Welcome to the 2021 edition of the DFT summer school

dynamicfieldtheory.org

Virtual summer school

like last year, we do the school in virtual/ online form...

the decision turned out to be wise...

Lectures will be video taped

- videos will be edited: final discussion not included, only speaker video visible..
- but if you ask a question during the talk, you will be heard..
- => if you do not want to be in the published video, ask your questions at the end of each talk

Who am I

Gregor Schöner

- 80s Physicist by training, dissertation on bifurcations in stochastic dynamical systems.... [Hermann Haken]
- 80s Postdoc in dynamical systems thinking in movement science [Scott Kelso]
- began a long standing collaboration on dynamic instabilities in visual perception [Howard Hock]

Who am I

- 90s first stint at INI: began work on oscillations and population code in cortical neurophysiology
- and developed attractor dynamics approach in *autonomous robotics*
- 90s CNRS Marseille: began long-standing collaboration with developmental psychologists Esther Thelen, John Spencer
- Director of the INI = Institut für Neuroinformatik (Institute for Neural

Who am I

- 2000s.. second stint at INI.. director and chair Theory of Cognitive Systems
- toward an integrated neural theory of movement generation
- toward neural dynamic process accounts of higher cognition

INI lecturers and tutors

Sophie Aerdker

📕 Lukas Bildheim

Raul Grieben

Cora Hummert

Daniel Sabinasz

Rachid Ramadan

📕 Jan Tekülve

🗖 Lei Zhang

Guest lecturers

- Yulia Sandamirskaya, Intel Corporation and INI Zürich (ETH/Univ. Zürich)
- John Spencer, Dept. Psychology, University of East Anglia, UK

Audience

- we have over one hundred registered participants (130 last time I checked) ...
- => advantage of the virtual over the physical format in which we could only accomodate about 20 participants..
- very diverse backgrounds and locations ...

The virtual format: lectures

- daily lectures and life interactions via this Zoom channel
- from 3 pm to 6 pm Central European (Summer) Time...
- which is 9 12 am on the American East coast... as you go further west...
- and late evening for listeners in the East, e.g. India and further...

The virtual format: exercises

first 3 days: "home work" exercises ...

- we'll present those at the end of today's session
- "feedback" sessions on Tuesday/Wednesday
- support through web-based discussion forum

Workshop portion

- lectures and exercises are open to anyone
- a selected group can do the "hands-on" model building workshop
- with one-on-one tutoring...
- selection needed due to our limitations in man-power...
- but you can do the projects on your own... based on the website ...

dynamicfieldtheory.org

you already used it to get here

let me tell you a bit more about it..

- learning resources
- schedule
- documents
- discussion fora

search for "dynamic field theory"

https://www.youtube.com/channel/ UCNIMiiU_I02kC2kMNdqBRGQ

Lectures will be video taped

- and posted under "documents"... so that participants in other time zones can watch the lectures asynchronously
- and will also be on that youtube channel

Live sessions: discussion

we would love to have a lot of discussion/ questions...

Workshop participants:

welcome session on Thursday at 10 amwhich has more technical content...

Survey over the summer school

In the second second

Core lectures

- I) DFT foundations...
 - start with neurophysics
 - neural dynamics
 - excitatory recurrence: detection instability
 - inhibitory recurrence: selection instability
 - neural dynamics of fields, instabilities
 - examples how field models are linked to data
 - embodiment: linking to sensors and motors

Core lectures

- 2) DFT higher cognition
 - multi-dimensional fields

📕 binding

coordinate transforms

binding through space

localist vs distributed

learning in DFT

perceptual grounding

emental mapping

Core lectures

- 3) DFT autonomy
 - sequences of states/actions
 - neural dynamics of the condition of satisfaction
 - illustration in an autonomous robot
 - 3 principles of how to select the next state/action
 - intentional agents
 - relation DFT embodiment
 - relation DFT information processing
 - relation DFT VSA and distributed representations

Special lectures

I) Scene representation and visual search [Raul Grieben]

- expands "binding" lecture and shows how objects are attentional selected..
- key to any embodied cognitive action directed at objects
- links to the psychophysical literature on visual search

Special lectures

2) Models of grounded cognition [Daniel Sabinasz]

expands perceptual grounding

generating descriptions from perceived scenes

📕 inference

towards conceptual structure (language)

Special lectures

3) Neural process models of intentional states [Jan Tekülve]

expands intentional agents

two directions of fit

6 psychological modes of perception-memory-beliefs and action-prior-intention-desires

autonomous learning

Case study

I) Using mouse tracking to study visual search [Cora Hummert]

an experimental paradigm to find signatures of postulated DFT representations underlying objectdirected movement

Case study

2) Action grammars in DFT [Sophie Aerdker]

expands sequences of actions...

toward a grammar of those..

preliminary theoretical work...

Guest lectures

I) The WOLVES model [John Spencer]

- WOLVES= Word-Object Learning via Visual Exploration in Space
- a highly integrated model that accounts for many different sets of data
- developmental perspective

Guest lectures

- 2) Neuromorphic computing and neural dynamics [Yulia Sandamirskaya]
 - an introduction into neuromorphic computing
 - using neural dynamics to enable low-level embodied cognition on neuromorphic chips
 - perspective of a new computational paradigm helps position DFT

... let's get started