= 11.209, p < .001). Further, models that switched rules also
selected the primed-match option on a higher number of trials
(M=8.90) than models that perseverated (M=6.46) (t
(3 6 9)= 11.068, p < .001). Although the model performed the DP
task better than children in the Benitez et al. (2017) study, the average
number of trials the models selected from the primed dimension are
similar to those reported by Benitez et al. (2017) for both consecutive
trials (M=6.50 for switchers and M=4.03 for perseverators) and
across the length of the experiment (M=8.00 for switchers and
M=6.61 for perseverators).

We next compared performance in the DCCS and TC tasks (see
Fig. 10A). Here, we also observed an association in performance be-
tween tasks. Models that switched rules in the DCCS task selected the
identity object in the TC task at a significantly higher rate (M=0.94)
than models that perseverated (M=0.66) (t (3 6 9)= 22.466,
p < .001). To explore dimension-switching effects on performance, we

conducted a supplementary batch of 50 simulations each of the ‘young’
and ‘old’ models that only ran the DCCS and TC tasks. We increased the
number of trials simulated for the TC task to 36 to more robustly esti-
mate trial-to-trial performance. Specifically, we examined the model’s
performance on trials which the dimension of the identity-match
switched from the previous trial as a function of the number of trials
which the other dimension repeated. As shown in Fig. 10B, models that
switched rules in the DCCS did not differ in performance based on
whether there were one or two repetitions of the other dimension prior
to the dimension switch (t(37)= 0.408, p=0.69). However, for
models that failed to switch rules in the DCCS, performance was sig-
nificantly poorer when the previous dimension repeated twice com-
pared to when the previous dimension repeated once on switch trials (t
(50)= 2.443, p= .018).

5.3. Discussion

The model results revealed a significant relationship between the
DCCS task and the DP task, replicating Benitez et al. (2017), as well as a
significant association between the DCCS task and the TC task. Re-
garding the association between the DCCS and the DP tasks, the model
offers insight about the nature of the processes underlying performance
across these two tasks. Performance in both tasks depended on the
strength of connectivity between the frontal and posterior systems and
connectivity within the frontal system. The ‘young’ model with weak
coupling between dimensional units and feature fields, and weak local-
excitation/lateral-inhibition among the dimensional units did not ro-
bustly engage the dimensional units during the priming trials, leading
to a weaker accumulation of memory traces on these units relative to
the ‘old’ model. The ‘old’ model robustly engaged the dimensional
units, built up stronger memory traces on the relevant dimensional unit,
and was able to consistently engage this primed dimensional re-
presentation over the course of the test trials. In relation to DCCS
performance, across both the ‘young’ and the ‘old’ models, runs of the
model that were able to correctly switch rules in the DCCS task showed
significantly higher levels of priming over the course of 10 test trials in
the DP task. Moreover, the model also produced an association between
performance in the TC task and the DCCS task. Runs of the model that
correctly switched rules in the DCCS task showed a higher rate of ID
choice object selection. Next, we examine these predictions in an ex-
periment with 3- and 4-year-olds.

Fig. 8. Illustration of the relationship between model parameters and perfor-
mance on the DCCS task. As the strength of coupling from the labels to the
feature fields is strengthened, the model transitions from a tendency to perse-
verate to a tendency to switch with mixed performance occurring within a
critical range of values.

