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Abstract

How does the human brain link relational concepts to perceptual experience?
For example, a speaker may say “the cup to the left of the computer” to direct the
listener’s attention to one of two cups on a desk. We provide a neural dynamic account
for both perceptual grounding, in which relational concepts enable the attentional
selection of objects in the visual array, and for the generation of descriptions of the
visual array using relational concepts. In the model, activation in neural populations
evolves dynamically under both the influence of inputs and of strong interaction
as formalized in dynamic field theory (DFT). Relational concepts are modeled as
patterns of connectivity to perceptual representations. These generalize across the
visual array through active coordinate transforms that center the representation of
target objects in potential reference objects. How the model perceptually grounds
or generates relational descriptions is probed in 104 simulations that systematically
vary the spatial and movement relations employed, the number of feature dimensions
used, and the number of matching and non-matching objects. We explain how
sequences of decisions emerge from the time- and state-continuous neural dynamics,
how relational hypotheses are generated and either accepted or rejected, followed
by the selection of new objects or the generation of new relational hypotheses. Its
neural realism distinguishes the model from information processing accounts, its
capacity to autonomously generate sequences of processing steps distinguishes it
from deep neural network accounts. The model points toward a neural dynamic
theory of higher cognition.

1 Introduction
A fundamental function of human language is to enable speaker and listener to communicate
about the environment they both experience. The speaker describes objects or events in the
environment she experiences. The listener identifies objects or events in his environment
that the speaker talks about, perceptually grounding them. Imagine, for example, two
young siblings playing with a dollhouse (Tenbrink et al., 2017). The sister describes to
her brother a bed in the dollhouse, linking her perceptual experience to language. Her
brother perceptually grounds that description in directing his visual attention to the bed.
As a result, the siblings establish joint attention (Tomasello, 1995), enabling them to
communicate about the shared environment. How may the brains of these children achieve
that? And what would it mean to explain the neural processes on which that capacity is
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based? To answer these questions we propose a neural process model that establishes the
links between categorical concepts and (visual) perceptual experience.

Furthermore, after establishing joint attention, the sister may instruct her brother, for
instance, to place “a nightstand to the left of the bed”. In this phrase, she is referencing a
concrete location in the dollhouse by using the spatial relation “to the left of”. Such spatial
relations may be lifted to express more abstract concepts in higher cognition (Lakoff &
Johnson, 1999) (where “higher” provides itself an example of such metaphorical use of
a spatial relation). Movement relations, such as “move the nightstand to the bed”, are
foundational for representing actions and, thus, for the majority of verbs (Pulvermüller,
2005). While simple object features, such as color and orientation, can be extracted from
single locations in the visual array, relations link to both a target and a reference object.
A key issue that we will address is how a neural network implementing a relation can be
flexibly applied to reference objects anywhere in the visual array.

Fig. 1 illustrates key notions of the neural account of grounding and description
generation of relation that we aim at in this paper. A visual sensor (bottom panel)
provides input to populations of neurons that extract local features (e.g., hue values).
These populations form neural maps or fields that represent visual space together with
such feature dimensions (not shown). These fields are used to guide attentional selection
within purely spatial fields, of which three are shown in the middle panel of Fig. 1. Positive
levels of neural activation (color coded in yellow) are localized where objects have been
brought into the attentional foreground. Neural nodes illustrated in the top panel reflect
activity in small populations of neurons that represent concepts such as red and above.
Language-like propositions, such as “the red object above the green object” are then
represented by activation patterns within these nodes. Reciprocal connectivity between
nodes and neural fields define the perceptual meaning of the concepts. How relational
concepts must be connected to the fields that perceptually ground them is a key topic of
this paper.

In perceptual grounding (orange arrows on the left of Fig. 1), a neural representation of
a phrase guides a process of visual search to direct attention to an object that matches
the relation. In the figure, the phrase “red above green” is encoded by an activated “red”
concept node for the target (top left), an activated “above” concept node for the relation
(top center), and an activated “green” concept node for the reference object (top right).
Grounding is achieved when in the activation field representing target locations (middle
left) an activation peak is positioned over the location of the red object that is above the
green object. The activation field representing reference object locations (middle right)
has a peak at the location of that green object. The activation pattern in the relational
field (middle center) reflects the same target location now centered on the location of the
reference object (the areas marked by white ellipses correspond).

In description generation (blue arrows on the right of Fig. 1), the attentional selection
of objects in the scene is based on their salience and their match to spatial or movement
relations. In the figure, the red object on the right of the scene is brought into attention
by salience. This leads to the selection of a matching reference object and relation which
drives the activation of a neural representation of the phrase “red above green” in the
concept nodes.

In our conception, a neural process account does not necessarily entail a detailed
mapping of neural populations on particular brain areas or sub-networks. Such a mapping
may ultimately be achievable, but that is not the goal we set ourselves. Instead, we
constrain the model by three principles that we believe broadly define an embodied, neural
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Fig. 1: The two directions of linking language to visual cognition: perceptual grounding
(orange arrows) and description generation (blue arrows). The language phrase that
the model is representing here is “the red object above the green object”. See text for
description.

dynamic perspective on cognitive modeling.
First, the function of a neural network is determined by its connectivity, the fundamental

postulate of connectionism (McClelland et al., 2010). Activation patterns in neural networks
arise in response to inputs or are self-generated within the network based on recurrent
connectivity. Neural connectivity is fixed on the short time scale of a single instance of a
mental or motor act, but may change through adaptation and learning across multiple
instances of experience.

Second, neural processes are embedded in the body and connected to its sensors and
motor systems (Barsalou, 1999; Clark, 1999; M. Wilson, 2002). Neural mappings from
the sensory surfaces to the brain reflect the continuous ways in which objects, scenes, or
events may vary (e.g., as objects vary in pose, shape, and surface properties). Neural
mappings from the brain to the motor surfaces reflect the continuous ways in which
movement behaviors may vary (e.g., in direction, speed, or movement time). The similarity

3



of patterns of connectivity in primary sensory and motor areas (i.e., locally excitatory and
globally inhibitory) to patterns of connectivity in areas of the brain further removed from
the sensory and motor surfaces supports the strong embodiment hypothesis according
to which higher cognitive processes share properties with sensory-motor processes, in
particular, sensitivity to continuous dimensions that ultimately reflect sensory-motor
properties (Gärdenfors, 2014). Higher cognitive processes may couple to sensory-motor
processes, at least intermittently. This implies that they must have stability properties, so
that they may track time-varying input and resist disturbances of motor states.

Third, and extending the embodiment hypothesis, neural activation evolves in continu-
ous time as described by neural dynamics. Decisions, sequences of thoughts or actions
emerge at discrete times from such underlying continuous time. How this happens is
in need of neural explanation (and will be addressed here). This principle contrasts
neural dynamics to computational models that account for discrete events based on digital
computer notions of a central clock or updating cycle, or based on information processing
notions such as “firing a production rule”.

By building mathematical models that may actually generate the outcomes of percep-
tual grounding and of description generation from visual input, we move beyond verbal or
conceptual accounts of grounding that are broadly consistent with some of these princi-
ples (e.g., Barsalou, 1999; Gibbs & Colston, 1995; Langacker, 1986; Talmy, 1988). We also
move beyond computational accounts (e.g., Pastra & Aloimonos, 2012; Roy, 2008) that
describe these processes at an abstract level. For example, the relation “the nightstand to
the left of the bed” may be modelled as a function or operator, left(nightstand, bed),
that takes two arguments, the positions of the nightstand and the bed, and then returns a
truth value or a graded measure of certainty. Such a computational view of perceptual
grounding is incompatible with the principles of neural processing stated above. It does,
however, achieve a powerful flexibility by enabling arbitrary arguments to be passed to
the function. In fact, providing an account consistent with our neural principles for that
computational flexibility is a fundamental challenge: How may neural connectivity that
instantiates a particular cognitive operation be brought to bear on a wide range of possible
“arguments”? That connectivity can only receive “arguments” to the extent to which it
is connected to the neural sub-populations from which these “arguments” arise. Many
convolutional (deep) neural networks sidestep this issue by weight sharing, instantiating the
connectivity of an operator invariantly across space. We address this issue by showing how
an invariant representation of space can be obtained, on which a single neural instantiation
of an operator can be applied across all possible arguments. The key idea is that the
neural representation of the visual array is actively coordinate transformed to become
centered on a potential reference object (center panel of Fig. 1).

