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Dynamic Field Theory: Foundations
GR EG OR SC HÖNER A ND A N NE R .  SC H U T T E

In Chapter 1 we introduced the notions of activa-
tion variables, u(t), and their neural dynamics, 
!u u h= − + + +inputs interaction. Activation variables 
characterize the inner state of the central nervous sys-
tem (CNS). They may be coupled to other activation 
variables through interaction. They may also receive 
inputs directly from the sensory surfaces. And they 
may provide input to other activation variables and, 
ultimately, have an impact on motor systems (in ways 
we will study in depth in Chapter 4). In Chapter 1 we 
advanced the notion that activation variables “stand 
for” something outside the CNS that is ultimately 
specified by the links of their dynamics to the sensory 
or motor surfaces, be they direct or through other 
activation variables. In this chapter we need to make 
this intuition explicit and address directly how activa-
tion variables may come to represent states of affairs 
outside the CNS.

This raises the question, of course, of the 
kind of states outside the CNS that need to be 
represented inside the CNS. We will argue that 
those states form continua that span the many 
different possible percepts, the many possible 
motor actions, and, ultimately, the many pos-
sible thoughts. Seemingly discrete states such as 
object categories or different categories of motor 
acts are often embedded in continua. Recognizing 
a letter as a category, for instance, we also per-
ceive its continuous variations such as size, ori-
entation, contrast, or any of the other manifold 
visual dimensions. In fact, this is true even in 
what is sometimes called categorical perception. 
In categorical perception, two stimuli are only 
discriminated if they fall into different catego-
ries. Different versions of a stimulus that both fall 
into the same category are not discriminated. The 
question is whether there is ever truly categorical 
perception (Pisoni, 1973). Today, most research-
ers soften the concept of categorical perception 
by requiring only that discrimination between 

stimuli be enhanced when they fall into different 
categories, not if they fall into the same category 
(Goldstone & Hendrickson, 2009). It is typically 
found that discrimination of stimuli that fall into 
the same category is never fully abolished.

In summary, dynamic field theory (DFT) is 
founded on the hypothesis that the continuous states 
of the world are primary. How the CNS breaks con-
tinua into categories then requires an account that 
must go beyond merely postulating that discrete 
activation variables stand for discrete categories. 
The critical question, therefore, is how activation 
variables represent continua. In this chapter, we will 
introduce the idea of continuous sets of activation 
variables that form activation fields. These activa-
tion fields are linked through continuous mappings 
to sensory and motor surfaces. We will apply the 
neural dynamics of activation variables to activation 
fields and will re-encounter the instabilities ana-
lyzed in Chapter 1, the detection and the selection 
instabilities. Generalizing neural dynamics to fields 
will enable us to differentiate between different 
paths through the detection instability, depending 
on whether localized or global input is the driving 
force. We will also be able to more clearly establish 
in what sense sustained activation is a mechanism 
for working memory of metric information.

A major theoretical advance that the move from 
activation variables to activation fields enables is 
a better understanding of how learning may shape 
neural representations. We will look at the sim-
plest learning mechanism within DFT, the laying 
down of a memory trace that facilitates activation 
of field locations previously activated. Through the 
memory trace, the history of activation preshapes 
fields, so that all field locations are no longer equal. 
We will discuss how this might build a bridge from 
the hypothesized fundamental continuity of neural 
representations toward the neural representation of 
categorical states.
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So this chapter is quite ambitious. It presents 
the core ideas of DFT that permeate the entire 
book. It reviews the associated conceptual commit-
ments while also trying to be pedagogical and clear. 
If the going gets rough, go to the end of the chapter. 
There we will make the ideas concrete and practical 
in a set of worked-through examples. The dynamic 
field model we will review invokes all the instabili-
ties introduced earlier as well as the memory trace 
to account for sensory-motor decision-making 
and perseverative reaching in infancy and early 
childhood.

SPAC E S
It is quite intuitive that there would be infinitely 
many different things we could potentially see. 
Think about an object, say, a bottle standing on the 
table in front of you. The bottle might vary in size, 
shape, color, and surface texture. It might be posi-
tioned at different locations on the table. If some-
one held up the bottle, its orientation relative to you, 
the observer, might vary. All these variations are, a 
priori, continuous in nature:  location, orientation, 
color, shape, texture—all may vary in a graded way. 
Visual morphing software makes such continuous 
variation directly accessible to computer graphics.

How might we formalize these continua of 
possible percepts? Let’s use a minimal setting that 
would be typical of a psychophysics experiment: a 
single spot of brightness moving on a computer 
screen. The observer perceives the moving spot 
while fixating on a location marked by a cross. 
A  continuum of instantaneous motion percepts 
is possible: The spot can move through different 

locations in different directions. This continuum 
can be described using a mathematical space that 
is spanned by coordinate axes. A  possible set of 
coordinates includes the two-dimensional loca-
tion of the spot on the retina and the direction of 
motion on the retina relative to a fixed axis, say, 
the horizontal axis (Figure 2.1). This yields a 
three-dimensional space of possible motion per-
cepts of a single spot of light. Each location in that 
space represents one possible motion percept. 
Visual object motion may vary along additional 
dimensions such as speed, rigid body rotation, 
motion in depth, and so on. There is probably no 
single best way for how to describe the set of pos-
sible motion percepts. The dimensions we need to 
include may be dictated by the questions we ask 
an observer in an experiment. We might ask an 
observer to discriminate between motions that 
differ in movement direction, or ask the observer 
to point a joystick in the direction of motion per-
ceived. In this case, motion direction is a critical 
dimension that needs to be accounted for. In a 
more complex setting, we might ask an observer 
to intercept a moving object. This probes mul-
tiple dimensions of motion perception, including 
direction but also speed and timing.

How many dimensions are needed to describe 
a real-world percept? An extreme view, taken in 
mathematical models of computer vision, is to 
sample the image by “pixel” (picture elements) and 
describe each pixel by a few coordinate axes that 
can capture, for instance, the intensity in the three 
color channels red, green, and blue. An image reso-
lution that human observers find convincing may 
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FIGURE 2.1: Left: Possible perceptual manifestations of a single moving spot of brightness, marked by a filled circle, 
moving in the direction marked by an arrow, can be described by a small number of continuous dimensions, including 
the location of the motion in the visual array (horizontal and vertical in a retinal reference frame) and the direction of 
motion. Right: For two of these dimensions, the representation of a single motion in an activation field is illustrated. The 
motion induces a single peak of positive activation located at the appropriate location in the space of possible motions, 
while all other locations in the field have negative levels of activation. Note that this activation pattern represents the 
location and the direction of motion of the spot of brightness at one moment in time. If we were to follow the spot of 
brightness as it moves on the retina, the peak would track that movement, shifting to a new retinal location at every 
moment in time.
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be as high as 1000 × 1000 pixels, which would imply 
that the image as a possible percept has about 3 mil-
lion dimensions. Now that is a questionable count. 
First of all, most variations of an individual pixel 
lead to visual noise, not to new visual percepts. The 
range of possible images created by looking at the 
world is constrained by properties of the world. For 
instance, surfaces tend to be continuous and their 
orientation in space tends to vary continuously. 
This creates ref lectance maps in which brightness 
varies continuously. In fact, it is possible to esti-
mate shape from shading based on such constraints 
(Koenderink & van Doorn, 2003). Moreover, visual 
perception is constrained by attention. Only a 
small portion of the image is in the attentional fore-
ground at any given moment in time. In fact, human 
observers may be blind to changes in nonattended 
parts of the visual array if the transients used to 
induce change are masked (Simons, 2000).

So counting the dimensions of an image might 
not be a good estimate of the dimension of the space 
of possible percepts. Although the example we used 
in Figure 2.1 is a simplified laboratory setting, pos-
sible percepts may be best captured by visual feature 
dimensions that characterize individual objects in 
the perceptual foreground. The neurophysiology 
of the visual system suggests that there is a limited 
number of cortical maps representing such visual 
features, perhaps not more than 40 to 60 (Swindale, 
2000). DFT is based on the hypothesis that neural 
representations in the brain can be captured by con-
tinua spanning a limited number of dimensions. We 
typically use coordinate systems that are consistent 
with the known cortical feature maps. This link to 
neurophysiology will be expanded on in Chapter 3.

That the set of possible voluntary limb move-
ments is similarly of modest dimensionality is, 

perhaps, more directly intuitive. Consider, for 
instance, the set of possible voluntary move-
ments of the hand that are oriented to an object 
(Figure  2.2). Such movements may vary in direc-
tion and extent, perhaps also in the amount and 
direction of mechanical resistance, or in the peak 
velocity of the movement. Neurons in motor and 
pre-motor cortex are tuned to such movement 
parameters, which span the space of possible 
movements (Georgopoulos, 1986). Each location 
in that space corresponds to one particular hand 
movement.