Fig. 9. Proportion of models that selected based on the primed dimension over
the course of dimensional priming (DP) trials in the DP task. Solid line plots
data for models that switched in the DCCS task, and the dashed line plots data
for models that perseverated in the DCCS task.
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6. Testing model predictions

We tested the predictions generated by the model with a group of 3-
and 4-year-olds who were given both the TC and DCCS tasks. The TC
task provides a quantitative metric of performance based on the pro-
portion of trials on which the ID object is picked. To obtain a quanti-
tative metric in the context of flexible dimensional attention, we ad-
ministered the NIH Toolbox version of the DCCS (Zelazo & Bauer,
2013). This version is similar to the standard DCCS task, except that a
mixed block is included after the post-switch phase. During this mixed
block phase, all of the features in the task are changed from the pre-
vious sorting phases. Thirty trials are administered, 10 of which chil-
dren are instructed to sort by the pre-switch dimension and 20 of which
children are instructed to sort by the post-switch dimension. In the NIH
Toolbox version, the mixed block is only administered to children who
pass the post-switch phase. However, we administered the mixed block
to all children with the aim of detecting more variation in children’s
dimensional attention switching abilities. Thus, we can measure whe-
ther children pass or fail based on their post-switch performance as is
traditionally done with this task. We can also generate a quantitative
measure of flexibility based on the number of trials sorted correctly
during the mixed block. Functional near-infrared spectroscopy data
were also collected from all children, but those data will not be reported
here since we are focusing on the behavioral predictions of the model.

6.1. Methods

6.1.1. Participants
We recruited 23 3.5-year-olds (M age= 42.7 mo; 9 males and 14

females) and 18 4.5-year-olds (M age=54.3 mo; 13 males and 5 fe-
males) from Knoxville, TN and surrounding communities. Research
protocols were approved by the University of Tennessee, Knoxville, IRB.
Informed consent was obtained from parents or legal guardians.
Children were given the TC and the DCCS tasks in counterbalanced
order. Half of the children had color as the pre-switch dimension in the
DCCS task while the other half had shape as the pre-switch dimension.
From this sample, one 3-year-old was dropped for not completing both
tasks, two 3-year-olds were dropped for failing to sort correctly during
the pre-switch phase, and two 3-year-olds were dropped for excessively
long reaction-times during the DCCS (> 40% trials with RTs longer
than 8 s). The final sample included in the analyses included 18 3-year-
olds and 18 4-year-olds.

6.1.2. DCCS procedure
Children were first oriented to the DCCS task with a set of trials

using physical cards and sorting trays. Children were instructed to sort
by the dimension that would be relevant during the pre-switch phase.

Target cards were composed of a blue circle and a red star. Test cards
were composed of a red circle and a blue star. During this orienting
phase, the experimenter explained the rules of the game by saying,
“This is a sorting game. It is called the (color/shape) game. In this
game, we are going to sort by (color/shape). That means all of the (red
ones/circles) go here and (blue ones/stars) go there.” Two cards were
sorted by the experimenter to show children how to sort the cards.
Children were then given 5 trials to perform on their own. These
practice trials were not included in the analyses.

The formal DCCS task was administered on a 40″ LCD monitor that
was connected to a PC running E-Prime 2.0 software (Psychology
Software Tools, Pittsburgh, PA). Children were given 5 pre-switch trials
and 5 post-switch trials. The number of trials that are used in the DCCS
can vary widely, from as many as 10 to as few as 3 during each sorting
phase. Given the robust all-or-none aspect of the majority of children’s
behavior, in order to have as expeditions of a session as possible, and to
be consistent with the NIH Toolbox version of the DCCS (Zelazo et al.,
2013), we opted to use 5 trials during the pre- and post-switch phases
(Buss & Spencer, 2014; Zelazo et al., 2003). During these sorting
phases, test card images were composed of a yellow house and a purple
fish. Target card images were composed of a yellow fish and a purple
house. The mixed block used red bunny and green chair images as test
cards. The target cards were composed of a green bunny and a red
chair. The mixed block included 10 trials for the pre-switch dimension
and 20 trials of the post-switch dimension which were administered in
random order.