The model is based on dynamic field theory, a mathematical and conceptual framework
for neural process accounts consistent with the three stated neural principles. The relevant
concepts of dynamic field theory are briefly reviewed next, followed by a description of
the model and a series of simulations that demonstrate how the model generates the
time courses of neural activation that bring about perceptual grounding and description
generation in the sense suggested in Fig. 1.

2 Dynamic field theory (DFT)
Dynamic field theory (Schöner et al., 2016) elaborates and formalizes the three principles
of embodied neural dynamic process accounts. DFT extrapolates evidence that mental
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Fig. 2: A dynamic neural field of activation, u(x) (blue), is defined over a single feature
dimension x by virtue of localized input, s(x) (yellow). The field produces output only
where its activation exceeds the threshold at 0 of a sigmoid function g(u(x)) (red).

and behavioral states are best explained in terms of the activity in small populations of
neurons (Cohen & Newsome, 2009; Panzeri et al., 2015; Wu et al., 2011). In that view, the
population level is privileged to account for the neural processes on which thinking and
acting is based (Schöner, 2019). The building blocks of DFT models are thus patterns of
activation in populations of neurons (illustrated in Fig. 2). These patterns are characterized
by graded activation variables, u (blue line in Fig. 2), that reflect how close a neural
population is to affecting down-stream neural populations onto which it projects. Projection
onto other neural populations is governed by a sigmoidal threshold function, g(u), (red
line) so that only activation larger than the threshold at zero is transmitted. In the brain,
activation is determined by the membrane potentials of neurons within a population and
the threshold function is established by the spiking mechanism. The mesoscopic level of
description of DFT does not take into account these neuro-physical mechanisms in what
can be derived under some conditions as the mean-field approximation (Faugeras et al.,
2009).

Activation patterns of a neural population may span continuous, low-dimensional feature
spaces, x, by virtue of forward connectivity from sensory surfaces to the population or
from the population to motor systems, both characterized by tuning curves. The resulting
neural maps can be viewed as dynamic neural fields, u(x), defined over continuous feature
spaces, x, when we assume that the discrete sampling of the feature spaces by individual
neurons is not functionally relevant (Erlhagen et al., 1999). Consequently, the units of
representation are not individual neurons but peaks of activation localized along the
feature dimension (as illustrated in Fig. 2) that pass their supra-threshold activation on to
down-stream populations in ways that may reflect the position of the peak within the field.
Neural populations that do not span continuous feature spaces are modelled by dynamic
neural nodes that represent categorical concepts. This often happens in the form of sets of
such nodes that are inhibitorily coupled to enable “winner-take-all” selection.

The activation patterns, u(x, t), of dynamic neural fields and nodes evolve continuously
in time, t, as described by a neural dynamics,

τ u̇(x, t) = −u(x, t) + h+ s(x, t) +
∫
dx′ k(x− x′) g(u(x′, t)). (1)

This mathematical formalization, which dates back to the 1970s (Amari, 1977; H. R. Wilson
& Cowan, 1973), lifts the dynamics of neural membranes to the population level. The rate
of change, u̇(x, t), of the activation pattern depends on a time scale parameter, τ , that
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determines how quickly the dynamics converges, a resting level, h < 0, that determines the
level to which activation converges without external input, localized external inputs, s(x, t),
from other dynamic neural fields or sensors, and homogeneous patterns of within-population
connectivity, k(x− x′), explained below.

Stability, the capacity to resist change, is central to the embodied perspective (Spencer
& Schöner, 2003) and enables the coupling of neural dynamic processes to sensory-motor
systems. Localized peaks of activation of dynamic neural fields (Fig. 2) are attractor states
of the neural dynamics, stabilized by the strong recurrent connectivity within the field.
That connectivity, expressed here as a function, k(x − x′), of the distance between two
points in the field, is positive over short distances, stabilizing peaks against decay. It is
negative over longer distances, stabilizing peaks against distractor input. This pattern of
connectivity is found in the brain (Douglas & Martin, 2004; Jancke et al., 1999) and is
commonly invoked in models of cortical function (Rutishauser et al., 2010). The integral
term in the equation formalizes that this same connectivity pattern is applied to any
location with supra-threshold activation, g(u(x′)), and is summed along the entire feature
dimension, x′.

The sub-threshold state, u(x, t) = h + s(x, t), is also an attractor solution for small
and slowly varying inputs s(x, t) < −h. This attractor solution disappears in the detection
instability when increasing input pushes activation above zero and induces a switch to
a peak solution. This happens at a discrete moment in time even if input increases
continuously in time. The detection instability thus explains how discrete time events
emerge from continuous time neural dynamics.

Fields support selection, in which a peak forms over one among multiple local maxima
of input. Once a local maximum has been selected, the peak tracks any changes in input.
Fields may also support multiple localized peaks of activation, depending on the strength
and spatial dependence of inhibitory coupling. Activation peaks may be sustained by
the intra-field coupling after inducing localized input has been removed, providing an
account for working memory of feature values (Durstewitz et al., 2000; Johnson et al.,
2009). The dynamic stability of attractor states provides structural stability (Perko, 2001),
in which attractors and their instabilities—dynamic regimes—persist even as the dynamic
equation is gradually changed. Dynamic regimes remain invariant, therefore, under graded
change of parameters and inputs, but also when fields are coupled to other fields or nodes.
Neural dynamic architectures may thus be characterized by the dynamic regimes of their
component fields, a form of modularity.

When neural dynamic fields depend on multiple different feature dimensions, they
form bound representations of those features. For instance, a field depending on both
visual space and on color binds these two features (see the color/space perception field
in Fig. 4 for an example). Projections from such bound representations provide a neural
instantiation of functions of the bound feature dimensions.

An important class of such functions are active coordinate transforms, which can be
viewed as steerable maps (Fig. 3; Pouget & Sejnowski, 1997; Schneegans & Schöner, 2012).
The figure illustrates how target objects may be transformed into a coordinate frame
centered on a reference object. The transformation field binds the spatial positions of
target and reference objects. Sub-threshold ridge input from the target and reference
field generates peaks at locations that combine the respective spatial locations (marked
in bright/yellow shading). Summing along the diagonal of the transformation field and
projecting onto the relational field as sketched generates a spatial representation of the
target objects that is centered on the position of the reference object. Implementing
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Fig. 3: A steerable neural map implemented as as two-dimensional transformation field.
Activation is color coded, with yellow/bright shading marking supra-threshold, blue/dark
marking sub-threshold levels of activation. Here, the reference object is positioned between
the two target objects, whose representation in the relational field is thus symmetrical
around the center.

spatial relations as connectivity patterns of the relational field, we exploit such coordinate
transforms to apply these connectivity patterns invariantly across different locations of
the reference object.

3 Model
The architecture we describe in this section is a neural process model of perceptual
grounding and description generation. When presented with video input of a visual scene,
as well as a phrase about an object in that scene, it is able to perceptually ground that
phrase by bringing the designated object into the attentional foreground. When presented
with video input alone, it is able to generate a phrase describing any object in the scene.

We organize the description of the model in four parts, as illustrated in Fig. 4. It
is important to keep in mind, however, that the model is essentially one big dynamical
system described by a large set of coupled integro-differential equations (Richter, 2018).
Each part is simply a set of activation variables evolving in time, and the functional
interpretation of activation states is primarily a mental guide to us, the modeler and the
reader, to keep track of what is going on in the model.

3.1 Perception and visual search
This part of the model is a simplified version of a more comprehensive neural dynamic
model of visual search (Grieben et al., 2020) that contains the perceptual front-end. Visual
search attentionally selects objects in the scene based on two pathways: bottom-up inputs
that arise from the sensory surface guide attention to salient objects, while top-down
inputs from language may guide attention toward objects that have particular features.
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Fig. 4: Schematic overview of the model showing an activation snapshot during the
grounding of the phrase “the red object moving toward the green object”. White regions
highlight four parts of the model that we organize our description around. For three-
dimensional fields, two-dimensional slices of activation are shown. The connectivity
supporting categorical concepts and sequence generation is not shown in full detail.
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Fig. 5: Schematic overview of the perceptual front-end. For three-dimensional fields,
two-dimensional slices of activation are shown.

Perceptual input to the model comes from a camera or video stream. Each frame goes
through several preprocessing steps, implemented algorithmically here as a shortcut for
neurally plausible models of early human visual processing (Lomp et al., 2017). During
preprocessing, input to the model is scaled to the color saturation of visible objects, so that
high levels of input arise near objects with uniform, saturated colors, while low levels arise
from locations in the visual array with colors of low saturation (e.g., black and white).