The visual array is a two-dimensional space 
that is an important component of the descriptions 
of both possible percepts and possible actions. This 
is obvious when one thinks of eye movements in 
which gaze is shifted toward different locations 
in the visual array. A  visual scene is captured by 
its spatial layout, typically along the two spatial 
dimensions that describe a surface such as a table-
top or the f loor on which we stand. In addition to 
their spatial location we may remember the colors 
of objects, their shape, or their orientation. If we 
lump these feature dimensions together, we can 
think of objects as being represented by a loca-
tion in an appropriate space that combines visual 
space with feature dimensions. Sets of objects 
are sets of such locations. Later we will see how 
this embedding of percepts and actions in the 
two-dimensional visual array can play a role in 
organizing higher-dimensional representations 
through binding (see Chapters  5 and 8). We can 
use the same style of thinking for more abstract 
properties of the world. For instance, an “ordinal” 
dimension can be used to characterize the spatial 
or temporal order of events (this idea will be elabo-
rated on in Chapter 14).
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FIGURE  2.2: Left: Illustration of the movement parameters’ direction and amplitude:  By varying the direction of 
end-effector motion in space, together with the movement amplitude, a set of possible targeted hand movements can be 
described. Right: Activation defined over these two dimensions represents through a single peak the presence of a move-
ment plan. The location of the peak indicates which movement amplitude and direction is planned. Activation in the 
peak is positive while elsewhere it is negative, so that only activation variables inside the peak may impact downstream 
neuronal networks that may be driving the motor action.
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AC T I VAT ION   F I E L D S
What might a neural representation of a continu-
ous space look like? Go back to Figure 2.1, which 
illustrates the three-dimensional space of the pos-
sible visual motions of a single spot of brightness. 
This space can be represented by a continuum of 
activation variables, one for each location in the 
three-dimensional space. These activation vari-
ables are labeled with an index that has continuous 
values. Mathematically, this makes them a field, a 
field of activation. This mathematical concept of a 
field is precisely analogous to how fields are used 
in physics, such as in the gravitational field, the 
electrical field, or the f low field inside a f luid or 
gas. The gravitational field, for instance, assigns 
to every location in three-dimensional Euclidian 
space a gravitational potential that can be assessed 
by observing the force exerted on a test mass. At any 
location, that force points in the direction in space 
in which the gravitational potential decreases most 
strongly, computed as the gradient of the gravita-
tional field. The link between activation fields and 
measurement or observation is similarly based on 
the spatial pattern generated in the activation field. 
This is illustrated on the right half of Figure 2.1 
for the activation field defined over the horizontal 
position and the direction of a visual motion (the 
vertical position is omitted to make the graphical 
representation practical). The field has an activa-
tion pattern with a single peak of action. Its center 
specifies the location and direction of the single 
perceived visual motion.

Not only the location of maximal activation 
but also the width of the peak is meaningful and 
can be assessed in an experiment. Psychophysical 
experiments on visual motion, for instance, can 
probe the range of activation around a particu-
lar location in the location/direction space by 
inducing an initial activation pattern through a 
first motion stimulus—say, a horizontal motion 
(an activation pattern centered on 0°). This may 
then be followed by a second stimulus that probes 
neighboring locations of the location/direction 
space, for example, by specifying motion at an 
angle of 67.5° (= 90° – 22.5°) from horizontal and 
another at an angle of 112.5° (= 90° + 22.5°) from 
horizontal. Motion perception will be typically 
selective, so that only one of the two motions is 
seen. If the 67.5° motion is preferred over the 112.5° 
motion, then we infer that the prior pattern of 
activation centered at 0° overlaps more with input 
at 67.5° than with input at 112.5°, biasing motion 
perception toward the closer angle. This was 

confirmed in experiments characterized by the 
label “motion inertia” (Anstis & Ramachandran, 
1987)  and were referred to in Chapter  1. The 
experiments show that the activation peak rep-
resenting horizontal motion at 0° must reach out 
to at least 67.5°. Paradigms of perceptual hys-
teresis provide similar signatures of the metric 
range over which previous perceptual experience, 
represented by patterns of activation, impacts 
new perceptual experience (Hock, Kelso, &  
Schöner, 1993; Hock & Schöner, 2010).

In the motor domain, behavioral signatures 
of the width of activation peaks may be observed 
through the variance of movements from trial to 
trial. In the timed movement initiation paradigm, 
participants are trained to initiate movements at 
a fixed time, paced by a metronome (Ghez et  al., 
1997). Which movement out of a range of pos-
sible movements must be performed is cued only a 
short moment before the metronome signal. This 
stimulus–response time is experimentally varied. 
When the possible movements are metrically close, 
say, closer than 60° for movement direction, then 
the distributions of movement directions across 
trials observed for short stimulus response times is 
monomodal and centered on the mean movement 
direction. When the different possible movements 
are metrically far from each other, farther than 60° 
for movement direction, then the distributions are 
multimodal, each maximum centered on one of the 
possible movement directions (Favilla, 1997). With 
increasing stimulus–response interval, the mono-
modal distributions sharpen and become centered 
on the correct, cued movement direction. In the 
multimodal distributions, one peak centered on the 
correct movement direction sharpens and grows, 
whereas the other peaks decay. The transition 
from monomodal to multimodal initial distribu-
tions of movement parameters gives an indication 
for the width of the underlying activation peaks 
in the space of movement directions (Erlhagen &  
Schöner, 2002). In fact, it is possible to directly 
observe such distributions from the neural activity 
of populations of neurons tuned to movement direc-
tion (Georgopoulos, Schwartz, & Kettner, 1986). 
The width of distributions of population activa-
tion is consistent with the estimate from the behav-
ioral data (Erlhagen, Bastian, Jancke, Riehle, &  
Schöner, 1999). This link between activation 
fields and population activity in the brain will be 
reviewed in detail in Chapter 3.

Peaks of activation are the fundamental units 
of representation in DFT. Peaks signify two things. 
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First, because the level of activation within a peak 
exceeds the threshold of the sigmoid function, the 
peak ref lects the fact that an instance has been 
created within the activation field that is now 
capable of impacting any other neural networks 
that the field projects onto. This may include 
the motor system, so that peaks ultimately drive 
behavior in DFT (exactly how they do this is the 
topic of Chapter 4). In a sense, peaks are thus “go” 
signals for whatever process is driven by the field. 
Secondly, the location of a peak represents met-
ric information along the dimensions that span 
the activation field. Through its location, a peak 
thus signifies an estimate of a perceptual state, of 
a movement parameter, or of other metric feature 
dimensions.

If perceptual information along the dimension 
of an activation field is multivalued, peaks of acti-
vation may represent different kinds of perceptual 
decisions. Figure 2.3 gives an example from the 
perception of apparent motion (Giese, 1999). When 
a point of light is first shown and then replaced by 
two points of light at different locations, one of three 
things may happen: Visual motion may be perceived 
from the first point of light in the direction that aver-
ages the directions to the two target lights (fusion). 
A  splitting visual motion may be perceived, start-
ing at the first light and ending at the two new loca-
tions (transparency). Or a single visual motion may 
be seen from the first to only one of the two new 
locations (selection). (See Kim and Wilson, 1993, 
for psychophysics of this kind.) An activation field 
representing movement direction may represent all 
three states of affairs. It may generate a single peak 
centered over the two targets (fusion). It may gen-
erate two peaks, each centered over the direction 
to one target (transparency). Or it may generate 
a single peak centered over one of the two targets 
(selection).

In Chapter  6 we will see that the number of 
peaks that can be simultaneously activated is lim-
ited by inhibitory interaction, a constraint that pro-
vides a neural account for capacity limits. So, the 
typical picture in DFT is that only a small number 
of activation peaks are present at any time.

F I E L D  DY NA M IC S
In DFT, activation fields are postulated to form 
dynamical systems. This means that an activation 
field, u(x, t), defined over dimension, x, evolves 
in time, t, as described by a differential equation. 
This equation has a form analogous to that used 

for individual activation variables in Chapter  1. It 
links the rate of change of activation, !u x t,( ), at any 
location, x, through a − ( )u x t,  term to the current 
level of activation, u(x, t). This is the stabilization 
mechanism that limits growth of activation at posi-
tive levels and decay of activation at negative levels. 
The resting level, h < 0, is assumed to be the same 
for all field locations, while localized input, s(x, t), 
may vary along the field dimension and in time. 
Thus, the first three terms in
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FIGURE  2.3: The left column illustrates three stimuli 
of apparent motion in which a spot of brightness (filled 
circle) is extinguished and two spots of brightness (open 
circles) appear elsewhere. Such displays may generate 
a percept of apparent visual motion as indicated by the 
arrows. Depending on the angular distance between 
stimulated motions, the perceived visual motion (black 
arrows) is either a single fused motion (top) in the direc-
tion of the average of the two stimulated motions (gray 
arrows), or consists of two transparent motions in the 
stimulated direction (middle), or is a single motion at one 
of the two stimulated locations (bottom). The right column 
shows the activation field defined over movement direc-
tion that represents these perceptual outcomes. Top: The 
fused motion (black arrow) is represented by a peak posi-
tioned near the average direction of the two inputs, whose 
locations are marked by gray arrows. Middle: Two motions 
perceived at the same time (transparency) are represented 
by two peaks located each over a stimulated movement 
direction. Bottom: One motion is represented by a single 
peak located at the site corresponding to its movement 
direction, while activation at the other stimulated site is 
suppressed. Adapted from Giese, 1999.
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are identical to the dynamics of individual activa-
tion variables, except that the discrete index that 
numbers the different activation variables has been 
replaced by the continuous variable, x, that spans 
the field dimension. As before, the parameter, τ, 
determines the overall timescale of the temporal 
evolution of u(x, t).