Fig. 11A shows the sequence of events over the course of a trial in
the computerized task. The task was initiated with the presentation of
images showing sorting trays and target cards (Fig. 11A, top panel).
These images were 200×200 pixels and appeared on the screen ap-
proximately 5×5 cm. During this screen, the experimenter explained
the rules of the game that was to be played as described above. When
the child was ready, the experimenter pressed the space bar to trigger
and auditory prompt saying, “Let’s play the (color/shape) game!” and
the presentation of a test card that was centered above the sorting tray
images (Fig. 11A, middle panel). The child indicated their response by
pointing to one of the sorting trays. The experimenter entered the re-
sponse with a keyboard. Each session was also video recorded to later
validate the keyboard responses entered by the experimenter. After the
pre-switch trials were completed, the experimenter then instructed the
child to sort by the other dimension by saying, “We are all done with
that game. Now we are going to play a new game. This new game is
called the (shape/color) game. In this game we are going to sort by
(shape/color). That means all of the (fish/yellow ones) go here and
(houses/purple ones) go there.” Post-switch trials proceeded in a si-
milar fashion as the pre-switch trials.

Mixed block trials were administered similarly to the pre- and post-

Fig. 10. (A) Proportion of trials the model selected the identity choice object in the triad classification task based on DCCS performance. (B) Performance of model
during TC task on dimension-switch trials as a function of number of repetitions of other dimensions before the dimension switched.
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switch trials. At the start of the mixed block, the experimenter in-
structed the child that they were going to sometimes play the color
game and sometimes play the shape game. The experimenter initially
instructed the child for both rules by saying, “If we are playing the color
game, then you should sort by color. That means that the red ones go
here but the green ones go there. If we are playing the shape game,
though, then you should sort by shape. That means that the bunnies go
here but the chairs go there.” Trials were administered in the same
fashion as during the previous phases.

6.1.3. Triad classification procedure
In the TC task, children were told that they were going to determine

which objects “go together” and are “most similar” to one another.
Children were first shown the reference object at the bottom of the
screen and were directed to attend to the object by the experimenter
(Fig. 11B, top panel). After 2.5 s, the H and ID choice objects were
presented above the reference object to the left and right (Fig. 11B,
middle panel; left/right placement of the objects was randomly se-
lected). Children were instructed to “Pick which object is most similar
to this object [pointing to the reference object].” Children responded by
pointing to one of the choice objects. The experimenter then entered the
response with a keyboard, and these responses were later validated
using the video recordings of each session. Children were not provided
any feedback and each trial was initiated by the experimenter once the
child was ready and attending to the screen. Half of the trials had a
shape identity match and half of the trials had a color identity match.
The dimension of the identity match was randomly selected from trial
to trial.

The stimuli used in the TC task were constructed with metrically
controlled shapes and colors. These images were also 200×200 pixels
and took up approximately 5 cm×5 cm on the screen. Colors were
sampled from CIE Lab (1976) color space and shapes were constructed
using Fourier components as described by Drucker and Aguirre (2009).
Fig. 11C shows an example of shapes used in the task. Shapes and colors
were selected from a list of 60 items that were separated by 6 degrees in
shape or color space. The ID object was chosen to have the exact color
or shape as the reference object while the other dimension was chosen
to be 180 degrees different from the reference object. The H object’s
features were chosen based on pilot data from adults (see Supplemental
Materials). Specifically, the H choice object could vary between 90
degrees and 114 degrees in color and shape space. These values were
found to be the closest separation of features at which adults achieved
above 85% ID choices.

6.1.4. Results
First, we categorized children based on their post-switch perfor-

mance in the DCCS task. Children were scored as switchers if they
sorted at least 4 out of 5 correctly in the post-switch phase and as
perseverators if they sorted 2 or fewer trials correctly (see Fig. 12, left).
A Pearson χ2 test revealed that significantly more 4-year-olds were able
to switch compared to 3-year-olds (χ2(1)= 5.46p= .019). Perfor-
mance on the DCCS task was also scored based on the number of cor-
rectly sorted trials throughout all sorting blocks of the task (see Fig. 12,
right). An independent-samples t-test showed that 4-year-olds sorted
significantly more cards correctly than 3-year-olds (t(34)= 3.04,
p= .004).

