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Sequences

all actioning and thinking consist of sequences 
of movements, perceptual states, and 
inferences

sometimes in a fixed order (routines, action 
patterns) 

but potentially highly flexible: serial order, 
productivity…



Challenge

DFT postulates that all neural states driving 
behavior/mental process are attractors 

that resist change…

sequences require change… 

answer: induce an instability to access new 
attractor 



Sequence generation

an illustrative example

the neural/mathematical mechanism 

Roadmap



search for objects of a given color in a given order

1 blue

2 red

green

vehicle

target 1

target 2

obstacles

target 13

Illustration

stably couple to 
objects once they 
are detected 

ignore objects 
when their turn 
has not yet come 
(distractors)



yellow-red-green-blue-red yellow-red-green-blue-red

Implementation as an imitation task
learn a serially ordered 
sequence from a single 
demonstration

perform the serially 
ordered sequence with 
new timing

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]



red a distractor red a target

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]



Condition of 
Satisfaction

(CoS)

excites the corresponding memory node, which, in its turn,
provides an excitatory input to the ordinal node which is to
be activated next. The active ordinal node also projects onto
a single intention field defined over the dimension of color.
Which color each node activates is learned, or memorized,
in the training phase through a fast Hebbian learning
mechanism. The intention field is reciprocally coupled with
a two-dimensional space-color field, in which the spatial
dimension samples the horizontal axis of the camera
image. The space-color field receives ridge-input localized
along the color dimension, but not along space, from the
intention field. It also receives a two-dimensional space-
color input from the visual array. Where visual input
overlaps with the ridge, a peak is formed, the spatial pro-
jection of which specifies the visual angle under which an
object of the color being sought is located.

The space-color field projects along the spatial dimen-
sion onto the dynamics of heading direction, creating an
attractor that steers the robot to the detected object. As that

object is approached, its image grows in the robot’s visual
array. The condition-of-satisfaction field (top-right on
Fig. 8) is pre-activated by input from the intention field and
is pushed through the detection instability when the object
of the color being sought looms sufficiently large. This
brings about the transition to the next step in the sequence
as described in Section 3.3.

Before an object that matches the current intention has
been found, no peak exists in the space-color field. The
heading direction does not receive input at that time from
the space-color field and the vehicle’s navigation dynamics
is dominated by obstacle avoidance, which is implemented
using a standard dynamic method (Bicho, Mallet, &
Schöner, 2000). This results in the roaming behavior that
helps the robot search for objects of the appropriate color.

During teaching, the visual input from the object shown
to the robot is boosted enough to induce a peak in the space-
color field. This peak projects activation backwards onto the
intention field, where a peak is induced at the location that

Fig. 8. The architecture for a sequential color-search task on a Khepera robot. An active node of the ordinal dynamics projects its activation onto an intention field,
defined over color dimension. The intention field is coupled to the space-color field, which also receives visual input from the robot’s camera. An activation peak
in the space-color field drives the navigation dynamics of the robot, setting an attractor for its heading direction. The condition-of-satisfaction field is also defined
over color dimension and is activated when the object of the currently active color takes up a large portion of the camera image.

Y. Sandamirskaya et al. / New Ideas in Psychology xxx (2013) 1–1814

Please cite this article in press as: Sandamirskaya, Y., et al., Using Dynamic Field Theory to extend the embodiment stance toward
higher cognition, New Ideas in Psychology (2013), http://dx.doi.org/10.1016/j.newideapsych.2013.01.002

[Sandamirskaya, Schöner: Neural 
Networks 23:1163 (2010)]



Visual search

2D visual input color vs. 
horizontal space

intensity of input from a 
color histogram within 
each horizontal location 

Color
distribution

Camera
image

distr

Color-space
field

0 50 100 150
0

10

20

30

40

50

60

70

80

Hue

V
a
lu
e

Camera image

Color-space DF

Color histogram of the column
color

color

space

St
re
ng

th



Visual search

current color searched provides ridge input 
into a color-space field 
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Learning Production
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Figure 11: One run of the robotic demonstrations. A: Time-courses of activation of five ordinal nodes during
sequence learning and production. B: Time-course of activation in the action field. Positive activation in the
field encodes the color currently searched for. C: Time-course of activation in the condition of satisfaction
field. Arrows mark the times when condition of satisfaction signals were emitted (detection instabilities in
the field). D: The projection of the perceptual color-space field onto the spatial dimension (horizontal axis of
the image plane). The arrows mark times when the object of interest in each ordinal position first appeared
in the visual array of the robot. The “random search” behavior changed to “approach target” behavior at
these points.
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Mathematical mechanism

intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

prediction



Sequence of instabilities
the CoS is pre-shaped by the intention field, but is in 
the sub-threshold state 

until a matching input pushes the CoS field through 
the detection instability 

the CoS field inhibits the intention field that goes 
through a reverse detection instability

the removal of input from the intention to the CoS 
field induce a reverse detection instability 

both fields are sub-threshold intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

prediction



Generalization

match-detection => CoS

mis-match (or change) detection => CoD (condition of 
dissatisfaction)  

instability, if at least one supra-threshold peak exists in the
input field. They remain in the off-state otherwise.

Match and Mismatch detection
For each feature dimension, three fields exist. The expected

and attended feature fields represent, through a single peak
of activation, feature values. They receive input from two
different paths of the network. The mismatch detection field
receives excitatory input from the attended and inhibitory in-
put from the expected feature field. It generates a peak if
expected and attended feature fields have peaks at different
locations along the feature dimension.