What is different for activation fields compared 
to activation variables is the mathematical format 
of neural interaction. The integral is a continuous 
version of the sum over all field sites, x′. Each site, 
x ’, contributes only to the extent to which activa-

tion at that site exceeds a threshold as mediated 
by a sigmoidal function, g u x t( ( , )).′  The threshold 
for coupling is, by convention, at u  =  0, although 
the sigmoid function may be soft enough to allow 

activations slightly below zero to also contribute. 
The strength with which supra-threshold activa-
tion at site x′ contributes to the rate of change of 
activation, !u x t( , ), at site x is a function, k x x( ),− ′  
of the distance between the two sites. Interaction 
is excitatory ( ( ) )k x x− >′ 0  for close distances, and 
inhibitory ( ( ) )k x x− <′ 0  for larger distances. This 
dependence of coupling strength on the distance 
between field sites makes the dynamics a homoge-
neous integrodifferential equation: The dynamics 
looks the same everywhere along the dimension of 
the field (see Box 2.1). With a solution, u(x, t), any 
shifted version of this solution is also a solution. 
Only localized inputs, s(x, t), that differ at different 
field locations break the homogeneity.

BOX 2.1  CONVOLUTIONS

C O AU T H O R E D  W I T H   S E B A S T I A N  S C H N E E G A N S

Activation fields are continuous in space, but when we numerically solve the integrodifferen-
tial equations of DFT, we approximate continuous space in discrete steps, just as we did for 
continuous time (Box 1.4). This box explains how the convolution of the field with the interac-
tion kernel is computed, which gives us the opportunity to help create a better understanding 
of the meaning of the convolution. We are referring to this contribution to the neural dynamics, 
Equation 2.1:

 k g u x k x x g u x t dx* , ,( )⎡⎣ ⎤⎦ ( ) = −( ) ( )( )′ ′ ′∫  (B2.1)

where k is the interaction kernel listed in Equation A2.3 and g is the sigmoidal threshold func-
tion of Equation A2.2. The interaction kernel is analogous in DFT to synaptic weights in neural 
networks. These would be the weights with which “neurons” at locations ′x  project onto the 
“neuron” at location x. The integral has a particular form. It is a function of one argument, x, 
and integrates over the product of two functions. One function depends only on the integra-
tion variable, ′x , the other depends on the difference between the outer variable, x, and the 
integration variable, ′x . Integrals with this form are called convolutions. The asterisk in the new 
notation, k g u x* ( )⎡⎣ ⎤⎦ ( ), stands for “convolve,” here, convolve the kernel, k, with the function, g(u).

The range over which the integral extends is not marked, implying that it extends over the 
entire space spanned by the variable ′x . In some cases, such as for spatial memory, this may 
be a linear space, for example, the spatial positions along a line that may, a priori, extend to 
infinity in both directions. In other cases, this may be a circular space, for example, the space of 
heading directions, in which case it extends over the complete circle. In either case, we would 
like the boundary of the space over which the activation field is defined to play no particular 
role, as, in most cases we model, nothing is known about boundary effects. Your visual field, 
for instance, is limited, but the boundaries play no particular role. Vision just diminishes near 
the boundary.

When we compute the integral of Equation B2.1 concretely, we need to commit to a par-
ticular range of integration and address the boundary issue. This is true, in particular, when  
the integral is computed numerically. The best way to make the boundaries “neutral” is to 
impose periodic boundary conditions on the activation field: Activation at the left boundary 
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of the field is equal to activation at the right boundary of the field. This is natural for circular 
space, in which there is no boundary, so the cut we make when we compute the integral should 
not matter. It is useful also for spaces at the boundaries of which activation diminishes. The 
periodic boundary condition is the most neutral one, in a sense. And if activation values are low 
near the boundary, the precise boundary condition doesn’t matter.

How do we work with periodic boundary conditions? Figure 2.4 illustrates the key idea. At 
the top of the figure is a field over a finite range, here from 0° to 180°. What is plotted is already 
the supra-threshold activation field, g u x′( )( ), as a function of ′x . The interaction kernel, plotted 
in the third row, has the same size, ranging from −90° to +90°. Now, let’s say we try to compute 
the convolution integral for a particular value, x, of the outer variable, say, x = 50°, as suggested 
in the figure. In the graphical depiction of this computation, we have to align the center of the 
interaction kernel with this point in the field. The following problem arises: The kernel extends 
on the left into portions of the field that lie outside the boundaries. And the field extends on the 
right beyond the reach of the kernel. We can solve this problem by expanding the space over 
which the supra-threshold field is defined. This is illustrated in the top two rows. We simply 
copy the left half of the field and attach that half on the right, and copy the right half of the field 
and attach it on the left. This imposes periodic boundary conditions on the center part, which 
is the true field we are trying to model. And it now makes values available to those parts of 
the kernel or of the field that reach beyond the boundaries. At the bottom of the figure are the 
matching parts of kernel and supra-threshold field plotted on top of each other. Computing the 
convolution now simply consists of multiplying these two curves with each other at each field 
location and then integrating across the shown range.

This becomes even clearer when we replace the mysterious concept of “integrating” with 
“summing” by going to a discrete numerical approximation. On the computer, we sample 

30° 60° 90° 120° 150°0°

1

0
180° Space

1

0

0.4

–0.4

0

0.8

–30° –60° –90°0°30°90° 60°

x = 50°

0.4

–0.4

0

0.8

–30° –60° –90°0°30°90° 60°

1.2

30° 60° 90° 120° 150°0°–30° 210° 240°180°–90° –60° 270°

Extended space
Interaction
kernel

Result

Supra-treshold
activation

Supra-treshold
activation

FIGURE  2.4: Top: Supra-threshold activation, g u x( ( ))′ , of a field is shown over a finite range (from 0 to 180°). 
Second from top: The field is expanded to twice that range by attaching the left half of the field on the right and the 
right half on the left, imposing periodic boundary conditions. Third from top: The kernel has the same size as the 
original field and is plotted here centered on one particular field location, x = 50°. Bottom: The matching portions 
of supra-threshold field (red line) and kernel (blue line) are plotted on top of each other. Multiplying the values of 
these two functions at every location returns them to the black line. The integral over the finite range of the function 
shown in black is the value of the convolution at the location x = 50.
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Activation peaks are inherently attractors of 
this neural dynamics. As illustrated in Figure 2.5, 
local excitatory interaction among locations 
within a peak of activation stabilizes the peak from 
decaying. If this were the only form of interaction, 
however, activation at the boundaries of a peak 
would keep rising, leading to unbounded expan-
sion of the peak. Inhibitory interaction over lon-
ger distances in the field stabilizes peaks against 
this expansion. Thus, excitatory and inhibitory 
interaction together stabilize the shape of activa-
tion peaks. Amari (1977) showed this mathemati-
cally. His and subsequent analyses help us solve the 
“inverse” dynamics problem. In the typical “for-
ward” dynamics problem we are taught in math 
courses, we find the solutions of a given equation. 
Modeling entails inverse dynamics, finding an 

equation that has the desired solutions. In DFT, 
we seek equations that have peaks of activation 
as attractor solutions. The mathematical analysis 
shows that the Amari neural dynamics is a possible 
equation that has peaks as attractors, and we adopt 
that equation as a possible mathematical formal-
ization of DFT on that basis.

Through their positive levels of activation, peaks 
signal the decision in which an instance is created 
along the underlying dimension. This decision is 
stabilized by neural interaction. Neural interaction 
does not stabilize peaks against shifts along the field 
dimension. In the absence of localized input, the 
field dynamics is homogeneous so that any shifted 
version of an activation peak is also a possible solu-
tion. We shall see later in this chapter that drift 
along the field dimension is psychophysically real. 
Localized input may limit or stop such drift.

The two contributions to neural interaction, 
excitatory and inhibitory, are related to the two 
forms of interaction discussed for discrete acti-
vation variables in Chapter  1. Local excitatory 
interaction is a generalization of the self-excitation 
studied there, while global inhibition is a general-
ization of the mutual inhibitory coupling studied 
for two activation variables. Figure 2.6 illustrates 
these analogies by showing the relationship 
between the activation fields and discrete activa-
tion variables. One may think of the discrete acti-
vation variables as representing the total activation 
within a region in the field that approximately 
covers an activation peak. In this picture we only 
keep track of locations that receive input at some 
point in a task setting. In Chapter 1, only two loca-
tions were ever stimulated, and that is why two 
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FIGURE  2.5: Left: A  sigmoid function, g(u), approaches 
zero for sufficiently negative values, and a positive con-
stant for sufficiently positive values of activation, u. Right: 
As mediated by the sigmoid function, activated regions in 
the field interact by exciting nearby locations (light gray 
arrow), stabilizing peaks from decay, and inhibiting loca-
tions farther removed (dark gray arrow), stabilizing peaks 
against diffusion.

the continuous field dimension, ′x , by discrete steps in space, x i xi = ∆ , where i n= …0 1 2, , , ,  and 
n L x= / ∆  (where we choose ∆x  such that n is an odd integer number). Here we have assumed 
that the range of ′x  is [0, L] (L = 180 in the figure). The convolution is then approximated as

 k g u x k x x g u xm
i m l

i m l

m i i* ( )⎡⎣ ⎤⎦ ( ) = −( ) ( )( )
= −

= +

∑  (B2.2)

where l = (n – 1)/2 is the half-width of the kernel. The sum extends to indices outside the original 
range of the field (e.g., for m = 0 at i = –l). But that doesn’t cause problems because we extended 
the range of the field, as shown in Figure 2.18.

Note again that to determine the interaction effects for the whole field, this computation 
has to be repeated for each point xm. In COSIVINA all of these problems have been solved 
for you, so you don’t need to worry about figuring out the indices in Equations like B2.2 
ever again!
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activation variables were sufficient. Local excit-
atory interaction summed within a region shows 
up in the neural dynamics of the activation vari-
able as self-excitation. Inhibitory interaction only 
gathers contributions from locations at which acti-
vation may become positive. For two activation 
variables, these are the two regions captured by the 
two variables, so that mutual inhibitory coupling 
of the two activation variables captures global inhi-
bition. This analogy underscores, once more, that 
local populations rather than individual neurons 
are the substrate for representation. The question 
of how a particular activation variable with a dis-
crete index may come to stand for a particular per-
ceptual or motoric state is answered by embedding 
the activation variables in activation fields. The 
discrete variables are merely samples of an under-
lying continuous metric dimension.