Fig. 11. (A) Sequence of events in the DCCS task. During presentation of the first panel, an auditory track played which said, “Let’s play the [shape/color] game!”.
The trays stayed on the screen throughout the experiment, but the target cards changed depending on the condition. (B) Sequence of events in the triad classification
task. (C) Depiction of shape-space used in the triad classification task.

Fig. 12. Performance on the DCCS task. Left: Number of children who successfully switched and who perseverated during the post-switch phase of the DCCS by age.
Right: Average number of correct trials during mixed block by age.
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Performance in the TC task was scored based on the number of trials
during which participants selected the ID choice object. In addition to
testing for the effect of age on TC performance, we included a dimen-
sion factor based on which dimension the ID object matched the re-
ference object since this was a within-subjects factor for this task. We
first conducted a 2 (age: 3yo, 4yo)× 2 (dimension: color, shape) mixed
ANOVA on the TC scores, where age was a between-subjects factor and
dimension was a within-subjects factor. This analysis yielded a sig-
nificant main effect of age (F (1,34)= 4.30, p= .046, η2p= 0.112), no
significant main effect of dimension (F (1,35)= 2.187, p= .148), nor
an interaction between age and dimension (F (1,34)= 0.551,
p= .463). Thus, age influenced children’s performance in the TC task as
it did in the DCCS task, but performance was not influenced by the
dimension along which the identity object matched the reference ob-
ject.

We next examined whether performance on the DCCS task is related
to performance on the TC task. TC task performance was analyzed using
a 2 (DCCS: switch, perseverate)× 2 (dimension: color, shape) mixed
ANOVA to determine whether children performed differently in the TC
task based on their performance in the post-switch phase of the DCCS
task. This analysis again revealed no significant main effect of dimen-
sion (F (1,34)= 2.17, p= .150) nor an interaction between dimension
and DCCS performance (F (1,34)= 0.016, p= .901). However, we
found a significant main effect of DCCS performance (F (1,34)= 5.158,
p=0.030, η2p= 0.132). As shown in Fig. 13A, children who success-
fully switched during the post-switch phase of the DCCS selected the ID
choice object more frequently in the TC task, supporting the main
prediction of the DNF model.

To examine switch-related performance in the TC task, we divided
trials based on the number of trial repetitions before the dimension
switched. We examined trials which were preceded by a single cor-
rectly-performed trial of the other dimension (e.g., color – shape) and
trials that were preceded by two correctly performed trials of the other

dimension (e.g., color – color – shape) before a dimension change (See
Fig. 13B). We conducted a 2 (repetitions before switch: 1, 2)× 2
(DCCS: switch, perseverate) mixed ANOVA which revealed no main
effect of repetition (F (1,32)= 1.219, p= .278). Again, we found a
significant main effect of DCCS performance (F (1,32)= 6.780,
p= .014, η2p= 0.175) with children who successfully switched during
the post-switch phase of the DCCS task selecting the ID choice object at
a significantly higher rate. Additionally, a significant interaction be-
tween repetition and DCCS performance was detected (F (1,32)= 4.34,
p= .045, η2p= 0.120). Pairwise comparisons revealed that switchers
and perseverators performed equally well when only one repetition
preceded a dimension switch (t (34)= 1.30, p=0.200). However,
switchers performed significantly better that perseverators when two
repetitions preceded a dimension switch (t (34)= 2.88, p=0.007).

Lastly, to investigate whether overall performance in the DCCS task
significantly predicted performance in the TC task, we conducted re-
gressions using linear, quadratic, and cubic functions with total score in
the DCCS (including the mixed block) as the independent variable and
the number of trials in which children selected the ID object in the TC
task as the dependent variable. In line with the model’s prediction, a
linear relationship was significant (F(1,34)= 10.981, p= .002).
Further, a linear relationship fit the data as well as the quadratic (F
(2,33)= 7.940, p= .002) and cubic (F(2,33)= 7.849, p= .002) func-
tions (see Fig. 13C).