For a given attended object location, the feature matching

sub-network (Figure 2) compares (in parallel across feature
dimensions) search cue (expected feature) and attended fea-
ture. A peak in all three fields (attended feature, expected

feature, and mismatch detection) signals a no match, activat-
ing the no-match response node and inhibiting the match re-

sponse node. Absence of a peak in the mismatch detection

field, with peaks in the two other fields, signals a match and
activates the match response node.

Figure 2: The feature matching sub-network. See the text for
an explanation.

Mismatch within a single feature dimension is sufficient
to activate the condition of dissatisfaction (CoD). In contrast,
the condition of satisfaction (CoS) node is only activated if all
attended features match the search cue. Together with the in-

tention node, these two nodes are used to autonomously gen-
erate sequences of neural processing steps (Sandamirskaya &
Schöner, 2010).

The neural dynamic process model
To account for the effects of feature sharing and grouping on
the search efficiency of triple conjunction searches (Nordfang
& Wolfe, 2014), we reduced our previous neural dynamic
process model (Grieben et al., 2020) to its visual search com-
ponent (removing sub-networks related to scene memory and
transient detection). The simplified outline of Figure 3 groups
dynamic neural fields into sub-networks (boxes) and their
connectivity (arrows). The model is, however, really just a
system of coupled neural integro-differential equations of the
type shown in Equation 1. All neural activation fields and

Figure 3: An overview of the neural dynamic process model.
Boxes represent sub-networks of fields and arrows their cou-
plings. Green outlines highlight sub-networks changed with
respect to the previous model.

variables evolve continuously in time, dependent on online
visual input. Instabilities create the impression of discrete
events, but these simply emerge from the dynamics. The real-
time numerical solution of the equations was achieved by im-
plementing the model in cedar, a graphical programming in-
terface for DFT models that also supports online visualization
(Lomp, Richter, Zibner, & Schöner, 2016).

Feed-forward feature maps and salience map
The bottom-up pathway of the model (and of human percep-
tion) is a parallel preattentive process purely driven by in-
put. In the model, visual input may come from a live camera
image (A) or, in the current case, from randomly generated
search displays (A1) (Figure 4).

Figure 4: The bottom-up pathway of the model. See text for
explanation. Green outlines highlight sub-networks changed
with respect to the previous model.

Three features are extracted in parallel: color, orientation,
and shape. Color is extracted from hue-space. Orientation
is obtained by filtering the thresholded saturation with four
elongated center-surround filters. To align with the experi-
ments of Nordfang and Wolfe (2014), we swapped the size

feature of our previous model (Grieben et al., 2020) to shape.
Shape was obtained by template matching (normalized cross-
correlation), a simplified account for preattentive recognition

[Grieben, Schöner, CogSci 2021]



How is the next state selected?

once the current state has been  
de-activated… 

three notions 

gradient-based selection 

chaining

positional representation

an illustration 

Roadmap



How is the next state selected?

once the current state has been deactivated… 

3 notions (~Henson Burgess 1997) 

of simple shapes (Huang, 2020). These feature filters gener-
ate inputs that model the responses of feature sensitive neu-
rons characterized by tuning curves. The neural activation
pattern across the entire neural population for each feature
is represented in the respective scene space/feature map (B).
These neural space/feature representations are defined over
the two dimensions of visual space and over one feature di-
mension. Their activation is marginalized along the feature
dimension, using a center-surround filter as the projection
kernel, resulting in a conspicuity map (C) for each feature.
The inhibitory part of the center-surround kernel makes that
the relative bottom-up salience of an object decreases linearly
with the number of features shared with its flankers and also
depends linearly on the number of flankers that share at least
one feature with it. The excitatory part of the center-surround
kernel (which is less strong for the shape feature dimension)
makes that objects that are surrounded by empty space or
by flankers that share no features with them become more
salient.

These conspicuity maps are integrated in a spatial salience
map, scene spatial salience field C (Itti & Koch, 2000). The
output of this field (Figure 5), its activation passed through
a sigmoidal threshold function, is the nonlinear bottom-up
salience map that is responsible for the grouping effect. In our
previous model (Grieben et al., 2020) all objects had the same
bottom-up salience. The bottom-up salience map is low-pass
filtered with a Gaussian filter.

image input field C output field C filtered

Figure 5: Bottom-up salience. See text for an explanation.

Attentional selection
The core cognitive processes of visual cognition require an
attentional selection decision. The scene spatial selection

field (D) plays, therefore, a central role in the model (see Fig-
ure 6). This field operates in the dynamic regime of selection,
so that only one supra-threshold peak can be formed at any
point in time. This provides the neural substrate for feature
binding in the manner of Treisman’s feature integration the-
ory (Treisman & Gelade, 1980).