AT T R AC T OR S  A N D  T H E I R 
I NSTA BI L I T I E S
In Chapter  1, we discussed attractors and insta-
bilities in some detail for the neural dynamics of 
one or two activation variables. The mathematical 
concept of stability and the mechanisms of bifur-
cation are really the same for activation fields, but 
they are less intuitive and more difficult to visual-
ize. We shall look now at the two classes of attrac-
tor solutions of the dynamics of activation fields, 
the subthreshold and the self-stabilized activation 
patterns, and examine the instabilities that separate 
them. Lifting the dynamics from discrete activa-
tion variables to activation fields will provide new 

insight into the meaning of the instabilities and the 
situations in which they may arise. The exercises at 
the end of this chapter invite you to reproduce all 
instabilities discussed here, making use of an inter-
active simulator of dynamic fields.

Detection
The simplest stable state of the equation arises 
when activation is below zero and only weak inputs 
are present. In that limit case, no portion of the field 
is activated enough to return positive values from 
the sigmoid. Interaction is therefore not engaged 
and the field dynamics is now independent at each 
location, x, of the field

 τ !u x t u x t h s x t( , ) ( , ) ( , )= − + +  (2.2)

Figure 2.7 illustrates this dynamics at one loca-
tion. At its zero-crossing, !u x t,( ) = 0, lies the sta-
tionary solution,

 u x t h s x t0 , ,( ) = + ( )  (2.3)

that represents the subthreshold attractor state, 
essentially just the input, s(x, t), shifted downward 
by h < 0.  As in Chapter  1, we can read the stabil-
ity of this solution off the negative slope of the rate 
of change at the zero-crossing. Activation grows 
if it lies below, decays if it lies above this station-
ary state. If input varies over time, activation will 
thus track the subthreshold solution with a delay 
that ref lects the timescale, τ, of the field dynamics. 
(Strictly speaking, the subthreshold solution is not 
stationary then.)
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FIGURE 2.6: An activation field, u(x) (solid dark line), is stimulated by input, s(x) (solid gray line), with two local max-
ima. The field dynamics can be captured qualitatively by keeping track of activation only within the two regions (high-
lighted by gray shading) that receive input. Total activation in each region is described by an activation variable, u1 and 
u2, respectively; total input into each region by input strengths, s1 and s2, respectively. In this approximation, local excit-
atory interaction within each region becomes self-excitation of the activation variables, while global inhibitory interac-
tion becomes mutual inhibition between the two activation variables.
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Interaction is engaged as soon as activation 
approaches zero from below anywhere along the 
field dimension. Let’s look at a location where 
input drives activation toward the threshold. We 
approximate the input pattern, s(x, t), as a Gaussian 
centered on that location. Figure 2.8 traces 
the attractors of the neural dynamics when the 
strength of that localized input pattern increases. 
We start out with weak input, at which the only sta-
ble stationary state is the subthreshold attractor, a 
copy of the input pattern shifted down by the rest-
ing level, as discussed earlier. For a single Gaussian 
input function, this attractor is a subthreshold 
“hill” of activation. As input strength increases, 
activation in that attractor reaches threshold from 
below, engaging excitatory interaction, which pulls 
up the activation within the hill. In a recurrent 
cycle, increasing activation levels within the hill 
engage local excitatory interaction more strongly, 
which in turn increases activation levels. Through 
this growth cycle the subthreshold hill of activa-
tion becomes unstable in what we call the detection 
instability.

What solution does the activation field con-
verge to once the subthreshold state has become 
unstable? Inhibitory interaction eventually limits 
the growth of the activated region, leading to a new 
balance of excitatory and inhibitory interaction. 
This is the self-stabilized peak attractor that is fun-
damental to DFT. Within the peak, the balance of 
excitation and inhibition leads to a positive level 
of activation, so that this attractor is an instance of 
the dimension represented by the field in the sense 
discussed earlier. Outside the peak, the inhibitory 
inf luence from the peak is unopposed by excitatory 
interaction, leading to a negative level of activation 
below the resting level.

The possibility of a self-excited peak does 
not appear just as the subthreshold hill becomes 
unstable. This attractor has been around at levels 
of localized input below the detection instability. 
There is a range of input levels within which both 
the subthreshold hill and the self-stabilized peak 
of activation are stable. For input levels within 
this range, the neural dynamics is bistable. Only 
one of the two stable states can be realized at any 
one time. Which state the system is in depends on 
the history of activation. In the previous narra-
tive, the neural dynamics starts in the subthresh-
old hill state and input strength is then increased. 

u(x)

h

u(x)

h+s (x,t)

s(x,t) u0(x,t)

FIGURE  2.7: The dynamics of activation, u(x), at a single 
field location, x, is illustrated. This dynamics is independent 
of activation at other locations as long as interaction is not 
engaged. That is the case around the subthreshold attractor, 
u x t h s x t0 0, ,( ) = + ( ) < , that emerges as the zero-crossing of 
the rate of change, !u x( ). The subthreshold attractor becomes 
unstable and disappears if input s(x, t) becomes sufficiently 
strong so that it pushes the subthreshold attractor toward 
zero from below and engages interaction.
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FIGURE 2.8: For a localized input pattern (gray solid line) 
that increases in strength (from top to bottom), the attrac-
tor states of a dynamic activation field are shown. Top: At 
low input strength, the only attractor is the subthreshold 
“hill” of activation (black solid line) that mirrors input 
shifted down by the negative resting level of the field. 
Second from top: At a larger input level, the subthreshold 
hill of activation continues to be stable but coexists with 
a self-excited peak of activation (black dashed line). This 
self-excited peak is close to the reverse detection instabil-
ity: If input were weakened a little, the peak would decay 
and the system would return from this bistable regime to 
the monostable regime illustrated above it. Second from 
bottom: For stronger input, the subthreshold hill of acti-
vation (black dashed line) becomes unstable at detection 
instability, the upper limit of the bistable regime. Bottom: 
At even stronger input, the self-excited peak of activa-
tion is the only remaining attractor. The system is again 
monostable.
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The activation pattern tracks the change of input 
strength within the subthreshold solution as indi-
cated by Equation 2.3. Only when the subthreshold 
hill becomes unstable at the detection instability 
does the activation pattern switch to the alternate 
attractor, the self-stabilized peak of activation. 
Conversely, if the system starts out in an activa-
tion pattern near the self-stabilized peak, it con-
verges to that attractor and stays in that attractor 
as input changes. This may happen, for instance, if 
the system has been pushed through the detection 
instability by a strong input which is then reduced 
in strength. Once the system has switched to the 
self-stabilized peak, it persists in this state even as 
input strength is reduced back below the critical 
level of the detection instability.

As long as there is enough positive activation 
within the peak to keep the peak af loat through 
local excitatory interaction within the peak, the sta-
bilization mechanism of the peak attractor remains 
viable. When the level of localized input falls below 
a critical level, this mechanism begins to fail. The 
reverse detection instability occurs, delimiting the 
range of bistability on the side of low levels of input 
(Figure 2.8).

In summary, when the strength of localized 
input varies, the dynamics of activation fields goes 
through three regimes:  monostable with the sub-
threshold hill of activation as sole attractor at low 
levels of input; bistable with both subthreshold hill 
and self-stabilized peak of activation as attractors at 
intermediate levels of input strength; and monosta-
ble with the self-stabilized peak of activation as sole 
attractor at high levels of input strength. Within 
the bistable region, which attractor is observed 
depends on the history of activation and, thus, 
on the history of input strength. Increasing input 
strength leads to persistence of the subthreshold 
hill of activation up to the detection instability. 
Decreasing input strength leads to the persistence 
of the self-stabilized peak of activation down to the 
reverse detection instability. This is the same hys-
teresis discussed in Chapter  1, in the approxima-
tion where we described the dynamics around the 
stimulated location of the field by a single activa-
tion variable with self-excitatory interaction (see 
Figure 1.17).

The name we chose, detection instability, sug-
gests that the switch from the subthreshold hill to 
a self-excited peak of activation could be viewed 
as a detection decision. The peak indicates that an 
instance of whatever the field represents has been 

created and is now capable of affecting down-
stream parts of the neural dynamics because the 
activation levels are sufficient to drive sigmoidal 
coupling functions above zero. The bistability of 
the dynamics just below the detection instabil-
ity implies that the detection decision remains 
stable even if the input that induced it f luctu-
ates in strength. This is a significant feature of 
decision-making in neural dynamics that may be 
contrasted with the notion of threshold piercing 
common in neural network models. According to 
this notion, a detection is registered whenever an 
activation variable exceeds a particular detection 
threshold (Schall, 2004). When this threshold is 
first crossed, f luctuations in the input signal may 
often lead to activation falling below the thresh-
old, again in close temporal vicinity to the first 
detection. Crossing of the threshold is thus not 
a stable mechanism for making detection deci-
sions when these are linked to f luctuating sensory 
signals. The detection instability, in contrast, 
makes it possible to make stable detection deci-
sions in the face of time-varying and f luctuating 
sensory input.