7. General discussion

In this report, we demonstrated how a neural process model pre-
viously used to explain the development of flexible dimensional at-
tention in the DCCS task (Buss & Spencer, 2014) also explains patterns
of behavior of 3- to 5-year-olds across two other tasks that require se-
lective and stable dimensional attention. Flexibility, selectivity, and
stability were revealed as properties of neurocomputational dynamics

Fig. 13. Performance on the triad classification (TC) task as a function of DCCS performance. (A) Average percent of trials children selected the identity (ID) choice
object, separated by their DCCS performance. (B) Average percent of trials children selected the ID choice object as a function of preceding trials before a dimension
switch for children who switched and perseverated on the DCCS task (Rep-1: one preceding trial of the other dimension; Rep-2: two preceding trials of the other
dimension) (C) Percent of ID choices plotted against the average number of trials sorted correctly in all phases of the DCCS task, along with the regression line.
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in the context of different tasks. First, we demonstrated that the model
can explain previously reported associations in performance on the
DCCS task and the DP task. Specifically, models that showed flexible
dimensional attention in the DCCS task (switchers) also had better
stable dimensional attention in the DP task. Further, the model gener-
ated novel predictions regarding an association between DCCS and TC
task performance. Data from 3- and 4-year-olds supported these pre-
dictions: children who switched rules in the DCCS task showed better
selective dimensional attention in the TC task compared to children
who perseverated in the DCCS task.

The DNF model performed these tasks like 3- and 4-year-olds
without any modifications to the model architecture or parameters to
accommodate performance on the other tasks. By simply presenting
inputs to this model that reflect the structure of these tasks, the dy-
namics of the model gave rise to these cognitive functions. Performance
on these tasks emerge based on (1) the processes of object representa-
tion, (2) the demands imposed by a particular task, and (3) the devel-
opmental status of the dimensional label system. Specifically, the
properties of the object representation system account for how the
configuration of features influences the neurocognitive system. The
primary function of this system is to bind features to spatial locations.
Thus, this system is sensitive to the unique aspects of each task, such as
the relationship between the features of different objects and the his-
tory of feature-space bindings over a series of trials. The developmental
status of the model is defined as the strength of associations between
labels and features. In this way, the dimensional label system differ-
entially modulates processing of visual features based on the strength of
the links between labels and visual features over development.

Modulation of visual features can be achieved either explicitly by
instructing the model to attend to a specific dimension as in the DCCS
task, or implicitly based on the signals propagating from the object
representation system as in the TC and DP tasks. In the DCCS task, the
model is given explicit instructions to sort by a particular dimension so
that there is no ambiguity regarding which dimensional label should be
activated. With weak associations between labels and features, the
model predominantly perseverates due to conflict between the rules
given for the post-switch phase (e.g., sort red to the right and blue to
left) and the pattern of memories that accumulate during the pre-switch
phase (e.g., red was previously sorted to the left and blue was pre-
viously sorted to the right). With strong associations between labels and
features, however, the model can resolve this conflict and switches
rules.

In implicit tasks, such as in the DP task, there is greater ambiguity
regarding which dimension is relevant. If color is the matching di-
mension during the priming trials, the overlap of the choice and re-
ference objects’ color values sends strong activation from the object
representation system to the “color” label. With strong associations
between labels and features (as in older children or adults), this acti-
vation engages the label system more strongly which helps the model to
build memory traces on the relevant dimensional label. On subsequent
test trials, this memory trace can provide a bias toward the primed color
dimension and can maintain attention to that dimension. However, if
these label-feature links are weak (as in younger children), the model
engages the frontal label system weakly and builds weaker memory
traces on the relevant dimensional label, leading to a weaker bias for
the primed dimension. Thus, the functions of dimensional attention the
model ultimately achieves is inherent to the demands imposed by the
task. Mechanistically, the label system operates at the level of labels
and visual features, whereas the object system operates at the level of
spatial locations and visual features; however, by coupling these sys-
tems together and allowing to interact reciprocally instead of hier-
archically, these different combinations of representation can give rise
to different functions of dimensional attention in the context of specific
task-demands. Stronger links between labels and features give rise to
flexibility, selectivity, and stability by creating the ability to activate
dimensional labels which can more strongly intervene in the object