The model builds a neural representation of all visible objects as an activation pattern in
two three-dimensional dynamic neural fields (top left white box in Fig. 4). The color/space
perception field receives the preprocessed video data as input, and is defined over the two
spatial dimensions of the camera image and over hue (color), building localized peaks in
response to mono-chrome objects (see also Fig. 5). The motion/space perception field is
defined over the same two spatial dimensions of the camera image and over the feature
dimension of motion direction. Moving objects induce peaks of activation in this field, while
stationary objects do not. The motion signal is extracted based on the counter-change
model of motion detection (Berger et al., 2012). Motion is detected from a location
at which image saturation changes toward back-ground to a location at which image
saturation changes away from back-ground. These changes are signaled by two sets of
transient detectors (Fig. 5).

At the core of the top-down pathway of visual search are two three-dimensional dynamic
neural fields, the color/space attention field and the motion/space attention field, defined
over the same dimensions as the two respective perceptual fields. A peak in these attention
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fields represents the attentional selection of the object at the corresponding location and
feature value. Each field receives input from its corresponding perceptual field, which by
itself is not sufficient to induce peaks, leading merely to subthreshold bumps of activation.
Only with additional “top-down” input that overlaps with these bumps is the detection
instability reached and a peak formed.

Attention to a particular color is modeled by input from the color attention field,
defined over hue. The projection from a one-dimensional to a three-dimensional field can
be visualized as a sheet of input, that pushes activation up in all spatial locations at the
hue value represented in the color attention field. For instance, in Fig. 4, this input for
green pushes locations of green objects through the detection threshold. Attention to a
particular motion direction is modeled analogously by input from the motion attention
field, defined over motion direction.

Spatial attention is modeled by input from the selective spatial attention field, defined
over the spatial dimensions of the camera image, and operated in a dynamic regime
in which only a single peak may form at a time. Spatially localized activation can be
visualized as a cylinder oriented along the feature dimension (color or movement direction)
and promotes the selection of objects at the position of the cylinder. Coupling between the
selective spatial attention field and the three-dimensional attention fields is bidirectional
along the shared spatial dimensions. Note that the different features of each object are
represented in separate neural populations (separate three-dimensional fields), leading to
the famous binding problem. The bidirectional coupling solves the binding problem in
the manner of Feature Integration Theory (Treisman & Gelade, 1980) by linking different
features of each object through the spatial dimensions shared by all feature-space fields
(Grieben et al., 2020; Schneegans, Spencer, et al., 2016).

Input from the perception fields to the selective spatial attention field implements a
simple bottom-up salience mechanism for spatial attention in the absence of top-down
cues. Salience increases with the visual size of an object, the saturation of its colors, and
when the object moves.

Multiple object positions may be simultaneous relayed to other fields by the multi-peak
spatial attention field, which receives the same input as the selective spatial attention
field but operates in the dynamic regime that allows multiple peaks to form at the same
time. The two fields together form a functional unit whose spatial selectivity can be
modulated by homogeneous input to the selective spatial attention field. A peak in that
field inhibits all other peaks in the multi-peak spatial attention field, effectively switching
the spatial attention system to a selective mode. This flexibility enables the system to
either attentionally select one out of multiple candidate objects based on their object
features and saliency alone or to defer that attentional selection decision to other fields,
where it may be based on the match of the objects with a relation.

3.2 Categorical concepts
The top-down input guiding visual search ultimately comes from a neural representation
of a phrase. In the model, the interface to language is defined by categorical concepts
of color, motion direction, spatial relations, and movement relations (bottom right box
in Fig. 4), mapping words to concepts (Jackendoff, 2012). We do not model language
processing itself, assuming that the output of such processing activates memory nodes
that represent the phrase to be grounded (e.g., red, rightward). Conversely, the model
generates a scene description by activating the appropriate memory nodes.
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Each memory node is coupled excitatorily and reciprocally to an associated production
node, which may become activated and thereby have an impact on the rest of the model.
The connectivity pattern between a production node and a dynamic neural field, defined
over color, motion direction, or space, instantiates the perceptual meaning of a concept.
For instance, Fig. 4 shows how the production node of the color concept green activates
a region of the color attention field, in which hues of green are represented. The pattern
of connectivity between the node and the field is modeled as a Gaussian function along
the color dimension, centered on green. Activating the node may ultimately lead to the
attentional selection of green objects. Conversely, the green concept node becomes
activated when a green object is in the focus of spatial attention.

In language and thought, we assign roles to the objects we talk about (Landau &
Jackendoff, 1993) such as when the red object in “the red object to the left of the green
object” is the target of the spatial relation and the green object is the reference object
of that relation. The model has separate neural representations of object attributes and
of their perceptual grounding for every role an object may appear in. So, every color
concept is represented by pairs of memory and production nodes for the roles as target
and as reference. The color concept production nodes connect to the same color attention
field with the same connectivity in the two roles. For example, the production nodes
representing green as a target and green as a reference have the same pattern of
connectivity to the color attention field. One may think of the nodes for the two roles as
modeling two sub-populations that share the same overall connectivity pattern toward
the perceptual system but are wired up differently toward the conceptual system. In fact,
roles themselves do not have any perceptual meaning; what makes a neural representation
play a specific role is determined only by its connectivity to and from other parts of the
architecture.

The color concepts, red, yellow, green, and blue, and the concepts of motion
direction leftward, rightward, upward, and downward, are realized in the model to
provide attributes of objects that guide attentional selection. Their pattern of connectivity
is modeled as a Gaussian over their respective feature dimensions, analogously to what is
outlined for the color concept green above.

The concepts of spatial relations to the left of, to the right of, above,
below, and of movement relations, toward, and away from, are realized in the model
to provide relations between pairs of objects. If motion is perceived in the scene, the model
activates concepts of movement relations; for static scenes, concepts of spatial relations are
activated. The connectivity pattern of these relational concepts is modeled (Lipinski et al.,
2012) to fit behavioral rating data (Logan & Sadler, 1996). Connectivity is excitatory in
the appropriate spatial region relative to the center of the spatial field (patterns are shown
at the bottom right of Fig. 4). The negation of the concept (e.g., not left) is represented
by a connectivity pattern, in which the spatial region is inhibited rather than excited.

Based on these connectivity patterns, representations within the model may match a
categorical concept to varying degrees. A match decision is made for sufficient overlap of
a bump of activation with the connectivity pattern, fulfilling what is called the condition
of satisfaction (CoS) (Searle, 1980); a non-match decision is made for sufficient overlap
of a bump with a connectivity pattern of inverted polarity, fulfilling the condition of
dissatisfaction (CoD). Fig. 4 shows an example in the spatial relation CoS field (bottom
center), where a localized bump of activation close to the center of the field overlaps with
the connectivity pattern of the movement relation toward.
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3.3 Coordinate transformations
The fixed connectivity patterns of relational concepts can be brought to bear on any
location of the visual array by actively transforming the neural representation of target
objects into a coordinate frame centered on the location of reference objects (Fig. 3).
The transform is based on a bound representation of target and reference objects, which
first requires neural representations dedicated to objects in these two roles. Their spatial
positions are represented in the target field for targets and in the reference field for reference
objects. The two fields inhibit each other such that any given spatial location is only ever
represented in one of the two fields. Both fields receive input from the multi-peak spatial
attention field, reflecting the spatial locations of objects that are currently in the focus of
attention. Processing is organized sequentially (see Section 3.4) to direct attention first to
target, then to reference objects.1 At each step, the corresponding spatial attention field is
boosted by a homogeneous input. When the reference field is boosted, the selective spatial
attention field is deactivated, enabling multiple candidate positions to be represented in
the reference field. When the target field is boosted, the selective spatial attention field is
activated, enabling a selection decision for a single target object. Both the target field and
the reference field receive additional input from the perception fields so that their peak
solutions, once instantiated, may track moving objects.

Given the two-dimensional spatial representation of objects in the model, the trans-
formation field of the active coordinate transform is four-dimensional. To reduce the
computational load, we approximate the transformation fields using algorithmic convo-
lution and correlation functions. The model uses coordinate transformations twice in
succession (bottom left white box in Fig. 4). First, to actively transform the neural
representation of target locations into a reference frame that is centered on a reference
object, the reference field steers how the target field projects onto the relational candidates
field. In the example of Fig. 4 (top right transformation, depicted by a blue diamond),
the relational candidates field represents the position of the red target object relative
to the position of the green reference object. The second transformation rotates the
resulting representation so that it is centered on the motion direction of the target object.
The rotation field represents the movement direction of the target object and steers that
transformation (Fig. 4, bottom right diamond). The outcome is projected onto two fields,
the spatial relation CoS (condition of satisfaction) field and the spatial relation CoD
(condition of dissatisfaction) field.