Another conceptual implication of the detec-
tion instability has to do with continuous versus 
discrete time. As an organism moves through an 
environment, sensory inputs typically vary contin-
uously over time. Out of such time-continuous sen-
sory data, the detection instability creates an event 
at a discrete time, the moment when the rapid tran-
sition from a subthreshold hill to a self-stabilized 
peak signifies a decision. Embedded in a complete 
sensory-motor system, this event may ultimately 
trigger motor actions. The discrete moments in 
time at which such actions are initiated thus emerge 
autonomously from the time-continuous neural 
dynamics.

After the discrete decision event, the self-  
stabilized peak remains coupled to continuously 
varying sensory input, however. One way this can 
be seen comes from the fact that the peak is centered 
on the localized input, as analyzed mathematically 
by Amari (1977). The position of the peak may 
be viewed as an estimate of the location at which 
localized input is maximal. When the input pattern 
moves, the peak tracks the moving input. The peak 
will typically lag behind the moving input, just like 
any low-pass filter does, and for input that moves too 
fast it may fail to track (the peak then decays at the 
old location and a new peak is induced at the new 
location). But within these constraints, the peak 
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stays connected to time-varying input that is suffi-
ciently strong.

Working Memory
The reverse detection instability does not always 
occur; there are conditions under which even at 
zero strength of localized input the self-excited peak 
attractor persists. This may happen, for instance, for 
sufficiently large resting levels, h < 0, which alone can 
be sufficient to keep activation in the self-excitatory 
loop that sustains the peak. At a given resting level, 
this may happen when the strength of local excit-
atory interaction is sufficiently large. Under these 
conditions, whenever a peak has somehow been 
induced, the peak persists, sustained entirely by 
interaction, in the absence of any localized external 
input into the field.

To see the functional significance of self-  
sustained peaks consider a scenario in which a 
peak is first induced by a detection instability at a 
location, x0, at which localized input was maximal. 
When the localized input is removed, the peak per-
sists and thus effectively is a memory of the previous 
detection decision (Figure 2.9). Its positive level of 
activation represents a memory of the fact that sig-
nificant input to this field has existed at some point. 
Its location represents a memory of the location of 
that previous input. Sustained peaks of activation of 
this nature are the commonly accepted image of how 
working memory comes about in neural populations, 
consistent with neurophysiological evidence for sus-
tained firing of neurons in working memory tasks 
(Fuster, 2005; Fuster & Alexander, 1971). This will 

be discussed at length in Chapter  6, where we will 
also address capacity limits and how information is 
brought into and out of working memory.

Sustained peaks of activation are really the same 
attractors as self-stabilized peaks of activation. We 
speak of sustained peaks after the localized input 
has been removed. Whether or not a peak is sus-
tained in the absence of input depends on dynamic 
parameters. Figure 2.9 illustrates one form of the 
memory instability, a transition in dynamic regime 
in the absence of localized input. For a sufficiently 
negative resting level, h (left column in the fig-
ure), the neural dynamics is monostable with the 
subthreshold attractor in the absence of localized 
input. At higher (but still negative) resting level, h 
(right column in the figure), the neural dynamics is 
bistable in the absence of localized input. Both the 
subthreshold state and sustained peak are attrac-
tors of the field dynamics. The sustained peak will 
be observed when the dynamics starts out with a 
self-excited peak state as shown in the figure. In this 
bistable regime, the sustained peak is actually a fam-
ily of infinitely many possible attractors, which are 
marginally stable because they can be shifted along 
the field dimension. Drift along the marginally sta-
ble direction is possible in the presence of noise. Any 
small inhomogeneity breaks the marginal stability 
and leads to the emergence of a single attractor that 
is localized over any local maximum of input. The 
drift and breaking of marginal stability are psycho-
physically real and can be observed in human work-
ing memory for metric information as discussed 
later in this chapter. (Strictly speaking, marginally 
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FIGURE  2.9: The memory instability is illustrated by contrasting a condition in which peaks of activation are not 
sustained when localized input is removed (left) with a situation in which peaks are sustained (right). In each case, a 
localized input (gray solid line) induces a self-stabilized peak (top) and is then removed (bottom). When peaks are not 
sustained, the system switches to subthreshold attractor upon removal of localized input (bottom left). When peaks are 
sustained, the self-excited peak becomes a self-sustained peak (bottom right). The resting level, h < 0, is more negative on 
the left than on the right. Increasing resting level may push the system through the memory instability into the regime 
of sustained peaks.
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stable sustained peaks are not attractors, but it is 
common practice to still refer to them this way, as 
they resist all perturbations except lateral shift.).

Selection
Now let’s look at slightly more complex input pat-
terns, minimally an input with two local maxima 

(Figure 2.10). Generically, a self-stabilized peak 
arises at only one of the two locations. Activation 
at the other location is suppressed by inhibitory 
interaction that comes from the activated peak. 
The location with suppressed activation cannot 
conversely inhibit the activated peak because its 
activation is insufficient to return positive values 
of the sigmoid. The timing of activation controls 
which location “wins” this selective competition. 
A  location at which activation rises earlier reaches 
supra-threshold levels of activation first and begins 
to inhibit activation at other locations. Locations 
at which activation arises later are inhibited before 
they can reach supra-threshold levels. The tempo-
ral advantage of a location may arise because inputs 
arrive asynchronously. This is the case, for instance, 
if one location was previously stimulated and prior 
activation from that previous stimulation biases the 
selection when a new stimulus arrives. The compet-
itive advantage of a location may also arise because 
inputs of different strengths impinge on different 
locations. The input function, s(x, t), may favor one 
location over another as suggested in Figure 2.10. 
As a result, activation at the location that receives 
stronger input rises faster and reaches threshold 
earlier, engaging interaction and suppressing the 
further increase of activation at competing loca-
tions. In the models discussed so far, we have not 
specified exactly how input profiles arrive. In neu-
ral networks, the pattern of synaptic connectivity 
from a sensory surface to the network determines 
how sensitively a neuron responds to a particular 
input. Input patterns that best match the pattern of 
synaptic connectivity provide the strongest input 
to a given neuron (Haykin, 2008). This core mech-
anism of neural networks is lumped into the input 
function, s(x, t), in DFT. “Good match” of an input 
pattern is thus captured by large levels of input for 
a particular location, leading to early rise of activa-
tion at that location and a competitive advantage 
of that location. The selection mechanism of DFT 
is thus a possible process implementation of the 
connectionist conception in which the neuron is 
selected that responds maximally because its con-
nectivity best matches an input pattern.

The determination of selection by temporal 
order implies that selection choices are stabilized 
when input varies. Once a self-excited peak has 
been erected over a particular local maximum 
of input, inhibitory interaction from this peak 
to all other locations prevents other peaks from 
arising over other stimulated locations even if 
input to those locations becomes stronger than 
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FIGURE 2.10: Input functions (solid gray lines) and stable 
activation patterns (solid black lines) are shown as func-
tions of the field dimension in three situations. Top: Input 
is bimodal, with identical maximal level of input at two 
locations. An activation peak centered on the left mode 
is a stable state that may have emerged because activation 
was initially higher on the left from the leftmost mode 
being presented first, or by chance from f luctuations in 
input. Middle: When input to the rightmost location is 
much stronger than to the leftmost location, the peak cen-
tered on the left location is no longer stable and the system 
switches in selection instability to a peak centered on the 
rightmost location. Bottom: If input is then returned to 
symmetric levels for both modes, the peak centered on the 
right mode remains stable, an instance of the stabilization 
of selection decisions.
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input to the selected location. This can be seen in 
Figure  2.10:  Activation is suppressed at the alter-
nate field location even though input to either 
location is of the same strength. The stabilization 
of selection decisions makes it possible to continu-
ously link an activation field to sensory input while 
at the same time preventing the selection decisions 
from f luctuating each time the location of maximal 
input varies. Contrast this to an algorithm, which 
would select at every moment in time the location 
of maximal activation. That location could vary 
from moment to moment across multiple stimu-
lated locations. In a sense, stable selection is a 
form of robust estimation, in that components of 
input that are metrically close to the location of the 
selected peak contribute to the estimate that peak 
represents, while components that are metrically 
far from the selected peak are suppressed.

The stabilization of selection decisions has 
limits. When input strengths are sufficiently dif-
ferent, an initially established selection decision 
may be reversed. In the top panel of Figure 2.10, 
the leftmost peak has been selected in some way. 
When the rightmost input becomes much larger 
than the input to the leftmost peak (in the middle 
panel), this selection decision can be overturned. 
A peak at the rightmost location emerges and sup-
presses by inhibition the peak at the leftmost loca-
tion. This switch involves an instability, which we 
call the selection instability. Just as for detection, 
this instability occurs at the boundary of a bistable 
region in which two attractors coexist: A peak cen-
tered on either input is stable. Beyond the selection 
instability, the system is monostable; only the peak 
centered over the more strongly stimulated loca-
tion remains stable.

This capacity to select a location from a mul-
timodal input pattern generalizes beyond just 
two locations. Whether or not selection leads to a 
single self-excited peak or whether multiple peaks 
can coexist depends on the interaction kernel—in 
particular, its inhibitory portion. When inhibition 
levels off at larger distances, then peaks that are 
sufficiently far apart from each other can coexist. 
Generally, as more peaks are induced, the total 
amount of inhibition projected onto other locations 
increases. This limits the number of peaks that can 
be stabilized, providing an account for capacity lim-
its of working memory, as discussed in Chapter 6.