representation processes that bind features to spatial locations.
The simulation results from the DNF model point to an exciting

possibility that a dimensional label learning mechanism drives the de-
velopment of EF. Specifically, we propose that learning labels for visual
features (e.g., red and blue) and dimensions (e.g., color and shape) can
change how attention is allocated to features of objects and the EF skills
that children can display. Previous accounts of EF development have
mainly focused on biological or maturational changes in frontal cortex
as a primary cause of EF development (Bunge & Zelazo, 2006;
Moriguchi & Hiraki, 2009; Morton & Munakata, 2002). Although it has
not yet been explored whether dimensional label learning is predictive
of dimensional attention development, previous research has demon-
strated a powerful influence of labels on dimensional attention. For
example, the labels used during instruction influence DCCS perfor-
mance (Yerys & Munakata, 2006) and categorization reversal tasks
(Schonberg, Atagi, & Sandhofer, 2018), and using labels for objects has
been shown to enhance children’s selective dimensional attention in a
free classification task (Perry & Samuelson, 2013). Moreover, Plunkett
and colleagues have demonstrated that engaging labels increases se-
lective attention to visual dimensions (Althaus & Plunkett, 2016;
Mather & Plunkett, 2010), and labels can disrupt perceptual category
learning, leading to broader perceptual categories if the same label is
applied to different perceptual properties (Plunkett, Hu, & Cohen,
2008). Thus, future research will need to explore the role of dimen-
sional label learning on different measures of dimensional attention and
weather facilitating dimensional label learning also facilitates dimen-
sional attention.

The model formalizes the mechanisms involved in object re-
presentation and specifies how strengthening feature-label associations
can give rise to a diverse set of dimensional attention skills. Many re-
searchers have suggested that language and cognitive control are re-
lated over development (Cragg & Nation, 2010; Deak, 2003; Jacques &
Zelazo, 2005). In these proposals, the logic that is supported by lan-
guage is typically the source of EF or cognitive flexibility. However, the
proposal here is unique because we suggest that forming associations
between labels and visual features is the causal force that drives the
formation of cognitive control networks. By embodying the label
learning process in this way, our account can explain associations be-
tween explicit and implicit dimensional attention. That is, the label
learning process is not only an abstract learning process that exerts top-
down control over cognitive functioning, but can be flexibly engaged in
both a bottom-up and top-down fashion based on the visual properties
of the task.

Current research in our lab is also exploring the changes in neural
dynamics associated with comprehension and production of dimen-
sional labels and associated changes in dimensional attention skills.
Motivated by the top-down view of cognitive control, previous theories
and research have focused on local changes to prefrontal cortex activity
as the primary driver of developmental changes in EF (Bunge & Zelazo,
2006; Moriguchi & Hiraki, 2009; Morton & Munakata, 2002). However,
more recent data implicates changes in activation across parietal and
temporal cortex in addition to frontal cortex (Buss & Spencer, 2018;
Morton, Bosma, & Ansari, 2009). The DNF model explains these results
through stronger coupling between the label system and the object
representation system (Buss & Spencer, 2018). Thus, it is possible that
changes in EF during early childhood are driven by the formation of
neural networks that integrate frontal regions involved in label learning
and posterior regions involved in object representation.