All relational concepts, such as toward and to the left of, are instantiated by
connectivity patterns between the associated nodes and these two fields (see Section 3.2).
Positions of the target and reference object that match the relation induce a peak in the
spatial relation CoS field. In the absence of a match, positions of the target and reference
object at non-matching locations induce a peak in the spatial relation CoD field. This
signals a failure to find a target and leads to a repeated search (see below).

Once a matching object has been selected in the spatial relation CoS field, its peak
is projected back into the selective spatial attention field. This requires transformations
(Fig. 4, diamonds on the left) that invert those described above as well as an intermediate
representation in the relational response field. The output of these transformations brings
the attentional focus to the spatial position of the selected reference object.

1This order can be made flexible, to reflect, for instance, the order of speech input. It is fixed here to
enable a simple form of generating descriptions, in which the most salient object in the scene is attended
first and becomes the target object.
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3.4 Cognitive operations
As the model solves its tasks, it goes through a set of cognitive operations by transitioning
between qualitatively different neural states that are demarcated by dynamic instabilities
(see Section 2). Cognitive operations typically entail that a peak is generated or destroyed,
for example to bring objects of a certain color into the attentional foreground, to make a
selection of one object from multiple candidates, to create a working-memory representation
of an object, or to delete such a representation. Fundamentally, all processing in the model
runs in parallel, so that transitions may happen asynchronously in different parts of the
model. In some cases, operations must be performed in sequence due to constraints to
operate on one object at a time. For instance, to ground relations, the target and the
reference object must be identified and their locations be entered into the target and
reference field. This requires sequential attentional selection of candidates for the two
roles.

The coordination of such neural operations is based on structured sub-networks of four
nodes (Richter et al., 2012; Sandamirskaya & Schöner, 2010). The complete network that
organizes perceptual grounding and description generation consists of 21 such sub-networks
and is too complex to be fully illustrated here; we only sketch parts of it in Fig. 4 (top
right). The sub-networks are organized in a four-level hierarchy. The highest level controls
which of three different tasks the model performs: grounding a single object, grounding a
relation, and generating a description of an object or a relation. The second level controls
the grounding of the three elements of a spatial phrase: the target and reference objects,
and the spatial relation. Two sub-networks control the inhibition of different parts of the
architecture to “clean” the fields used for grounding at appropriate points in a sequence.
The third and fourth levels control more detailed aspects of the grounding operation such
as bringing individual fields into dynamic regimes in which they can form peaks. Different
sub-networks at the lower levels are activated in varying sequential orders by sub-networks
at higher levels, which leads, overall, to a variety of qualitatively different behaviors of the
model.

To explain the structure and use of the sub-networks that coordinate neural operations,
we follow along the example illustrated in Fig. 6. In the example, the cognitive operation
of grounding a relational phrase is broken down into three cognitive operations at a lower
hierarchical level: grounding the target object, the reference object, and the spatial relation.
Each of these three cognitive operations is represented and coordinated by a dedicated
sub-network of four nodes each.

The intention node2 (labeled “i” in Fig. 6) is the output unit of this small network
that projects onto other sub-populations or sub-networks which bring about a particular
cognitive operation. When its activation exceeds the threshold of the sigmoidal function, it
modulates the dynamic mode of its target networks. For instance, the intention node of the
operation “ground target” enables the target field to build peaks by pushing the field closer
to the detection instability. When additional localized input from other sources projects
onto a set of fields, including the target field, only the target field may generate activation
peaks, while the others may not. In this way, intention nodes may effectively redirect the
flow of coupling within a neural dynamic architecture. The condition of satisfaction (CoS)
node (labeled “c”) is pre-activated by the intention node, and receives additional input
from other subnetworks that signals that the cognitive operation enabled by the intention

2Intentions are neural states that are about the world. A match between the contents of an intentional
state and a state of the world is the intention’s condition of satisfaction (CoS) (Searle, 1980).
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Fig. 6: An exemplary hierarchy of sub-networks (gray boxes) that organize cognitive
operations in the model. Circles denote neural nodes (“p”: prior intention, “m”: condition
of satisfaction (CoS) memory, “i”: intention, “c”: CoS, “pc”: precondition). Filled black
circles denote active nodes, white circles denote inactive nodes. All nodes are self-excitatory,
not graphically represented here. Regular arrows mark excitatory connections; lines ending
in a small filled circle mark inhibitory connections. Different line colors are for visual aid
only. See text for details.

node has led to the expected outcome. For the cognitive operation “ground target”, such
an input would arise when a peak has formed in the target field, signaling the successful
completion of the operation and activating the CoS node. This state is propagated to the
CoS memory node (labeled “m”), which inhibits the intention node, causing it to become
deactivated. This, in turn, removes input to the CoS node, turning that node off, and thus
effectively deactivating the entire sub-network. A memory of its successful completion is
kept in the CoS memory node, however, which remains activated based on self-excitatory
coupling.

Constraints on the serial order in which cognitive operations are performed are imposed
by the coupling structure of the precondition node (Richter et al., 2012). Fig. 6 illustrates
one instance of such a precondition node (labeled “pc”, purple lines), which ensures that
the operation “ground target” successfully grounds the target object before the operation
“ground reference” begins grounding the reference object. An activated precondition node
inhibits the intention node onto which it projects. That intention node may, therefore,
become activated only once a preceding cognitive operation, the precondition, has termi-
nated successfully. Its associated CoS nodes inhibits the precondition node and releases
the intention node from inhibition.

The mechanism by which precondition nodes enforce sequentiality is akin to chain-
ing (Henson & Burgess, 1997), as one cognitive operation enables the activation of its
successor as soon as the first has terminated. A challenge for chaining theories is generating
different sequences that go through the same element. To enable such “re-use” of elements,
the sequential activation of cognitive operations may be organized hierarchically as illus-
trated in the example in Fig. 6. On the lowest hierarchical level, the intention nodes project
directly onto the fields of the model. Their CoS nodes receive input from those fields
signaling that an operation has been completed. A particular serial order at that lower
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level may be imposed by precondition nodes. Intention nodes at a higher level may project
onto lower level prior intention nodes (labeled “p”) and CoS memory nodes (illustrated by
blue lines in Fig. 6). The projection is sufficiently strong to activate the prior intention
nodes but not the CoS memory nodes. The activated prior intention nodes, in turn, inhibit
the CoS node of the higher level network (orange lines in Fig. 4). A higher level CoS
node may thus become activated only when excitatory input from the CoS memory nodes
of the lower level operations becomes activated (green lines). The CoS of higher level
operations consists, therefore, of the successful completion of all lower level cognitive
operations. Through that pattern of connectivity, multiple higher-level operations may
recruit overlapping subsets of lower-level operations while enforcing different sequential
orders through the activation of appropriate precondition nodes.

As a sequence of cognitive operations unfolds, the results of the perceptual grounding
or description operations are activation peaks in the corresponding target or reference
fields or activation states in concept nodes. These activation patterns carry state from
one sequential operation to the next. This is prominent in the target IOR field, which
holds a representation of all target objects that have been tried in a grounding sweep,
analogous to the notion of inhibition-of-return (IOR) in accounts of visual attention (Itti
& Koch, 2001). By projecting inhibitorily to both the selective spatial attention field and
the multi-peak spatial attention field, this intermediate representation biases attentional
selection toward objects that have not been previously examined.

4 Results
We evaluated the performance of the model in numerical simulations that made use of
CEDAR,3 an open-source software framework in which DFT models can be composed
graphically and their parameters can be adjusted interactively (Lomp et al., 2016). We
performed a total of 104 simulations. Of these, 89 involved grounding tasks in which
the model is presented with a visual situation and must attentionally select the object
described by a relational phrase. The remaining 15 simulations were description tasks in
which the model must generate a relational phrase by observing a visual situation.

The visual situations presented to the model varied with respect to the number of
objects in the scene, the number of moving objects, the number of objects that match
a description, the number of distractor objects, and whether or not distractor objects
matched at least some features relevant to the task. Each combination of these factors
was captured by at least one visual situation from a data set of 82 videos.4

Grounding tasks were performed by activating the memory nodes that represent the
concepts in the phrase to be grounded and supplying a visual stimulus. For description
tasks, only the visual stimulus was supplied. All tasks were then initiated by activating a
task node at the top level of the control system (all through a user interface in CEDAR).
Once activated, the model acted autonomously, without further intervention.