The scene guidance sub-network (H) consists of three
space/feature overlap fields (H) that receive sub-threshold in-
put from the scene space/feature maps (B) and feature input
from the target search cue (G). At locations at which the cued
features and the scene maps overlap, supra-threshold peaks
form. The activation patterns of these fields are marginal-
ized along the feature dimension to provide spatial input to
the feature guidance field (H1). The resting level of the fea-

ture guidance field (H1) is down-regulated dynamically via
inhibitory connections from the search cue sub-network (G)

Figure 6: The sub-networks engaged in attentional selection
and visual search. See the text for explanation. Green outlines
highlight sub-networks changed with respect to the previous
model.

so that it decreases linearly with the number of cued features.
This dynamical down-regulation is required to compensate
for the linear dependence of the peak amplitude of the inputs
to the field on the number of cued features. The output of this
guidance field (Figure 7), its activation passed through a sig-
moidal threshold function, provides nonlinear top-down bias
for the scene spatial selection field (D), and is responsible for
the sharing effect.

The scene spatial selection field (D) receives weighted
(WS) bottom-up bias from the scene spatial salience field (C),
and additional weighted (WFG) top-down bias from the scene

guidance sub-network (H) (Figure 8).

Visual search
Visual search is initiated automatically as soon as a peak is
formed in the scene spatial selection field (D). It terminates

i. c.c. c.i. i.

p. p.

Sensorimotor DFs

environment

0 50 100 150

−4

−2

0

2

0 50 100 150

−5

0

5

action perception

motor system

CoS perception

enviro
n
m

en
t

Action field

CoS field

Ordinal nodes

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]

positional

stability

1 gradient-based selection 

2 chaining

3 positional representation



Gradient-based 

a field/set of nodes is released from inhibition 
once the current state is deactivated… 

a new peak/node wins the selective 
competition based on inputs… 

e.g. salience map for visual search

e.g. overlapping input from multiple fields..

return to previous states avoided by inhibition 
of return

of simple shapes (Huang, 2020). These feature filters gener-
ate inputs that model the responses of feature sensitive neu-
rons characterized by tuning curves. The neural activation
pattern across the entire neural population for each feature
is represented in the respective scene space/feature map (B).
These neural space/feature representations are defined over
the two dimensions of visual space and over one feature di-
mension. Their activation is marginalized along the feature
dimension, using a center-surround filter as the projection
kernel, resulting in a conspicuity map (C) for each feature.
The inhibitory part of the center-surround kernel makes that
the relative bottom-up salience of an object decreases linearly
with the number of features shared with its flankers and also
depends linearly on the number of flankers that share at least
one feature with it. The excitatory part of the center-surround
kernel (which is less strong for the shape feature dimension)
makes that objects that are surrounded by empty space or
by flankers that share no features with them become more
salient.

These conspicuity maps are integrated in a spatial salience
map, scene spatial salience field C (Itti & Koch, 2000). The
output of this field (Figure 5), its activation passed through
a sigmoidal threshold function, is the nonlinear bottom-up
salience map that is responsible for the grouping effect. In our
previous model (Grieben et al., 2020) all objects had the same
bottom-up salience. The bottom-up salience map is low-pass
filtered with a Gaussian filter.

image input field C output field C filtered

Figure 5: Bottom-up salience. See text for an explanation.

Attentional selection
The core cognitive processes of visual cognition require an
attentional selection decision. The scene spatial selection

field (D) plays, therefore, a central role in the model (see Fig-
ure 6). This field operates in the dynamic regime of selection,
so that only one supra-threshold peak can be formed at any
point in time. This provides the neural substrate for feature
binding in the manner of Treisman’s feature integration the-
ory (Treisman & Gelade, 1980).

The scene guidance sub-network (H) consists of three
space/feature overlap fields (H) that receive sub-threshold in-
put from the scene space/feature maps (B) and feature input
from the target search cue (G). At locations at which the cued
features and the scene maps overlap, supra-threshold peaks
form. The activation patterns of these fields are marginal-
ized along the feature dimension to provide spatial input to
the feature guidance field (H1). The resting level of the fea-

ture guidance field (H1) is down-regulated dynamically via
inhibitory connections from the search cue sub-network (G)

Figure 6: The sub-networks engaged in attentional selection
and visual search. See the text for explanation. Green outlines
highlight sub-networks changed with respect to the previous
model.

so that it decreases linearly with the number of cued features.
This dynamical down-regulation is required to compensate
for the linear dependence of the peak amplitude of the inputs
to the field on the number of cued features. The output of this
guidance field (Figure 7), its activation passed through a sig-
moidal threshold function, provides nonlinear top-down bias
for the scene spatial selection field (D), and is responsible for
the sharing effect.

The scene spatial selection field (D) receives weighted
(WS) bottom-up bias from the scene spatial salience field (C),
and additional weighted (WFG) top-down bias from the scene

guidance sub-network (H) (Figure 8).

Visual search
Visual search is initiated automatically as soon as a peak is
formed in the scene spatial selection field (D). It terminates

[Grieben, Schöner, CogSci 2021]



Gradient-based 

this is used in many of the DFT architectures

visual search

relational grounding

mental mapping 

of simple shapes (Huang, 2020). These feature filters gener-
ate inputs that model the responses of feature sensitive neu-
rons characterized by tuning curves. The neural activation
pattern across the entire neural population for each feature
is represented in the respective scene space/feature map (B).
These neural space/feature representations are defined over
the two dimensions of visual space and over one feature di-
mension. Their activation is marginalized along the feature
dimension, using a center-surround filter as the projection
kernel, resulting in a conspicuity map (C) for each feature.
The inhibitory part of the center-surround kernel makes that
the relative bottom-up salience of an object decreases linearly
with the number of features shared with its flankers and also
depends linearly on the number of flankers that share at least
one feature with it. The excitatory part of the center-surround
kernel (which is less strong for the shape feature dimension)
makes that objects that are surrounded by empty space or
by flankers that share no features with them become more
salient.