There are many important limitations to this study that can be ad-
dressed by future work. For example, previous research has revealed
important dynamics regarding how behavior is linked across the
timescales of in-the-moment performance, learning across trials, and
developmental changes. van Bers, Visser, van Schijndel, Mandell, and
Raijmakers (2011) used a hidden Markov model approach to examine
the latent states underlying development as a function of the trial-to-
trial response patterns of children. These analyses demonstrated that
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children’s behavior is best explained by two qualitatively different la-
tent states, one corresponding to switching and another corresponding
to perseverating rather than a latent state that changes in the likelihood
of switching. Moreover, children can switch between developmental
states of perseverating and switching in-the-moment during a series of
post-switch trials. Notably, switching between states typically occurs
from a perseveration state to a switching state, but not vice versa. The
DNF model has not yet been probed regarding whether such latent
states also underlie performance of the model, whether transitions be-
tween states can also arise as a function of the neural dynamics in the
model, or how underlying latent state dynamics are related to the
parameter distributions of the model. Moreover, even though both the
‘young’ and the ‘old’ model produced bi-modal distributions of perfor-
mance in the DCCS task, it is also unclear how more continuous shifts in
the distribution of parameters would influence the rates of performance
and the bimodal nature of flexibility.

Relatedly, initial research using the TC task proposed a holistic to
analytic shift such that children initially process the features of object
holistically and later analytically attend to only a single dimension
(Smith & Kemler, 1977). However, Raijmakers, Jansen, and van der
Maas (2004) used a latent class analysis method to demonstrate that
children’s performance on the TC task is best explained by underlying
cognitive states that correspond to attending to shape or color in a rule-
like fashion rather than states that correspond to holistic or analytic
processing. In many ways, the model’s dynamics are consistent with
either of these explanations. It is true that the model shifts in how much
processing priority is placed on a particular dimension as a function of
dimensional label learning. With weaker priority given to any parti-
cular dimension the model can be said to be integrating information
across dimensions. However, it is also true that the model does ‘select’ a
dimension to which it selectively attends on each trial which is the basis
for rule-like behavior when the model performs the DCCS task. This is
based on the competitive dynamics between the ‘shape’ and ‘color’ di-
mensional label units. However, it is currently unclear whether the data
from our TC task that used shape and color as relevant dimensions
replicated the latent class analyses from Raijmakers et al. (2004) and
how the developmental states of the model shift within sets of para-
meters and as a function of changes in parameters.

Another important limitation of this work is that only a simple triad
of stimuli were involved across all the tasks simulated here. Thus, it is
unclear how the model would operate in task conditions that required
more complex consideration of spatial locations or features when more
items are relevant (e.g., Enns & Cameron, 1987; Hommel, Li, & Li,
2004; Jennings, Dagenbach, Engle, & Funke, 2007; Rueda et al., 2005;
Trick & Enns, 1998). In this regard, we are also currently developing the
model to simulate comprehension, production, and matchings tasks
presented by Sandhofer and Smith (1999) as a means of assessing how
the label associations formed by the model impact the ability of the
model to perform these tasks. Importantly, the comprehension and
matching tasks from this literature provide more complex configura-
tions of stimuli than those presented here and will test of the ability of
the model to generalize to tasks that involve processing objects in more
complex contexts and with stronger spatial competition.

In conclusion, we demonstrated that neural systems approach can
provide a framework to explain cognitive function and changes in
cognitive function over development. The work presented here ad-
dresses various debates regarding the mechanisms underlying changes
in EF and attention during early childhood. We propose a unified theory
of development which is grounded in a dimensional attention me-
chanism. This dimensional attention mechanism arises from dimen-
sional label and object representation systems. Further, this mechanism
can achieve diverse attentional functions either explicitly or implicitly
depending on the task. Importantly, we emphasize the strengths and
advantages of a process-based approach to study development. This
perspective goes beyond focusing on individual mechanisms of EF.
Instead, it explains how these mechanisms arise from real-time

processes and provides a way of linking performance on tasks that tap
into distinct aspects of cognition.
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