To evaluate the performance of the model qualitatively, we observed the neural ac-
tivation patterns evolve in the simulator and determined if the model generated the
expected activation patterns. These depend on the different conditions, but typically entail
generating an activation peak within the target and reference fields at the correct location
for grounding tasks, and, in addition, generating the correct pattern of activation in the

3https://cedar.ini.rub.de
4The video data set is publicly available at https://osf.io/emq3n/files under “dataset”.
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concept nodes for description tasks. We checked that the CoS of all relevant cognitive
operations were fulfilled.

The overall outcome is that the model generates the expected activation patterns in
all 104 simulations for a single set of model parameters5 and within a single sweep of each
video. For all grounding tasks, the model grounds the given phrase in the scene whenever
that is possible; for all description tasks, it generates a phrase describing the given scene,
where possible.

Below we describe how the model performs the different tasks by illustrating the time
courses of relevant parts of the model for exemplary cases. The simulations not shown are
of the same general nature and can be illustrated in the same way (Richter, 2018).

4.1 Grounding single feature attributes
To assess the feature-based attention and bottom-up saliency pathways of the model,
we evaluated grounding tasks in which a single feature value is provided as an attribute
of a target object, a simple form of visual search. A representative example of this
group, in which the model grounds the phrase “the red object”, is illustrated in Fig. 7.
At time t1, there are peaks in the color/space perception field representing the spatial
position and color feature of the four objects in the scene. The peaks produce localized
subthreshold activation patterns in the color attention field. In Fig. 7 the activation of
this three-dimensional field is illustrated in two two-dimensional projections, in each case
marginalizing the third dimension by taking the maximum along that dimension. This
leads to color vs. horizontal space in the fifth row, and vertical vs. horizontal space
representations in the the sixth row.

Between times t1 and t2, the phrase “the red object” is encoded by activating the
concept memory node for red (through CEDAR). The grounding processes are initiated
by giving input to the top level task node that encodes grounding of a single target object,
which activates the intention node for searching for a target object (top panel).

At time t2, the boost from the target intention node activates the production node for
red (transparent red bar, third row). Through its projection to the color attention field,
the target color production node induces a peak there centered on red (fourth row). This
peak projects into the color/space attention field centered at red. In Fig. 7, this is visible
as a line along the horizontal spatial dimension (fifth row) and overall higher activation
along both spatial dimensions (sixth row). Input from the red object in the scene overlaps
with that projected activation.

Reciprocal interaction between the color/space attention field and the multi-peak
spatial attention field and selective spatial attention field (not shown), enhances the
activation at this location, visible at time t3 as a vertical line of input in the color/space
attention field (fifth row). From this loop of interaction, a peak in the color/space attention
field emerges at the locations that matches the top-down feature cue, red. It brings about
the attentional selection of the red object, visible in the target field at this time: The
phrase “the red object” has been perceptually grounded.

Because the CoS of the various intention nodes have been met, activation begins to
decay. By time t4, most of the activation in the model has returned below threshold. What
remains active are the target color memory node representing the original phrase together
with its perceptual grounding in the target field.

5The parameter set is publicly available as part of a human-readable configuration file for CEDAR at
https://osf.io/emq3n/files under “config”.
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Fig. 7: Grounding the phrase “the red object”. The top panel shows the activation levels
of the target intention node and its CoS over continuous time. All panels below show the
state of the model at four points in time, t1, . . . , t4 (four columns). ‘Target color’ panel:
Activation of memory nodes is shown by opaque bars, activation of production nodes by
transparent bars. Broken bars denote values that are not to scale. Lower three panels:
Activation is color coded (colormap on the right). ‘Color/space attention’ panel (fifth
row): The hue dimension is plotted along the vertical axis. Only the horizontal spatial
dimension is shown (along the horizontal axis). ‘Color/space attention’ panel (sixth row):
Only the spatial dimensions are shown. ‘Target’ panel: Activation in the target field is
shown for both spatial dimensions.
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This simulation is one out of a set of 18, in which only the color red of the target
object was specified. The visual stimuli varied the number of (red) target objects, the
number of (non-red) distractor objects, and the number of moving targets/distractors. In
all visual scenes that contained a red object, the model was successful in bringing it into
the attentional foreground, thus grounding the phrase. This worked irrespective of the
number of distractor objects in the scene and whether they moved or not. Among multiple
potential targets in the visual scene, the model selected one, ignoring other candidates.
The model prefers red objects that move over stationary red objects because movement
enhances salience. Among multiple red objects that are all moving or all stationary, the
model typically selects the ones closer to the bottom of the visual scene. This is because
the camera axis is slightly inclined so that objects near the bottom are visually larger and
thus more salient due to perspective distortion. For all visual scenes that did not contain
red objects, the model did not bring any object into the attentional foreground, remaining
in its initial state for lack of a mechanism to detect terminal failures of visual search.

A second set of six simulations further assessed guided visual search by specifying only
the motion direction, rightward, of the target object. The visual stimuli varied the
number of target objects (moving rightward) in the scene and the number of distractor
objects (stationary or moving somewhere other than rightward). Again, the model finds
an object with the matching motion direction whenever there is one, selects one among
multiple candidates based on salience, and does not attentionally select an object when
there is no matching objects in the visual scene.

4.2 Grounding feature conjunctions
The model can ground objects specified by multiple features, a form of conjunctive feature
search. Fig. 8 illustrates an example in which the model grounds the phrase “the red object
moving rightward”, encoded by activating the respective concept nodes (through CEDAR).
The activation snapshots for time t1 and t2 are analogous to the previous example of
grounding with a single feature. Here, an additional memory node specifies the motion
direction rightward. At time t2, the active production nodes for red and rightward
(transparent bars, third and fourth row) project (via the color attention field and motion
attention field, both not shown) into the color/space attention field and motion/space
attention field, respectively. This shows up here as lines of activation along the spatial
dimension (row five and six). In the color/space attention field, this line overlaps with
input from the two red objects, in the motion/space attention field the line overlaps
with the object moving rightward. The projection of these two feature/space fields on
the multi-peak spatial attention field and selective spatial attention field (not shown) is
strongest at the spatial locations at which these overlaps occur, which can be seen from
the activation pattern those fields induce in the target field (bottom row).

The reciprocal interaction between the selective spatial attention field and the two
feature/space fields enhances activation at those locations at which both feature/space
fields begin to form peaks. This is visible as vertical lines of input in the color/space
attention field and motion/space attention field. From this loop of interaction between
spatial and feature/space attention, peaks in the feature/space fields emerge at time t3 at
those locations at which matches between the top-down feature cues, red and rightward,
coincide. This is how binding through space works in the model. Here, it brings about the
attentional selection of the red object moving to the right, visible in the target field at
this time: The phrase “the red object moving rightward” has been perceptually grounded.
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Fig. 8: Grounding the phrase “the red object moving rightward” in a scene with a unique
target. The same conventions as in Fig. 7 are used. The plotted nodes and fields differ and
are labeled. ‘Video’ panel: The movement direction of objects is denoted by gray arrows.
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Because the CoS of the various intention nodes have been met, activation begins to
decay. By time t4, most of the activation in the model has returned below threshold. What
remains active are the target color memory node and the target motion memory node
representing the original phrase together with its perceptual grounding in the target field.

This simulation is one out of 33 that probed all qualitatively different cases that may
arise in the case of conjunctive feature search. The visual stimuli varied the number of
objects in the scene, the number of objects matching the color feature (red), the number
of objects matching the feature of motion direction (rightward), and the resulting number
of potential target objects. In all cases, the model brought only those objects into the
attentional foreground that had the attribute values specified by the feature conjunction.
We also systematically checked if objects that match the description only along one feature
dimension were selected, for instance, a red object moving leftward, or a green object
moving rightward. This is particularly interesting in cases in which multiple objects each
match one of the feature values, for instance a scene with a red object moving leftward
and a green object moving rightward. In all cases, only objects that match both features
were attentionally selected. This demonstrates that the architecture correctly identifies
the binding of the features to the same spatial location (Schneegans, Spencer, et al., 2016).

4.3 Grounding relations between objects
We demonstrate how the model grounds relations in an exemplary case that is interesting
because it exhibits a form of hypothesis testing (Richter et al., 2014). The phrase “the red
object to the left of the green object” must be grounded for a scene that contains multiple
red and green objects, of which only one pair matches the spatial relation. Analogously to
before, Fig. 9 shows activation time courses and snapshots. At time t1, the phrase has
been encoded (through CEDAR) in the target color memory node for red, the reference
color memory node for green, and the spatial relation memory node for to the left
of. The grounding process is initiated by giving input to the intention node for finding a
target from a relation. The coupling structure of the control system makes that the target
(blue line in top panel) and spatial (green line) intention nodes activate first.