There are additional instabilities hidden here. 
Transitions may occur from a dynamic regime in 
which multiple peaks can be stable to a regime in 

which a single peak is selected. Transitions may 
occur between dynamic regimes in which the num-
ber of peaks that can coexist changes. In each case, 
these instabilities can be brought about by changes 
in the strength and range of contributions to inter-
action within fields, but may also depend on the 
metric and strength of inputs and on the resting 
level. In principle, the number of such instabilities 
is unlimited. Another kind of transition occurs 
within the selective regime. For instance, when the 
neural dynamics is bistable, with a peak positioned 
over either of two local maxima of input, a transi-
tion may occur to a monostable regime when the 
two locations move close to each other. This results 
in a single peak positioned over an averaged loca-
tion (Kopecz & Schöner, 1995).

One final instability needs to be addressed 
here, a variant of the detection instability linked 
also to selection. This instability has broad impli-
cations for DFT in particular, for its link to learn-
ing, which will be discussed next. Consider again 
a situation with a few localized inputs that are 
now quite weak. We might think of these inputs 
as inhomogeneities of the field that may arise 
through sensory input from the layout of the scene 
or from learning processes that give some field 
locations higher resting levels than others (see 
later discussion in this chapter). As illustrated in 
Figure 2.11, these small inhomogeneities preshape 
the field in the subthreshold state. The detection 
instability may now amplify this preshape into a 
full, self-stabilized peak. The input that induces 
the detection instability may be homogeneous, 
that is, contain no specific information about the 
location at which a peak is to be generated. What 
happens is that such a homogeneous boost to the 
activation level of the field first drives the field 
through the threshold at one of the locations that 
are a little more activated than the rest of the field. 
Interaction engages and brings about a detection 
instability around that location. If inhibition is 
global, the emergent peak will drive selection so 
that other, slightly less preactivated locations can-
not generate peaks. Even if the boost is present for 
a brief moment only, the bistability of subthresh-
old and self-stabilized peaks below the detection 
instability helps stabilize the full peak once it has 
been activated. So the boost-driven detection 
instability amplifies small inhomogeneities in the 
field into complete self-excited peaks that repre-
sent decisions and impact downstream neural 
dynamics. Conversely, the boost-driven detection 
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instability alleviates the demands on sensory input 
and on learning processes: These processes need 
to deliver only small, graded inhomogeneities that 
can then be amplified into full decisions without 
further specific information. This may help boot-
strap fields from the sensory-motor domain in 
which inputs tend to be strong and stable to the 
cognitive domain in which inputs are internally 
generated and may be transient and weak. Using 
“boosts” to activate items is a topic addressed 
throughout the book, culminating in Chapter 14, 
where we will leave the sensory-motor domain far-
thest behind.

M E M ORY   T R AC E
The neural dynamics discussed so far take place 
on a timescale at which inputs vary and decisions 
are made. Sustained peaks of activation, however, 
transform events on that fast timescale to longer 
timescales at which working memory resides. As 
working memory, sustained peaks are susceptible 
to capacity limits and interference which limit the 
persistence of these activation states when inputs 
vary in time. Interference arises through the selec-
tion instability when new sensory information 
competes with the existing sustained peaks.

A more general neural dynamics at the longer 
timescale of memory is a dynamics of learning. 
The simplest form of such learning is, perhaps, 
habit formation, as postulated by William James 
(1899). Habits are formed when particular behav-
iors are experienced often enough. They make it 
easier to reproduce the same behaviors. While the 

modern understanding of habit formation is both 
more complex and more specific (Yin & Knowlton, 
2006), the Jamesian metaphor can be translated 
into DFT as an elementary and generic form of 
learning:  Any instance of neural representation, 
a self-excited peak of activation, leaves a memory 
trace that facilitates the re-emergence of the same 
activation peak in the future (Erlhagen & Schöner, 
2002). Figure 2.12 illustrates the mechanism: For 
a given activation field, the memory trace is a sec-
ond layer of dynamics that evolves on the slower 
timescale of learning. Any supra-threshold acti-
vation in the field provides excitatory input into 
the memory trace. Locations at which activation 
is above threshold thus grow a memory trace. As 
the memory trace at an activated location grows, 
it decays at all other locations where there is cur-
rently no supra-threshold activation. In the absence 
of any supra-threshold activation, however, the 
memory trace remains unchanged, neither grow-
ing nor decaying. This form of a dynamic memory 
trace generates a representation of the history of 
supra-threshold activation in the field. The mem-
ory trace, in turn, provides weak excitatory input 
into the activation fields. This is how the memory 
trace facilitates peak formation at the locations 
where peaks have previously been generated.

A mathematical formalization of the memory 
trace invokes a second layer of dynamics for a field 
of memory trace levels, u x tmem ,( ):

τmem mem mem!u x t u x t g u x t, , ,( ) = − ( )+ ( )( )  (2.4)
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Dimension
Activation
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FIGURE 2.11: Top: An activation field is preshaped at three locations, so the subthreshold attractor has small hills of 
activation there. Middle: An input that is constant across the field boosts the activation pattern, pushing activation 
toward zero from below, here very close to the detection instability. Bottom: The field has gone through the detection 
instability, in which the subthreshold attractor has vanished, and has activated a self-stabilized peak localized over one 
of the three preactivated regions.
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that evolves on the slower timescale, τ τmem ≫ .  
The memory trace couples to the field dynamics 
according to

 

τ !u x t u x t
h s x t c u x t

k x x g u x t

, ,
, ,

,

( ) = − ( )
+ + ( )+ ( )
+ −( ) ( )( )′ ′∫

mem mem

ddx′
 

(2.5)

with strength, cmem. The memory trace does not  
evolve (right-hand side of Equation 2.4 set to 
zero) when no location in the activation has 
supra-threshold levels of activation. More complex 
learning dynamics may have a faster timescale for the 
building of a memory trace than for its decay.

Erlhagen and Schöner (2002) showed how the 
dynamics of the memory trace generates a repre-
sentation of the probability of events. Consider a 
two-choice motor task in which the frequency with 
which each choice occurs varies across different 
conditions. Response times covary with the prob-
ability of each choice according to the Hyman law 

(Hyman, 1953): Response times are shorter for the 
more frequent choice. In their dynamic field model 
of the task, Erlhagen and Schöner represented the 
movement choices as values of a movement param-
eter encoded in an activation field. The imperative 
stimulus specifies which choice to select and also 
serves as the “go” signal, authorizing the participant 
to respond. That stimulus was modeled as local-
ized input to that field. This input drives the field 
through the detection instability, inducing a peak 
at the location that encodes the cued movement 
parameter value. Over time, peaks arise at the two 
locations, as illustrated in Figure  2.12. The prob-
ability of each choice determines the frequency 
with which the peaks occur. The memory trace 
at the two locations representing the two move-
ments converges across trials to levels that ref lect 
the frequency of each choice, a higher level being 
for the more frequent movement. These levels feed 
into the activation field, preactivating the field at 
the two locations. On any given trial, the impera-
tive stimulus encounters, therefore, different 
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FIGURE  2.12: Evolution over time of an activation field (top) and its memory trace (bottom). The field receives 
time-varying input at two locations that induces a self-stabilized peak at these locations at different moments in time, 
interspersed with time intervals during which activation is below threshold everywhere along the field dimension. 
Supra-threshold activation drives the memory trace up at the matching location, for example, on the left for the first 10 
seconds. At competing locations, the memory trace decays, for example, on the left around 15 seconds, as the trace grows 
on the right. In the absence of supra-threshold activation, the memory trace remains unchanged, for example, between 8 
and 12 seconds and again between 18 and 20 seconds.
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initial activation levels. The more probable choice 
starts from a higher initial level of activation and 
thus reaches threshold earlier, leading to shorter 
response times. A  detailed mathematical analysis 
predicts the Hyman law, in which response times 
increase with the logarithm of choice probability. 
(The logarithm comes from the exponential time 
course of activation as it relaxes to the attractor. 
Inverting the exponential to compute the time at 
which threshold is reached leads to a logarithmic 
dependence on initial activation levels. See the 
appendix in Erlhagen and Schöner, 2002, for a der-
ivation). The memory trace could thus be viewed 
as a process of how neural representations build 
probabilistic priors from their history of activation, 
as postulated by adherents to Bayesian thinking in 
cognition.

The history of activation may, more dramati-
cally, lead to the emergence of categories. In Figure 
2.12 we suggested that activation peaks occur 
repeatedly in different, non-overlapping loca-
tions. The memory trace thus consists of distinct 
patches that preshape the activation field in dis-
tinct locations. We have already argued that the 
boost-driven detection instability may amplify 
such preshaping into full-blown, self-stabilized 
peaks. Figure 2.13 illustrates that this may lead to 
categorical responding, so that the memory trace 
becomes a mechanism for category formation. 
In the figure, the field is preshaped by a memory 

trace with subthreshold hills at two locations. 
The imperative stimulus contains both a boost (a 
homogeneous input to the entire field) and a small, 
localized input that overlaps with one of the two 
preactivated locations. The localized input is suf-
ficient to bias the field toward selecting the loca-
tion with which this input overlaps instead of the 
alternative location, but is not sufficient to drive 
peak formation and is weaker than input from 
the memory trace. As a result, the field generates 
a self-stabilized peak positioned over the location 
preactivated by the memory trace, rather than the 
location specified by the localized input. Were we 
to vary the precise location of the localized input, 
the location of the self-stabilized peak would 
remain largely invariant, dictated by the pattern 
of preshaping. Only when the cue shifts enough 
to now bias the field toward selection of the alter-
nate choice does the self-stabilized peak shift. In 
this sense, the field responds categorically to the 
imperative stimulus, the categories being the dis-
tinct locations at which the memory trace has been 
built up, preshaping the activation field.