These conspicuity maps are integrated in a spatial salience
map, scene spatial salience field C (Itti & Koch, 2000). The
output of this field (Figure 5), its activation passed through
a sigmoidal threshold function, is the nonlinear bottom-up
salience map that is responsible for the grouping effect. In our
previous model (Grieben et al., 2020) all objects had the same
bottom-up salience. The bottom-up salience map is low-pass
filtered with a Gaussian filter.

image input field C output field C filtered

Figure 5: Bottom-up salience. See text for an explanation.

Attentional selection
The core cognitive processes of visual cognition require an
attentional selection decision. The scene spatial selection

field (D) plays, therefore, a central role in the model (see Fig-
ure 6). This field operates in the dynamic regime of selection,
so that only one supra-threshold peak can be formed at any
point in time. This provides the neural substrate for feature
binding in the manner of Treisman’s feature integration the-
ory (Treisman & Gelade, 1980).

The scene guidance sub-network (H) consists of three
space/feature overlap fields (H) that receive sub-threshold in-
put from the scene space/feature maps (B) and feature input
from the target search cue (G). At locations at which the cued
features and the scene maps overlap, supra-threshold peaks
form. The activation patterns of these fields are marginal-
ized along the feature dimension to provide spatial input to
the feature guidance field (H1). The resting level of the fea-

ture guidance field (H1) is down-regulated dynamically via
inhibitory connections from the search cue sub-network (G)

Figure 6: The sub-networks engaged in attentional selection
and visual search. See the text for explanation. Green outlines
highlight sub-networks changed with respect to the previous
model.

so that it decreases linearly with the number of cued features.
This dynamical down-regulation is required to compensate
for the linear dependence of the peak amplitude of the inputs
to the field on the number of cued features. The output of this
guidance field (Figure 7), its activation passed through a sig-
moidal threshold function, provides nonlinear top-down bias
for the scene spatial selection field (D), and is responsible for
the sharing effect.

The scene spatial selection field (D) receives weighted
(WS) bottom-up bias from the scene spatial salience field (C),
and additional weighted (WFG) top-down bias from the scene

guidance sub-network (H) (Figure 8).

Visual search
Visual search is initiated automatically as soon as a peak is
formed in the scene spatial selection field (D). It terminates

[Grieben, Schöner, CogSci 2021]



Chaining
for fixed sequences…

e.g. reach-grasp

fixed order of mental operations… e.g. ground reference 
object first, then target object

less flexible (e.g.. when going through the same 
state with different futures)

could be thought to emerge with practice/habit 
from the positional system

i. c.c. c.i. i.

p. p.

Sensorimotor DFs

environment



Positional representation

a neural representation of ordinal position is 
organized to be sequentially activated… 

the contents at each ordinal position is determined by 
neural projections from each ordinal node…
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[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]
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Positional representation

essentially chaining with flexible contents 

good for fast learning of sequences… 

e.g. imitation

a Hippocampus function? 

but: must have potential synaptic links to 
many representations… 

=> such ordinal systems must exist for sub-
representations… embodiment effects… 



[Tekülve et al., 
Frontiers in 

Neurorobotics 
(2019)]

Tekülve et al. Autonomous Sequence Generation

3. MODEL

The neural dynamic architecture described here is a network
of neural fields that are coupled to a camera and a robotic
arm. These links enable online connection to a changing visual
scene and online control of the arm. Three sub-networks
(Figure 2) autonomously organize sequences of activation states
to build visual representations, learn or perform serially ordered
sequences, and generate object-oriented movements.

The perceptual sub-network, connected to the camera, creates
a working memory representation of the visual scene through
autonomous shifts of attention. A motor sub-network drives
an oscillator generating velocity commands for the robotic
arm. The cognitive sub-network represents ordinal positions
in a sequence and may autonomously shift from one ordinal
position to the next. The ordinal system may be used in
two different manners, sequence learning and sequence recall,

controlled by the activation of one of two different task
nodes. These task nodes activate behaviors by boosting fields’
resting levels and enabling fields to generate task relevant
attractor states.

The following sections describe for each sub-network the
states that drive behavior and the mechanism for how the system
switches between those states. The last section addresses the
integration of all three sub-networks for the two tasks Learn
and Recall.

3.1. Perception: Scene Representation
The scene representation sub-network is based on Grieben et al.
(2018) and creates three-dimensional (2D space and 1D color)
working memory representations of objects in the visual scene
captured by the camera. Each entry into the representation
is created sequentially as the sub-network autonomously shifts
attention across different objects in the scene.

FIGURE 2 | Sketch of the dynamic field network with its three sub-networks.

Frontiers in Neurorobotics | www.frontiersin.org 5 November 2019 | Volume 13 | Article 95

Serial order demonstrated/enacted





Tekülve et al. Autonomous Sequence Generation

At point t0, the Exploration intention node provides a
homogeneous boost to the Saliency Selection field leading to an
activation peak at the location of the purple object. This causes
the emergence of a three-dimensional peak in the Scene Selection
field, of which the color dimension is shown in the third row. The
WorkingMemory field contains no supra-threshold activation yet
but, at the locations of the non-background objects, the resting
level is increased across the whole color dimension.