By the time t1, the red object on the right has been brought into the attentional
foreground and induced a peak in the target field (fifth row) at its location. Being slightly
larger due to the camera geometry, this object has slightly higher saliency. Projection onto
the target IOR field (sixth row) induces a self-sustained peak at that location. The spatial
relation task node activates the spatial relation production node for the relation to the
left of, which projects excitatorily into the spatial relation CoS field (second row from
bottom) and inhibitorily into the spatial relation CoD field (bottom row). You can see the
spatial pattern of the synaptic connectivity that encodes the concept to the left of in
the activation of those fields.

By time t2, the search for a reference object is active (yellow line in top panel) and
has brought the two green objects into the attentional foreground in the reference field
(third row from bottom). This enables the coordinate transform that centers activation
of the target field on the reference objects (effectively, a superposition of two coordinate
transforms) and projects that activation into the spatial relation CoS and CoD fields.
Because the candidate red object lies to the right of both green objects, input to the
spatial relation CoS field does not overlap with input from the spatial relation production
node and no peak is formed (second row from bottom). A peak is, instead, formed in
the spatial relation CoD field (bottom row), signalling the rejection of the hypothesis
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Fig. 9: Grounding the phrase “the red object to the left of the green object” in a scene
that requires hypothesis testing. The same conventions as in Fig. 7 are used. The plotted
nodes and fields differ and are labeled. ‘Color nodes’ panel: Activation of concept nodes is
shown both for the target and reference role.
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that the currently selected red object is the correct target. The peak activates the reset
intentional node (dark red on top), which, through fixed synaptic connections, inhibits
those parts of the model that hold this hypothesis in working memory (top panel after t2).
The grounding process begins anew, starting with target and relation search, but now in
the presence of a memory of the first attempt in the target IOR field (fourth row from
bottom).

This makes that at time t3, the leftmost red object has been selected as a candidate
target, which is then entered as a second self-sustained peak in the target IOR field.
Between t3 and t4, the reference search is again activated (yellow line on top) and the two
green objects are again brought into the attentional foreground. The coordinate transform
projects the current target into the spatial relation CoS and CoD fields, but this time that
input matches input from the spatial relation in the spatial relation CoS field.

At time t4, the spatial relation CoS field has made a selection decision for the upper of
the two green objects that better fits the synaptic pattern of the spatial relational concept.
The peak in the spatial relation CoS field at that location is transformed back to scene
coordinates and projected onto the spatial attention system, where it drives selection of
the upper green object, which then shows in the reference field (third row from bottom).
At this time, the model has grounded the phrase “the red object to the left of the green
object” by generating peaks in the target field, the reference field, and the spatial relation
CoS field at the respective locations of the leftmost red object, the upper green object,
and the red object’s position relative to the green object. All of the model’s decisions are
based on the fundamental detection and selection instabilities of its component neural
fields (see Section 2).

Overall, we performed four sets of simulations with relations between objects. In a first
set of eight simulations, task input represented the phrase “the red object to the left of the
green object” and there was exactly one red and one green object in the scene. The visual
stimuli varied whether or not the spatial configuration of the target and reference object
matched the phrase and whether or not the objects were moving. In all eight simulations,
the model only brought the pair of objects into the attentional foreground when its spatial
relation matched the phrase. The model grounded the phrase irrespective of whether
or not the target or reference object were moving (throughout each visual stimulus, the
objects’ movement did not qualitatively change the spatial relation). When the pair of
objects did not match the relation, the model detected the mismatch and rejected the
target object, which was held in the inhibition-of-return memory. The model remained in
that state indefinitely, waiting for a potential matching target object to appear (as there
is no mechanism for “giving up”).

In a second set of nine simulations, the same phrase was given, but the target and
reference objects were no longer uniquely identifiable by their color. The example described
above is from this set. The visual stimuli varied the number of objects in the scene, the
number of red and green objects, and, through their spatial configuration, the number of
pairs of target and reference that matched the phrase. Again, in all simulations the model
only brought pairs of objects into the attentional foreground that matched the specified
relation. When there were multiple potential red target or green reference objects, the
model selected one in either role so that the pair had the specified relation. The target
object is grounded first; its selection among multiple candidates is based on the saliency
of the object. The reference object is grounded second; its selection is based both on
its saliency and on its match with the specified relation. Pairs of objects that did not
match the specified relation were not selected. They were brought into the attentional
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foreground transiently, but then suppressed as the model detected the mismatch of their
spatial relation.

Two analogous sets of simulations where performed for movement relations, grounding
the phrase “the red object moving toward the green object”. Again, in both the first set
(six simulations), in which there was a single red and green object, and in the second set
(nine simulations), in which multiple red or green objects occurred, only pairs matching the
relation were grounded. The respective visual stimuli varied analogously to the simulation
sets outlined above.

4.4 Describing object attributes
We demonstrate how the model delivers a description of object attributes in a representative
example of a visual scene that consists of a single red object moving upward in the camera
image (Fig. 10). For this visual scene, we expect the model to activate the memory nodes
for red and upward. Video input is present from the start of the simulation. Shortly
after the start of the time line, input given (through CEDAR) to the intention node for
describing initiates the process, leading first to the activation of the intention nodes for
searching targets (blue line in top panel).

At time t1, the red object has been selected in the selective spatial attention field,
with a peak that tracks the input of the moving object (second row from bottom). Its
activation projects onto the color/space attention field and motion/space attention field,
visible as vertical lines (fifth and sixth row), and onto the target field.

At time t2, a peak has formed in the target field, also tracking the moving object, and
peaks are forming in the color/space attention field and motion/space attention field.

At time t3, the color red and the movement direction upward have been extracted as
attributes of the selected object, visible in the activation of the respective production and
memory nodes (third and fourth row). By activating these nodes, the model has generated
a description of the scene. The active nodes represent the phrase “a red object that is
moving upward”.

Shortly after time t3, the CoS node for target search (red line in top panel) is activated,
leading to activation throughout the model to decay. At time t4, what remains active are
the peak in the target field, which still tracks the input, and the memory nodes for red
and upward. The intention node for the reference behavior has become active, which
enables the description of a reference object and relation if another object were present
in the scene. The model does not have a mechanism to detect that there is only a single
object in the scene.

In four similar simulations the visual stimuli varied the presence of a single object in
the scene, its color, spatial position, and, if moving, its motion direction. Whenever there
was an object in the scene, the model correctly extracted all available features of that
object (color for stationary objects, color and movement direction for moving objects) and
represented them by activating the associated concept node. The model also represented
the object’s spatial position. When there was no object in the scene, the model did not
activate any concept node nor did it activate spatial representations.

4.5 Describing relations between objects
Finally, we illustrate how the model generates a description using a movement relation
between two objects in a scene (Fig. 11). The scene consists of two stationary balls, one
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Fig. 10: Describing a scene with a moving red object. The same conventions as in Fig. 7
are used. The plotted nodes and fields differ and are labeled.
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blue, one green, and a red ball that is rolling toward the green ball. We expect the model
to activate memory nodes representing the phrase “the red object is moving toward the
green object”. Video input is present from the start of the simulation. Shortly after the
start of the time line, input given (through CEDAR) to the intention node for describing
initiates the process, leading first to the activation of the intention nodes for searching
targets and finding spatial relations (blue and green lines in top panel).

At time t1, the red object has been selected in the spatial attention field, because its
movement makes it the most salience object. This induces a peak in the target field that
tracks the position of the red object. Since the model detects movement, the production
nodes representing movement relations receive more input than the production nodes
representing spatial relations (fourth row from top). The former are activated and project
their connectivity patterns onto the spatial relation CoS field (bottom panel).

At time t2, the color red has been extracted as an attribute of the selected object, visible
in the activation of the target color production and memory nodes for red (third row).
The model has also extracted the movement direction of the object and has categorized it
as upward (even though the velocity vector is not perfectly vertical) leading to activation
of the corresponding target motion production and memory nodes (not shown).