The memory trace is an unsupervised form 
of learning, analogous to the Hebbian principle, 
in which the activation patterns experienced in a 
neural network change the network’s functionality. 
Unlike the Hebbian rule, the memory trace is not 
based on correlation but only on activation itself. It 
could be viewed as a first-order form of facilitation 
that drives “bias” units of activation variables, while 
the Hebbian rule is a second-order form of facilita-
tion that drives connections between inputs and 
activation variables. Continuous-time versions of 
Hebbian learning rules analogous to the memory 
trace used here have been proposed from the ear-
liest days of neural network modeling (Grossberg, 
1970). In Chapter  14 we will unify Hebbian and 
memory-trace learning through a formally analo-
gous dynamics. Learning is covered extensively in 
Part 3 of this book.

I L LUST R AT ION:   DY NA M IC 
F I E L D  M ODE L  OF 
P E R SE V E R AT I V E  R E AC H I NG
To illustrate how dynamic fields and the associ-
ated memory trace can be used to understand 
elementary forms of embodied cognition, we 
take you now through an exemplary model, the 
DFT account for perseverative reaching in the 
A-not-B task. This example is particularly attrac-
tive, because it happens to involve all four basic 
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FIGURE  2.13: Categorical responding based on the 
memory trace:  A  field is preshaped (dashed line) by a 
memory trace at two locations at which peaks of activa-
tion have been frequently encountered. Other regions of 
the field are at resting level. When a weak localized input 
is applied jointly with a boost to the field (gray solid line), 
a self-stabilized peak (black solid line) is generated at the 
preactivated location that best overlaps with the small, 
localized input. Elsewhere, the field is suppressed below 
resting level, including at the precise location of the small, 
localized input.
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instabilities—detection, selection, memory, and 
boost-driven detection—as well as the dynamics of 
the memory trace.

The A-not-B task was first developed by Piaget 
as a measure of infants’ understanding of object 
permanence (Piaget, 1954). In the canonical task, 
infants watch as an experimenter hides a toy in one 
of two wells in the top of a box. After a delay, the 
experimenter pushes the box forward and allows 
the infant to search for the toy. In the first couple 
of “A” trials, the toy is hidden in one well, the “A” 
location, and most infants successfully reach for 
it. Then the experimenter switches to a “B” trial, 
hiding the toy in the other well at the “B” location. 
Young infants who make the A-not-B error reach to 
the A  location on the B trials, despite having just 
seen the toy hidden at B. This only happens when 
a delay of a few seconds is imposed between hid-
ing the toy and enabling the infant to reach for it. 
Around 1 year of age infants stop making the error 
and search correctly at B on the B trials.

Smith, Thelen, Titzer, and McLin (1999) devel-
oped a variant of the A not B task in which, instead 
of hiding a toy, they simply waved a lid, put it down, 
and allowed the infant to reach. Infants typically 
reach for one of the lids, lift it up, and sometimes 
put it into their mouths. In this version of the task 
there is no hidden toy. This toyless version of the 

task is thus simply about how infants decide where 
to reach when there are two possible targets that 
afford reaching and grasping.

Thelen, Schöner, Scheier, and Smith (2001) 
proposed a dynamic field model of the A-not-B 
task. The motor planning field represents the 
possible reaching directions and is governed by 
Equation 2.1, with four sources of input illustrated 
in Figure 2.14. The evolution of the motor plan-
ning field over the course of an A trial is illustrated 
in Figure 2.15, together with the time courses of 
three of the sources of input. Task input has two 
modes, each stimulating movement directions ori-
ented toward the two locations of the two lids or 
objects. The specific input is centered on the move-
ment direction toward the cued location and is only 
transiently presented while the cuing occurs. The 
memory trace ref lects the history of activation of 
the field and preactivates the movement direction 
of earlier reaches. These inputs are integrated over 
time in the motor planning field. At the start of the 
trial, before the cue is provided, only task input and 
input from the memory trace are present, together 
not strong enough to generate a self-stabilizing 
peak, so that the field remains in the subthreshold 
state. When specific input arrives, it pushes the field 
through a detection instability. The field generates 
a peak at the cued location in the motor planning 
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FIGURE 2.14: The A-not-B task entails a baby reaching for one of two objects (here, brown lids) presented on a movable 
box. The motor plan is represented by an activation field (green) defined over movement direction. A self-stabilized 
peak, here shown at the A location, drives reaching. Four sources of input to the field are sketched. Specific input arises 
(red) when attention is drawn to one location, for instance, by waving the object before setting it down on the box (here, 
at the A location). Task input (violet) ref lects the visual layout of the scene, in which the two objects provide input at their 
respective locations. The memory trace (gray) preactivates field locations at which peaks have previously been induced 
(here, the A location). The boost (blue) broadly excites all field sites as soon as the box is pushed into the reaching range 
of the baby.
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field. In the model of the young infants who make 
perseverative errors, we postulate that interactions 
in the field are not strong enough to sustain the 
peak after the specific input ceases at the end of the 
cueing action. Thus during the delay, the field goes 
through a reverse detection instability, the peak 
decays, and the field returns to the subthreshold 
solution. At the end of the delay, the box is pushed 
into the reaching space of the infant. We model 
this by supplying an additive, homogeneous boost 
to the entire field (Schöner & Dineva, 2007). This 
moves the field through a boost-driven detection 
instability, and a peak is generated at the location 
with the most preactivation, the A location. In other 
words, the field makes the decision to reach to A.

The first B trial for the model of young infants’ 
behavior is shown in Figure 2.16. At the start of the 

trial, the memory trace and the task input preshape 
the field such that there are two subthreshold hills 
of activation, one centered over each hiding loca-
tion. The peak at the A location, however, is stron-
ger due to the input from the memory trace that has 
built up over the A trials. When the specific input 
stimulates the B location, a self-excited peak is built 
there, which again decays once specific input ends. 
When the boost is provided at the end of the delay, 
the field again generates a peak at the A  location, 
at which preactivation is highest. The model thus 
makes the A-not-B error.

Thelen and colleagues (2001) modeled devel-
opment by postulating that older infants had higher 
resting levels of the motor planning field. A higher 
resting level (h in Equation 2.1) means that activa-
tion can more easily reach the threshold level of the 

FIGURE 2.15: Time courses of inputs and activation field of the model of perseverative reaching. This is a simulation for 
an A trial that models the behavior of young infants. The large frame shows the activation field defined over movement 
direction (horizontal axis) evolving over time (from front to back). Task input (small panel on top left) and input from 
the memory trace (small panel bottom left) preshape the field at A (left) and B (right) locations. Transient-specific input 
(small panel middle left) induces a peak early in the trial (peak on the left in front), which decays again after specific 
input has been removed. The homogeneous boost supplied late in the trial pushes activation up broadly. This induces 
detection instability and a peak at the A location re-emerges.



FIGURE 2.16: Time courses of the inputs and activation field of model of perseverative reaching as in Figure 2.15, but 
now for a B trial of the “young” model.

FIGURE 2.17: Time courses of the inputs and activation field of model of perseverative reaching as in Figure 2.15, but 
now for a B trial of the “old” model.



FIGURE 2.18: Time courses of the inputs and activation field of model of the sandbox version of the A-not-B task, using 
the same conventions as in Figure 2.15. Through the absence of task input in the sandbox (small panel top left in both 
parts of the figure), the peak is not locked in place. Top: A and B locations relatively close to each other. Bottom: A and 
B locations farther removed form each other. Note that the memory trace is a little broader in the top portion of the fig-
ure: the drifting peak leaves a broader memory trace.
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sigmoid and interaction can be engaged more eas-
ily. The shift to higher resting level is thus a shift 
to stronger interaction and may push the system 
through the memory instability, beyond which sus-
tained peaks of activation in the absence of local-
ized input become possible. Figure 2.17 shows the 
first B trial for such an “older” model. At the start of 
the trial, task input and memory trace preshape the 
field as before. Specific input at B induces a peak at 
B through the detection instability. When specific 
input ends, however, a sustained peak remains at 
the B location, as the system is now in the regime 
that enables working memory. When the boost 
is supplied at the end of the delay, the peak at B is 
further strengthened and a correct reach to B is 
implied.

This model has been used to make several pre-
dictions that have been tested empirically. One pre-
diction is that spontaneous errors, in which infants 
reach to B on an A trial, will inf luence whether or 
not the infant makes the A-not-B error (Schöner & 
Dineva, 2007). This prediction probes a core prop-
erty of DFT. The dynamic field model provides a 
process account for making the decision to reach to 
either A or B. A macroscopic neural state is formed 
when that decision occurs, a peak positioned over 
either location. This macroscopic neural event 
leaves a trace—literally, the memory trace—which 
then in turn may impact future decisions. Thus, in 
the model, noise may induce a peak to form at the 
B location rather than the A location on an A trial, 
inducing a spontaneous error (Dineva, 2005). 
That peak lays down a memory trace at the B loca-
tion. This makes it more likely that the spontane-
ous error will be repeated on later A  trials, and it 
reduces the probability that the infant will make 
the A-not-B error. On the first B trial, both A and B 
locations have some preactivation from the respec-
tive memory traces there, so that the boost does not 
necessarily induce a peak at A.

This is in contrast to many connectionist mod-
els in which the selection of one out of multiple 
possible choices is often assumed to occur in a 
“read-out” process. For instance, an alternative con-
nectionist model of the A-not-B error (Munakata, 
McClelland, Johnson, & Siegler, 1997) features two 
neurons that represent the two choices: one neuron 
standing for reaches to A, the other for reaches to 
B.  The activation levels of the two neurons at the 
end of the delay are then interpreted as the prob-
abilities with which either reach is realized. A spon-
taneous error occurs when the less activated neuron 

is selected, on read out, to determine the outcome 
of the trial. Clearly, such a decision taken outside 
the model does not leave a memory trace and thus 
does not impact future outcomes.