Once the peak in the Scene Selection field has fully emerged
at t1, its color component is forwarded as a slice toward the
Working Memory, where it overlaps with the tube originating
from the Saliency Selection field and forms a three-dimensional
peak. Subsequently a peak also forms in the Memory Spatial
Selection field, which shares the same color as the peak in the
Scene Space Selection causing an overlap in the Color Match field.

The peak forming in the Color Match field activates the CoS
Explore node, which inhibits the Explore intention node. Thus
the resting level boost is removed from the Saliency Selection
field, which subsequently falls down to sub-threshold activation

at point t2. Only the self-sustained peak in the Working Memory
field remains.

The absence of a peak in the Color Match field causes the CoS
node to fall below threshold again, bringing the sub-network to
its initial state. The following activation of the Explore intention
node, depicted from t3 until t5, follows the same temporal
activation pattern as the previous one with different feature
values for spatial location and color. The spatial location in the
Saliency Selection field differs due to the inhibitory influence
from theWorking Memory field. See Supplementary Video 3 for
a different example of autonomous build-up of visual working
memory in continuous time.

4.2. Learning Demonstration
A particular color sequence is taught to the network in its
learning regime by presenting objects of a certain color one after
another. In Figure 5 activation snapshots of some points in time
during an exemplary learning episode are shown. The top row
depicts the temporal evolution of activation of the ordinal nodes

FIGURE 5 | Time course of learning a three element sequence with varying presentation time.

Frontiers in Neurorobotics | www.frontiersin.org 10 November 2019 | Volume 13 | Article 95



Time course of 
attention 

selection and 
building of scene 

memory

Tekülve et al. Autonomous Sequence Generation

and robot armwere simulated usingWEBOTS (Michel, 2004) that
can be coupled into Cedar. The same Cedar code can also link to
real sensors and robots. We did this, driving the model from a
real camera and manipulating the visual scene by placing colored
objects on a white table top. We also controlled a lightweight
KUKA arm from the same Cedar code to verify its capacity to act
out the planned movements. These informal robotic experiments
are not further documented in this paper.

4.1. Scene Representation: Autonomous
Build-up of Visual Working Memory
The build-up of the scene workingmemory is an ongoing process
that provides visual information to the network irrespective of
the currently active task node. In Figure 4 we show activation
snapshots of different points in time during working memory
build-up in an exemplary scene containing three objects and the
arm’s end-effector.

FIGURE 4 | Time course of building a scene memory.

Frontiers in Neurorobotics | www.frontiersin.org 9 November 2019 | Volume 13 | Article 95



Tekülve et al. Autonomous Sequence Generation

FIGURE 6 | Time course of recalling a three element sequence through pointing at colored objects.

as a sub-threshold activation blob, and the blue object is entirely
absent. As the first movement is finished at t1 all three objects are
present in working memory as sub-threshold activation blobs.

Thus at t2, the second movement starts closely after the
activation of the second ordinal node with the blue object as
the target on the right side of the camera image. While the arm
is moving the object is moved to the center/top position of the
image, which results in a non-match between arm and target at
the end of the movement, which can be seen at t3. Here working
memory has updated the position of the blue object, which leads
to an extraction of a different target position that does not match
with the current position of the end effector. Only at t4 after a
second movement was generated, the blue object and the end
effector match, which concludes the recall of the second element
of the sequence.

The last movement toward the purple object is then conducted
without any further perturbations and terminates after a single
movement at t6.

4.3.2. Recall With a Missing Object
In this second recall episode demonstrating the robustness of the
field network we start the recall in a scene that lacks the second
object of the sequence. In Figure 8, activation snapshots of the

same sub-set of fields used in the previous perturbation episode
are shown.

At points t0 and t1, the network’s activation develops analog
to the previous two recall examples with a color slice used to
extract the target position and the position match to determine
the successful termination of the movement. However as the
second ordinal node activates at t2 no blue object is present in
the scene, thus no sub-threshold activation blob overlaps with
the blue color slice in the Memory Color Selection field and no
peak forms.

At point t3, the blue object is added to the scene, which
is committed to memory and afterwards extracted as a valid
target position. The movement than concludes at t4 with the
arm occluding the purple object, which is kept in working
memory due to the self-sustaining kernel. The working memory
information is then used in t5, when the third ordinal node
specifies purple as the next sequence color. Thus the sequence
ends at t6 with no further perturbations.

5. DISCUSSION

We have presented a network of dynamic neural fields that
integrates the complete pathway from the sensor surface (vision)

Frontiers in Neurorobotics | www.frontiersin.org 12 November 2019 | Volume 13 | Article 95



online
updating

Tekülve et al. Autonomous Sequence Generation

FIGURE 7 | Online updating of the movement during sequence recall.

to representations of higher cognition (serial order) and to the
motor system (pointing). The network architecture enables a
robotic agent to autonomously learn a sequence of colors from
demonstration and then to act according to the defined serial
order on a scene. Both during learning and while acting out the
sequence, the transitions between elements of the sequence are
detected without the need for an external control signal (The
switch between learning and recall mode is not autonomous,
however, reflecting a similar need for task instructions when a
human operator performs such a task).