In the meantime, the CoS node for target search (red line in top panel) is activated,
leading to deactivation of the target intention node (blue line) and ultimately to activation
of the reference intention node (yellow line). By time t3, all remaining objects in the
scene (the blue and green objects) have been brought into the attentional foreground,
leading to corresponding peaks in the reference field (third row from bottom). Through the
spatial transformations, the relational candidates field (second row from bottom) receives
input that reflects the position of the red target object with respect to both reference
objects. The projection of the relational candidates field onto the spatial relation CoS
field (bottom row) is transformed further by rotation around the center of the field into
the direction of the target’s motion direction. This leads to the selection of the green
reference object, which overlaps better with the input pattern from the two movement
relation nodes, specifically, with the lower triangular input from the toward node.

By time t4, this has led to the selection of the green object as reference in the reference
field. Transforming back, the red target’s spatial position relative to the green object is
stabilized in the relational candidates field. The relational concept toward is activated
(fourth row) and the red target object is represented in the spatial relation CoS field
relative to the green reference object but rotated into the red object’s movement path.
The blue object’s representations are inhibited.

At the same time, the feature of the selected green reference object has been extracted
through the color CoS field based on input from the color/space attention field. This
activates the reference color memory node for the color green (third row) via the reference
color production node (already back to inactive at time t4).

Thus, at time t4, the model has generated a description of the scene by activating
the target color memory node for red, the target motion memory node for upward, the
reference color memory node for green, and the spatial relation memory node for the
relation toward. That output represents the phrase “a red object that is moving upward
and toward a green object”.

We performed nine similar simulations, in which the model had to generate a description
of a relation between objects. The visual stimuli varied the number of objects in the
scene, their spatial configuration, as well as their motion directions relative to each other.
In all simulations, whenever the most salient (closest and/or moving) object could be
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Fig. 11: Activation time courses of the model as it generates a description of the visual
event illustrated by snapshots. The same conventions as in Fig. 8 are used. The plotted
variables and fields differ and are labeled.
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described by a spatial or movement relation, the model correctly selected both a target
and a reference object, determined their attributes by activating corresponding feature
concept nodes, and identified their relation by activating a relation concept node. When
the target object was stationary, the model described it through a spatial relation (e.g., to
the left of) with respect to the reference object. When the target object was moving,
the model described it using a movement relation (e.g., toward). The model selected the
most salient object in the scene as a target. As a reference object, it selected the object
that best fit any spatial or movement relation with the target.

When there were multiple ways to describe salient objects in the scene, the model
selected a coherent set, so that target object, reference object, and relation matched the
scene. The model produced relational phrases whenever there were multiple objects in the
scene, even when the most salient target object could have been described unambiguously
by its individual color or motion direction attributes alone.

When the model selected a target object and candidates for reference objects, whose
relation did not match any of relational concepts implemented in the model, it did not
generate a description and selected another object as target instead.

5 Discussion
We have outlined an embodied, neural dynamic account of the perceptual grounding of
relations and the autonomous generation of relational descriptions of visual scenes. That
account establishes links between phrases and perceptually grounded objects. Phrases
are represented by neural activation patterns across concept nodes, while objects are
represented by activation patterns across feature maps of visual space. The model builds
on a small set of core mechanism of neural processing formalized in DFT. That it does, in
fact, deliver the claimed functions is demonstrated in extensive simulations.

5.1 Coordinate transforms for neural function evaluation
Spatial relations may be viewed as functions that take the spatial positions of the target
and the reference object as arguments and return a measure of how well these positions
match the relation. Substituting other features for the spatial positions, this view captures
relations in general. Evaluating functions by referencing their arguments is central to
information processing accounts of higher cognition (Anderson, 2007). Understanding how
function evaluation can be realized in neural networks is, therefore, a key challenge for neural
accounts of higher cognition (Anderson et al., 2008; Kriete et al., 2013; O’Reilly, 2006). In
neural networks, functions are instantiated in patterns of connectivity whose inputs deliver
the arguments. To neurally implement relations as functions of two arguments, these must
be provided in a bound representation that expresses all combinations of values of the two
arguments. This was recognized early in connectionist theorizing, most explicitly in the
notion of tensor products (Smolensky, 1990) that provide a neuron for every pair that can
be formed out of the components of two vectors of neural activity.

Implementing spatial relations in neural networks thus requires a bound representation
of all combinations of spatial positions of reference and target objects and connectivity
that projects from that bound representation onto a neural representation of relations.
This is how recent deep neural networks address the learning of relations (Lu et al., 2016;
Santoro et al., 2017). The learned projections extracting relations are copied across visual
space by weight sharing. This approach is demanding in the number of connections needed
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to instantiate relations, scales badly with the number of relational concepts, and is not
neurally plausible.

Our approach shares with this work the notion of a bound representation of the
positions of potential reference and target objects. We use that bound representation to
implement a single function, however, the active transformation of the visual array into a
coordinate frame that is centered on potential reference objects (Lipinski et al., 2012), akin
to a simulated gaze shift (Ballard et al., 1997). Each relational concept is then instantiated
by a single pattern of connectivity that projects from that transformed representation of
visual space to relational concept nodes. Bound representations of gaze and visual space are
found in parietal area LIP and elsewhere in the form of gain-field neural populations (for
review, see Salinas & Sejnowski, 2001). How gain field neural populations may generate
active coordinate transformations is well understood theoretically (Pouget & Sejnowski,
1997; Schneegans & Schöner, 2012). Our approach is thus neurally plausible and provides
a neural foundation more broadly for the reference frame transformations recognized as
critical to language grounding (Coventry et al., 2018; Franconeri et al., 2012) and to which
extant theoretical models refer (Dominey & Boucher, 2005; Gorniak & Roy, 2004; Regier,
1995; Roy, 2005).

In the model, only the neural representation of visual space is actively transformed,
while visual features at different spatial locations are referenced in a form of feature binding
through space (Schneegans, Lins, et al., 2016; Schneegans, Spencer, et al., 2016). We
return to this neural implementation of Feature Integration Theory (Treisman & Gelade,
1980) below. In comparison to the deep network approaches, we note that this fact further
reduces the neural resources required to implement relations.

Vector-symbolic architectures (VSA; Plate, 1995; Smolensky, 1990) take a different
approach to the binding of variables to enable function evaluation. High-dimensional
random neural activation vectors are used as distributed representations of concepts.
Because high-dimensional random vectors are almost always orthogonal to each other, they
can be combined by operations that do not expand the dimensionality of the representation.
This makes it possible to bind and operate on the high-dimensional vectors without losing
access to the original component vectors (Levy & Gayler, 2008). In the past, this notion
was not credited with neural plausibility as it was unclear how such vectors could be
sustained during cognitive processing. The neural-engineering framework (Eliasmith,
2005) has claimed that VSAs could be implemented in neurally plausible spiking neural
networks (Eliasmith et al., 2012). The connectivity of these networks must be highly
specific, however, to enable the networks to preserve the information originally encoded
in the high-dimensional vectors. The neural plausibility of these networks is debatable,
therefore. Depending on the outcome of that debate, the VSA approach might either be a
radical alternative to the approach outlined here, or it may fail to qualify as a neurally
mechanistic approach. It may be too early to settle that issue.

A fundamentally different proposal for how neuronal networks may represent relations
builds on the notion of dynamic links (von der Malsburg, 1985). In this conception, neurons
encode features or concepts by virtue of their location in a neural network. What neurons
represent may then be bound through special mechanisms that link different neurons, such
as phase-locked firing patterns (Hummel & Biederman, 1992) or fast synaptic modification
that creates links on the fly (see Zylberberg et al., 2013, for review and discussion). A class
of neural models (Doumas & Hummel, 2012; Doumas et al., 2008; Martin, 2020) represents
relations by dynamically linking neurons representing the relation and its arguments.
These models have not, to date, addressed perceptual grounding or the active generation
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of relational descriptions, however.

5.2 Autonomous neural processing
Ultimately, the model achieves perceptual grounding of relations by directing visual
attention to a target and a reference object in the visual array that match the relation.
The component of the model responsible for attentional selection binds feature dimensions
through space (Schneegans, Spencer, et al., 2016) in the sense that values along multiple
feature dimensions may be combined to attentionally select a relevant object (Grieben
et al., 2020). To prevent mis-binding, this can only be done one object at a time, implying
the need to sequentially process candidate objects.

The capacity to autonomously generate such sequences of cognitive operations is a
strength of the model and new over previous work (e.g., Lipinski et al., 2012). This capacity
emerges from the core concepts of DFT, the detection instability and its reverse that
accompany the activation and deactivation, respectively, of peaks and nodes. Combined
with the sub-network organized around the condition-of-satisfaction (Sandamirskaya &
Schöner, 2010), these instabilities generate transitions upon the successful completion of
a cognitive operation or, through the condition-of-dissatisfaction, transitions upon the
failure to complete a cognitive operation. A hierarchically structured network of neural
nodes enables the emergence of complex sequences of processing from the underlying time-
and state-continuous neural dynamics.