Schutte, Spencer, and Schöner (2003) 
extended the dynamic field model of persevera-
tive reaching to capture the behavior of older 
children in an A-not-B sandbox task. In the task, 
children watch as a toy is buried in a long, narrow 
sandbox. There is a short delay and then the child 
searches for the toy. In the first six trials the toy is 
buried at one location, the A  location. In the last 
three trials it is buried at a second location, the B 
location. Even the youngest children tested in this 
task, 18-month-olds, would not make the A-not-B 
error in the canonical A-not-B task. In the sandbox 
version, they dig for the toy on a B trial at a loca-
tion that is strongly shifted toward the A  loca-
tion. Four-year-olds show this metric attraction to 
A and, under some conditions, even children as old 
as 6 years show the bias.

An important difference between this task and 
the canonical A-not-B task is, of course, that no 
lids mark the hiding locations. Therefore, the loca-
tion at which children search for the toy is a graded 
measure of their representation of the planned 
motor act. At the developmental stage of these 
children, it is plausible that they are already able 
to create a working memory of a planned action. 
The model should, therefore, be in the regime 
in which it may sustain peaks without localized 
input. Figure 2.18 shows simulations of the model 
on the first B trial. There is no task input. Specific 
input at the B location is transient early in the 
trial, and input from the memory trace around 
the A location ref lects previous searches. Specific 
input induces a self-stabilized peak at the B loca-
tion that is sustained after specific input ends. 
When the A and B locations are sufficiently close 
to each other (top of Figure 2.18), the sustained 
peak at B is affected by input from the memory 
trace at the A  location. That input drives activa-
tion up on the side of the peak that overlaps with 
the A  location. This increases activation at the 
peak so that inhibitory interaction compensates, 
suppressing the side turned away from the A loca-
tion more than that turned toward the A location 
due to the asymmetry of input. The peak is slowly 
attracted to the A location. This drift induces the 
metric bias toward the A  location, which is a sig-
nature characteristic of the A-not-B error. Note 
that the cause of this form of the A-not-B error is 
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different from that for the canonical task. Rather 
than “forgetting” about the cue at the B location, 
working memory for the motor intention drifts 
over the delay toward the A  location because 
there is no input at the B location to keep the peak 
anchored there.

When the A and B locations are placed farther 
apart (bottom of Figure 2.18), the sustained peak 
at B does not overlap the memory trace input at 
A.  Preactivation around the A  location is sup-
pressed by the inhibition from the peak at B, and 
that peak remains stationary at the B location. The 
model does not make an error.

Both signatures are seen in experiments. Young 
children show strong metric bias, and the bias 
increases as the delay increases. When the A and B 
locations are farther apart, metric bias toward A is 
reduced.

C ONC LUSION
This chapter has introduced the core concepts of 
dynamic field theory:  (1)  the continuous spaces 
of possible percepts, possible actions, and pos-
sible representations; (2)  the time-space continu-
ous activation fields and their neural dynamics; 
(3) self-stabilized activation peaks as units of rep-
resentation and the instabilities through which 
peaks emerge and bring about detection and selec-
tion decisions, working memory, and categoriza-
tion; and (4)  the dynamics of the memory trace 
as the simplest form of learning. In the next chap-
ter we will show how DFT is firmly grounded in 
neurophysiology—essentially, by capturing the 
dynamics of population activity in the higher ner-
vous system.

That the units of representation in DFT are stable 
states is of central importance to DFT. In Chapter 4, 
the last chapter in this first part of the book, about 
the foundations of DFT, we will see how the stabil-
ity of activation peaks enables the linking of repre-
sentations to sensory and motor processes and thus 
supports the embodiment of cognition. Stability is 
linked to robustness:  When the neural dynamics 
of an activation field changes, for instance, through 
coupling to other parts of a larger neural architec-
ture, stable peak solutions resist change. This makes 
it possible for dynamic fields to retain their dynamic 
regime, enabling detection, selection, and working 
memory, even as they are coupled to neural archi-
tectures. This will be a theme in Part 2 of the book. 
Stability is also critical for learning. In this chapter 

we showed how instabilities of the subthreshold 
states of dynamic fields can amplify small inputs or 
in homogeneities in the field into full, self-stabilized 
peaks. This changes what learning processes need 
to achieve. They need to nudge neural processes to 
self-stabilize new representations, rather than learn 
such representations completely. This theme will be 
important in Part 3 of the book.
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E X E RC I SE S  F OR   C H A P T E R   2
The interactive simulator launcherOneLay-
erField _ preset solves numerically the 
dynamic field Equation 2.1 with added random 
noise, repeated here in full detail:
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where the sigmoidal function is given by

 g u
u

( ) =
+ −

1
1 exp( )

.
β  (A2.2)

The interaction kernel is given by
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Note that in this formulation of the kernel, the 
amplitudes of the two Gaussian components are 
normalized, such that a change in the interac-
tion widths σ does not change the total strength 
of the interaction. Localized input is supplied in 
the form
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Sliders at the bottom of the graphical user interface 
(GUI) provided by the program enable one to con-
trol the widths, wsi, locations, psi, and amplitudes,  
asi, of three such inputs ( , , )i = 1 2 3 . Sliders are also 
available to vary the parameters h, q, cexc, cinh, and 
cglob. Additional parameters can be accessed via 
the Parameters button. Predefined sets of param-
eter values can be loaded by clicking on the pop-up 
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menu on the bottom right of the GUI, highlighting 
the appropriate choice, and then clicking the Select 
button.

The state of the field is shown in the top set of 
axes in the GUI. The blue line shows the current 
distribution of activation, u(x, t). The green line 
is the input shifted by the resting level, h + s(x, t), 
and the red line shows the field output (sigmoidal 
function of the field activation) at each position, 
g(u(x, t)), scaled up by a factor of 10 for better vis-
ibility. In the bottom set of axes, the shape of the 
interaction kernel is displayed. Note that the kernel 
is plotted over distances in the feature dimension, 
with zero at the center of the plot. This interaction 
pattern is then applied homogenously for all posi-
tions in the field.

The goal of this exercise is to explore and repro-
duce the instabilities discussed in the chapter.

Exercise 1: Detection Instability
This exercise works best with the predefined 
parameter set “stabilized.” Start out with the field 
in the resting state (the default) and introduce a 
localized input by increasing one of the stimulus 
amplitudes. For small input strengths, observe 
how the field (blue line) tracks the changing input 
(green line); this is the subthreshold solution. 
When activation first reaches zero from below, 
the field output at that location rises (red line). 
Observe how at this point very small changes 
in input strength lead to a new solution, the 
self-stabilized peak, which has more activation at 
its peak than input (blue line exceeds green line).

a) Show that, up to the detection instability, 
the system is bistable, by lowering input 
again to a level at which you previously 
saw the subthreshold solution. You can 
reset the field to the initial condition 
by pressing the Reset button. You 
will find that from the resting level the 
field converges to the subthreshold 
solution again.

b) While a self-stabilized peak stands in the 
field, move the inducing input laterally with 
the slider that changes the location of the 
input function. If you do this slowly enough, 
the peak will track input. If you do this too 
fast, the peak disappears at the old location 
in a reverse detection instability and 
reappears at the new location in a detection 
instability.

c) After having induced a peak again by 
increasing localized input, observe the 
reverse detection instability by lowering 
the input strength gradually. Close to where 
activation reaches zero from above you may 
observe the collapse of the self-stabilized 
peak and a quick relaxation to the 
subthreshold solution.

Exercise 2: Memory Instability
Vary the resting level, h, increasing it step-wise. 
At each level, induce a peak as in the first exercise 
and then try to destabilize it through the reverse 
detection instability by returning localized input 
strength to zero. At a critical value of the resting 
level, you will find that the peak decays slowly, then 
not at all after you have returned the localized input 
strength to zero. This is the memory instability, 
leading to a regime in which peaks can be sustained 
without localized input.

a) You can load a convenient parameter set 
within the memory regime by selecting 
the predefined parameter set “memory.” 
Induce a peak, remove localized input, then 
reintroduce this input in a location close to 
the sustained peak. In which way is the peak 
updated?

b) Do the same, but now reintroduce input at a 
location far from the sustained peak. What 
happens?

Exercise 3: Selection
Choose the predefined parameter set “selec-
tion.” Provide two localized inputs by increasing 
two stimulus amplitudes to intermediate values 
(between 6 and 8). Observe how only the location 
first receiving input develops a peak.

a) Increase input strength at the second 
location until you observe the selection 
instability.

b) Return that input strength to the 
original values. Show that the system 
is bistable.

c) Do the symmetric exercise, increasing input 
strength at the first location.

d) Adjust two input strengths to be exactly 
the same, making sure that there is some 
random noise in the field (q > 0). Use the 
Reset button to restart the field from the 
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resting level. Observe how one of the two 
locations with input is selected. Repeat 
several times and convince yourself that 
selection is stochastic.

Exercise 4: Boost-Induced Detection
Supply small subthreshold input at three locations 
that is not sufficient to induce peaks. Then slowly 

increase the resting level until a detection insta-
bility is triggered somewhere in the field. Observe 
how a peak is generated at one of the three locations 
that have small input. Try to see how small you can 
make that localized input and still observe the peak 
at one of the three locations. You can do this with or 
without noise.

 