In each of the three sub-networks responsible for scene
representation, the representation of serial order, and movement
generation, sequential transitions between neural activation
states are brought about through the mechanism of the condition
of satisfaction. Thus, visual attention shifts only once a currently
attended item has been committed to working memory. A
transition to the next element in the serial order occurs only
once the robot has successfully acted on the current element. And

an arm movement terminates only once the desired movement
target has been reached. The mechanism of the condition of
satisfaction thus reconciles the capacity to autonomously act
according to learned or structurally determined plans with the
capacity to be responsive to sensory or internal information about
the achievement of goals.

5.1. What the Scenario Stands for
The scenario was simple, but meant to demonstrate
the fundamental components of any neurally grounded
autonomous robot.

(1) A representation of the visual surround is the basis for any
intelligent action directed at the world. It is also the basis for
sharing an environment with a human user. We humans are
particularly tuned to building scene representations which
form the basis of much of our visual cognition (Henderson
and Hollingworth, 1999). Scene representations need to

Frontiers in Neurorobotics | www.frontiersin.org 13 November 2019 | Volume 13 | Article 95



How far does such 
autonomy take us? 

the concept of intentionality to guide the 
building of an embodied cognitive architecture 

two directions of fit and the CoS 

an illustration 

Roadmap



How does the mind emerge from 
neural processes? 

What do I mean by “mind”?

Intentionality = the capacity of nervous 
systems to generate mental states that are 
about things in the world

things may include an organism’s own body

things may include the nervous system’s own states 



Two directions of fit of intentional 
states (according to John Searle)

world-to-mind: the world must match the 
intentional state to fulfill that state’s condition-
of-satisfaction (CoS) 

=> the motor flavor of intentionality

mind-to-world: the intentional state must match 
the state of the world to fulfill the CoS 

=> the perceptual flavor of intentionality



From the logical definition of 
intentionality to neural processes

CoS of world-to-mind (motor) intentionality

control the sequential unfolding of actions

intention critical to initiate actions 

CoS is critical to terminate action intentions 

CoS of mind-to-world (perceptual) intentionality

the intentional state itself must match the state of the 
world => is its own CoS… arises with the intentional state 

the match is a property of the process

possibility of error (e.g. mis-perception)



Searle’s six psychological modes

mind-to-world

perception

memory

belief 

world-to-mind

intention-in-action

prior intention

desire

as a heuristic for building 
cognitive architectures … 

that reflect the sensory-motor 
basis of cognition



Illustration: a neural dynamic intentional 
agent in a simple world
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Figure 4: Activation snapshots of selected fields displaying the formation of CoS peaks during a successful painting sequence.

representing the desired goal in the center of the world space,
which does not match the currently perceived position. Once
movement causes a match between desired and perceived po-
sition, a peak emerges in the CoS field causing the termina-
tion of the drive IiA (right column).

The detection instability in the drive CoS leads to an au-
tonomous transition to the visual search IiA, which is released
from inhibition through the precondition node at t4 (left col-
umn). Ridges of searched color and height are induced in the
perception fields causing the emergence of supra-threshold
peaks at overlapping positions. (right column).

A match of height and color is detected through the vi-
sual search CoS (not shown), which leads to an autonomous
transition to the reaching IiA at t5 by forming a peak at the
perceived retinal position in the two dimensional reach IiA
field (left column). The reaching IiA is destabilized after a
successful arm movement leads to detection instability in the
reach CoS-field due to an overlap between proprioception of
the eef and the reach goal position (right column).

Snapshot t6 shows the detection of a color change in the
visual scene by the transient detector after the agent success-
fully collected the color and dispensed it on the purple cube
(left column). Activation of the dispense IiA (not shown)

changes the color of the purple cube to yellow, which forms a
supra-threshold in the transient detector at the conjunction of
left and yellow. The color of the perceived change matches
with the desired color and leads to the emergence of a peak
in the desire CoS which causes a subsequent destabilizing of
the desire to paint a cube yellow (right column).

Discussion
We present a neural dynamic architecture that endows a
robotic agent with the capability to generate intentional states
of the six major psychological modes. Self-stabilized peaks
of activation within neural populations determine the content
of an intentional state while the state’s psychological mode
is determined by how the neural population is positioned
within a neural dynamic architecture. The CoS of intentional
states is modeled through the detection-instability of dynamic
neural fields with the DoF determining under which circum-
stances the instability emerges.

The architecture is demonstrated in a toy scenario, where
the agent seeks particular perceptual states (desires), and uses
beliefs about contingencies of which paint transforms which
color into which new color, to plan sequences of action (prior
intentions) based on its current scene representation (mem-
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Figure 4: Activation snapshots of selected fields displaying the formation of CoS peaks during a successful painting sequence.

representing the desired goal in the center of the world space,
which does not match the currently perceived position. Once
movement causes a match between desired and perceived po-
sition, a peak emerges in the CoS field causing the termina-
tion of the drive IiA (right column).

The detection instability in the drive CoS leads to an au-
tonomous transition to the visual search IiA, which is released
from inhibition through the precondition node at t4 (left col-
umn). Ridges of searched color and height are induced in the
perception fields causing the emergence of supra-threshold
peaks at overlapping positions. (right column).

A match of height and color is detected through the vi-
sual search CoS (not shown), which leads to an autonomous
transition to the reaching IiA at t5 by forming a peak at the
perceived retinal position in the two dimensional reach IiA
field (left column). The reaching IiA is destabilized after a
successful arm movement leads to detection instability in the
reach CoS-field due to an overlap between proprioception of
the eef and the reach goal position (right column).