Rather than invoke algorithms or production rules, the model uses these mechanisms
to attend to potential target and reference objects one by one, accepting them as a
perceptual grounding of a relation if their spatial configuration matches the relational
concept, rejecting them if their spatial configuration does not match the specified relation.
An inhibition of return map ensures that the selection of candidate objects explores the
visual array.6

Although the model as a whole is complex, it is minimal in the sense of covering
only the component processes that are necessary to account for perceptual grounding
and description generation based on neural principles. This was demonstrated in a set of
104 simulations that systematically probed relational tasks across qualitatively different
visual scenes. The capacity of the model to perform across tasks and scenes based on
a single set of parameter values shows that there are no inherent conflicts in the model
between these different demands that would prevent the model from meeting them all. The
parameter values were found by hand, largely constrained by the required dynamic regimes.
Our experience suggests that the model’s performance is not dependent on these exact
parameter values. This illustrates how the model fundamentally differs from curve-fitting
type models. Such models are often thought of as a form of data compression, using
quantitative criteria to assess their descriptive or predictive power by weighing the number
of parameters against the number of data points. This way of assessing models is not well
suited to neural process accounts (Schöner et al., 2016, chapter 15).

One interesting alternative is to account for variability from trial to trial, explaining
potential errors of grounding or description. Accounts for such variability and errors are
possible in DFT models based on the amplification of neural noise near the instabilities
that support decision making (Dineva & Schöner, 2018). In the present context, no data
of this kind are available, to our knowledge (but see below for work using mouse tracking).

6The system may endlessly search for a possible grounding if there there are no objects in the scene
that match the description as we have not attempted to address the implied time-out problem.
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5.3 Research program
We think of the model as a first step toward an account for relational thinking and higher
cognition that takes the constraints of neural processing and embodiment into account, a
research program first outlined, perhaps, by Barsalou (1999). We briefly outline the issues,
small and large, that such a research program still may have to address.

Feature dimensions Our simulation results are demonstrations that the model can deal
with the sampled classes of visual situations. There are many ways how such performance
may break down, in particular, as object features such as size, shape, and texture vary.
Such failures would primarily reflect properties of the visual front-end, which is kept simple
to make the model comprehensible. The visual appearance of the objects themselves was,
therefore, kept relatively invariant across the stimulus sets. To deal with more complex
scenes, objects, and visual backgrounds, the perceptual component of the model would
need to be extended. The underlying neural processes account of conjunctive visual
search (Grieben et al., 2020) is scalable, in principle. A larger issue is, however, how
neural processes organize visual search when objects are specified by category labels.
How neural network models of object recognition that are inspired by the human visual
system (Kriegeskorte, 2015; Riesenhuber & Poggio, 1999; Serre et al., 2007) may support
visual search is the focus of current research (Zoran et al., 2020).

Reference frames At the core of our theoretical perspective is the assumption that
specific reference frames enable the neural instantiation of relations. We have demonstrated
how the coordinate transforms for spatial and movement relations may emerge from
simple steerable neural maps. These methods can be easily extended to include scale
transformations based on the same log-polar maps (Lomp et al., 2017) and transformations
to intrinsic reference frames needed, for instance, for relations like between (van Hengel
et al., 2012). Interesting challenges are reference frames for relations such as near, inside,
or touching, which go beyond the relative spatial position of the center of objects and
may involve spatial scales, relations between scales, and representations of boundaries. A
classification of relations with respect to the required reference frames may be an important
first step.

Learning Understanding how relational concepts may be learned from experience
(Doumas et al., 2008) is the goal of an entire research program (Samuelson & Faubel, 2016;
Samuelson et al., 2017), to which the neural learning mechanisms of DFT may provide
an entry point (Sandamirskaya, 2014; Sandamirskaya & Storck, 2015). In the present
model, however, all synaptic connectivity was fixed. The perceptual front-end of the
model and the coordinate transformations may be shaped by early development of visual
cognition, based on neural substrate that is pre-structured for such functions. The neural
machinery for sequentially organizing cognitive operations may likewise be supported by
innate substrate and shaped by cognitive development. Given such systems, learning the
connectivity pattern for individual concepts and relations from experience may become
a well defined theoretical problem (see Tekülve & Schöner, 2020, for an account in a
related context). The broader issues of autonomous learning are relevant to all aspects
of the architecture, however: How are neural dynamic architectures tuned to ensure that
meaningful sequences of cognitive operations emerge? How are the different neural fields
tuned to be in an appropriate dynamic regime for a given task? How are instances of
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experience detected from which to learn? Clearly, autonomously learning from experience
requires neural process infrastructure that organizes learning.

Toward higher cognitive functions The notion of using steered, active coordinate
transforms to neurally implement cognitive operators may transfer to cognitive functions
that are “higher” in the sense of further removed from perception and action. For
instance, the reference task of much work on cognitive architectures (Anderson, 2007),
mental arithmetic, may be accessible to neural dynamic thinking based on the neural
representation of numerosity (Nieder & Dehaene, 2009). If local patterns of activation
represent numbers, coordinate transforming the neural representation of one number
steered by the neural representation of another number would enable establishing relations
between numbers. Arithmetic operations would be encoded in the connectivity pattern
that projects from such transformation fields. Similar ideas may be used to address logical
or comparison relations. We are currently using such ideas to study analogical mapping,
in which multiple relations between two objects are used to identify a pair with matching
relations (Gentner, 2010), all without any explicit symbol manipulation.

Sequences of relations Scaling the approach toward relational thinking and language
would require to deal with sequences of relations. The model grounds or generates one
relational phrase at a time. Even that simplest case already entails the problem of
transferring the outcome of a first operation, a grounding attempt of a target object,
to a second operation, the grounding attempt of the reference object. That transfer
occurs through the pattern of activation in the perceptual representations. Grounding
or generating sequences of phrases requires more generally that outcomes are transferred
across phrases, a form of argument passing that is not easy to achieve in neural networks. In
preliminary work we have shown how the patterns of activation in the grounded perceptual
representations may serve this function if they are sustained in the form of a mental
map (Sabinasz et al., 2020). Such an extension must also address the neural machinery
necessary for controlling sequences of cognitive operations beyond the minimal two-step
sequences we have demonstrated.

Embodiment The model uses real video streams as input, which illustrates that it
fulfils the embodiment constraint at the perceptual end. How would the model drive actual
motor behavior? DFT models have routinely addressed motor tasks (Knips et al., 2017;
Tekülve et al., 2019), which requires many more component processes, of course. Such
extensions may be useful if motor behavior could provide evidence for the postulated neural
processes of perceptual grounding. We have made a first step toward such evidence (Lins
& Schöner, 2019). In a variant of the mouse tracking paradigm (Spivey & Dale, 2006),
participants moved the mouse-controlled cursor onto the target designated by a relational
phrase. During movement, the mouse trajectory was attracted to the location of the
reference object. Given the close link between visual attention and the spatial requirements
of motor acts (Baldauf & Deubel, 2010), this finding is consistent with the model bringing
both the reference and the target object into the attentional foreground. Related work in
the visual world paradigm is broadly consistent with our postulate of sequential attentional
selection of target and reference objects (Burigo & Knoeferle, 2015).

Toward communication Perceptual grounding and generating descriptions are minimal
elements of human communication about shared environments (Tenbrink et al., 2017).
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Linking phrases to perception in both directions is a strength of our approach, as typical
models cover only either production or comprehension (Pickering & Garrod, 2013). A key
limitation of our account is, however, the salience driven attentional selection of objects
for description. In real communicative settings, speakers take into account many other
dimensions such as shared experience and the listener’s perspective (Talmy, 2017), or the
combination of gesture with language (MacNeill, 2000). The DFT framework provides
entry points for such dimensions by supporting biased competition, but a neural process
account for many of these factors is a major research challenge. In preliminary work,
we have demonstrated that the neural grounding machinery presented here may support
the building of neural maps (Kounatidou et al., 2018), perhaps a first step toward an
understanding of how shared representations may emerge.

6 Conclusion
The model we described here demonstrates in a concrete setting how the processes of
perceptual grounding and the generation of descriptions may be explained based on the
fundamental principles of neural dynamics. More generally, it demonstrates how elements
of higher cognition, including the capacity to sequentially operate on objects, to form and
reject hypotheses, and to apply local networks to global representations, may be grounded
in sensory-motor processing.
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