Snapshot t6 shows the detection of a color change in the
visual scene by the transient detector after the agent success-
fully collected the color and dispensed it on the purple cube
(left column). Activation of the dispense IiA (not shown)

changes the color of the purple cube to yellow, which forms a
supra-threshold in the transient detector at the conjunction of
left and yellow. The color of the perceived change matches
with the desired color and leads to the emergence of a peak
in the desire CoS which causes a subsequent destabilizing of
the desire to paint a cube yellow (right column).

Discussion
We present a neural dynamic architecture that endows a
robotic agent with the capability to generate intentional states
of the six major psychological modes. Self-stabilized peaks
of activation within neural populations determine the content
of an intentional state while the state’s psychological mode
is determined by how the neural population is positioned
within a neural dynamic architecture. The CoS of intentional
states is modeled through the detection-instability of dynamic
neural fields with the DoF determining under which circum-
stances the instability emerges.

The architecture is demonstrated in a toy scenario, where
the agent seeks particular perceptual states (desires), and uses
beliefs about contingencies of which paint transforms which
color into which new color, to plan sequences of action (prior
intentions) based on its current scene representation (mem-
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Figure 4: Activation snapshots of selected fields displaying the formation of CoS peaks during a successful painting sequence.

representing the desired goal in the center of the world space,
which does not match the currently perceived position. Once
movement causes a match between desired and perceived po-
sition, a peak emerges in the CoS field causing the termina-
tion of the drive IiA (right column).

The detection instability in the drive CoS leads to an au-
tonomous transition to the visual search IiA, which is released
from inhibition through the precondition node at t4 (left col-
umn). Ridges of searched color and height are induced in the
perception fields causing the emergence of supra-threshold
peaks at overlapping positions. (right column).

A match of height and color is detected through the vi-
sual search CoS (not shown), which leads to an autonomous
transition to the reaching IiA at t5 by forming a peak at the
perceived retinal position in the two dimensional reach IiA
field (left column). The reaching IiA is destabilized after a
successful arm movement leads to detection instability in the
reach CoS-field due to an overlap between proprioception of
the eef and the reach goal position (right column).

Snapshot t6 shows the detection of a color change in the
visual scene by the transient detector after the agent success-
fully collected the color and dispensed it on the purple cube
(left column). Activation of the dispense IiA (not shown)

changes the color of the purple cube to yellow, which forms a
supra-threshold in the transient detector at the conjunction of
left and yellow. The color of the perceived change matches
with the desired color and leads to the emergence of a peak
in the desire CoS which causes a subsequent destabilizing of
the desire to paint a cube yellow (right column).

Discussion
We present a neural dynamic architecture that endows a
robotic agent with the capability to generate intentional states
of the six major psychological modes. Self-stabilized peaks
of activation within neural populations determine the content
of an intentional state while the state’s psychological mode
is determined by how the neural population is positioned
within a neural dynamic architecture. The CoS of intentional
states is modeled through the detection-instability of dynamic
neural fields with the DoF determining under which circum-
stances the instability emerges.

The architecture is demonstrated in a toy scenario, where
the agent seeks particular perceptual states (desires), and uses
beliefs about contingencies of which paint transforms which
color into which new color, to plan sequences of action (prior
intentions) based on its current scene representation (mem-
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Figure 4: Activation snapshots of selected fields displaying the formation of CoS peaks during a successful painting sequence.

representing the desired goal in the center of the world space,
which does not match the currently perceived position. Once
movement causes a match between desired and perceived po-
sition, a peak emerges in the CoS field causing the termina-
tion of the drive IiA (right column).

The detection instability in the drive CoS leads to an au-
tonomous transition to the visual search IiA, which is released
from inhibition through the precondition node at t4 (left col-
umn). Ridges of searched color and height are induced in the
perception fields causing the emergence of supra-threshold
peaks at overlapping positions. (right column).

A match of height and color is detected through the vi-
sual search CoS (not shown), which leads to an autonomous
transition to the reaching IiA at t5 by forming a peak at the
perceived retinal position in the two dimensional reach IiA
field (left column). The reaching IiA is destabilized after a
successful arm movement leads to detection instability in the
reach CoS-field due to an overlap between proprioception of
the eef and the reach goal position (right column).

Snapshot t6 shows the detection of a color change in the
visual scene by the transient detector after the agent success-
fully collected the color and dispensed it on the purple cube
(left column). Activation of the dispense IiA (not shown)

changes the color of the purple cube to yellow, which forms a
supra-threshold in the transient detector at the conjunction of
left and yellow. The color of the perceived change matches
with the desired color and leads to the emergence of a peak
in the desire CoS which causes a subsequent destabilizing of
the desire to paint a cube yellow (right column).

Discussion
We present a neural dynamic architecture that endows a
robotic agent with the capability to generate intentional states
of the six major psychological modes. Self-stabilized peaks
of activation within neural populations determine the content
of an intentional state while the state’s psychological mode
is determined by how the neural population is positioned
within a neural dynamic architecture. The CoS of intentional
states is modeled through the detection-instability of dynamic
neural fields with the DoF determining under which circum-
stances the instability emerges.

The architecture is demonstrated in a toy scenario, where
the agent seeks particular perceptual states (desires), and uses
beliefs about contingencies of which paint transforms which
color into which new color, to plan sequences of action (prior
intentions) based on its current scene representation (mem-
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Intention in action: reach

eef centered horizontal 

Relative Target
single peak

e.c
pth

OscOscillate CoS

Oscillate *

horizontal retinal space

Reach
single peak

d
pth

horizontal retinal space

Reach CoS
match peak

d
pth

horizontal retinal space

Init EEF Pos
single sustained peak

d
pth

horizontal retinal space

Cur EEF Pos Gate
single peak

d
pth

eef centered horizontal 

Relative Target
single peak

e.c

CoS
Visual Search

p

Collect Apply

Collect Apply Collect Apply

horizontal retinal space

Attended Pos. Gate
gated peak

pth

Collect Apply

Spatial
Selection

Arm
 Proprioception

Arm
Motors

 

Precon
Spray

Precon
Dispense





Prior IntentionMemory

Sensor/Motor Surface

Intention-in-Action (IiA)Perception

Arm-Proprioception
single-peak

horizontal retinal space

re
tin

al
 d

ep
th

 s
pa

ce

horizontal world space

Current Position
single-peak

Space/Color Perc.
selective single-peak

horizontal retinal space

Space/Height Perc.
selective single-peak

horizontal retinal space

Perc.

Full
Can

Perc.

Empty
Can

Perc.

Color Change
Detection

IiA Reach
single-peak

horizontal retinal space

re
tin

al
 d

ep
th

 s
pa

ceVis. Search

height

single-peak
Vis. Search

single-peak

IiA

Pick Up

IiA

Dispense

 
ArmPosition

 Sensor
Visual

 Sensor
Can

 Sensor
Transient
 Detector

ArmAttentional
 Selection

Paint
DeviceWheels

horizontal world space

Drive
single-peak

IiA

Explore

Space/Color Mem.
memory trace

horizontal world space

Space/Height Mem. 
memory trace

horizontal world space

Belief Desire

 

B3B1 B2 B4 B5

Result - Color
single-peak

Coat - Color
single-peak

Canvas - Color
single-peak

Co Co Co Co Co Ca Ca Ca CaCa RR R R R

color concepts

r

Collect
single-peak

Apply
single-peak

Paint
single-peak

Locate

height

single-peak
Locate

single-peak



Perception and memory
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Intentional systems

=> special lecture Jan Tekülve on Friday



What does it all mean… 

why do neural dynamic architectures work?

how do embodied (neural dynamic) 
architectures relate to classical cognitive 
architectures ?

what does embodiment mean? 

how does DFT relate to deep NN, to VSA? 

Roadmap



DFT architectures

why are attractors and their instabilities preserved 
as fields are coupled into architectures? 

stability => structural stability = invariance of 
solutions under change of the dynamics

=> dynamic modularity: fields retain their dynamic 
regime as activation elsewhere varies 

dimension
input input

self-excited

activation field

dimension

activation field

self-excited

sub-threshold



DFT architectures

why do fields retain their meaning… 

coupling among fields must preserve the fields’ 
dimensions: “non-synesthesia principle”

informational modularity (encapsulation)
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=> neural dynamic 
architectures are 
specific = 
constrained by 
evolution and 
development



What does “embodiment” mean? 

cognition activates motor systems? 

cognition is based on sensor systems? 

not necessarily! 



What does “embodiment” mean? 

continuous state, continuous time

continuous/intermittent link to the sensory 
and motor surfaces is possible

closed loop => stability! 



Embodiment hypothesis

all cognitive processes inherit the dynamic 
properties of sensory-motor cognition: stability, 
instabilities… 

cognition is embedded in 
the specific embodied 
cognitive architectures 
that emerged in 
evolution/development 



How is higher cognition reached?

attentional selection, 
coordinate transformation, 
sequential processing … 
emulates “function calls”

… not as flexible as symbol manipulation and 
costly in processing structure …

but all concepts are grounded by their very 
nature… 
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Localist vs. distributed 

DFT hypothesis: all autonomous cognition 
happens in localist representations which are 
necessarily low-dimensional 

dimension

global inhibition

input

activation field

local excitation

they don’t have to be easy to grasp 
and observe

they could be latent representations 

high-dimensional distributed 
representations subserve primarily 
classification, which is embedded in 
the neural dynamics of competing 
nodes



DFT vs VSA

Vector-symbolic architectures (VSA) are a 
theoretical alternative 

in the original version (Smolensky): role-filler 
binding… compatible with DFT

in the Gayler/Kanerva/Plate version: high-
dimensional vectors as symbols that afford binding, 
and function calling … not neurally feasible: 
autonomy

requires that the symbol grounding problem is 
solved at encoding/decoding



DFT vs VSA

Eliasmith’s Neural Engineering Framework (NEF) 
as a possible neural implementation of VSA

vectors represented by (small) populations of spiking neural 
networks

NEF is “model neutral”… essentially a method 
to “numerically” implement any neural model

But: to preserve the original vectors, connectivity 
in VSA/NEF (SPAUN) architectures is very 
special => non-local dependence of 
connectivities on each other…



Outlook/challenges

sequences of relational concepts that interrelate, 
exchange arguments, have hierarchical structure

“the box to the right of the bottle that stands under the lamp”

sequences of actions that are directed at goals, 
and have hierarchical structure

“open the box to get the screwdriver with which you remove 
the screw to take of the cover of the toaster…”

goals and their dynamics, motivation… 

emotions… 


