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that are crucial for object-oriented interaction with the environment.

• The first is the visual search sub-network, that consists of a feed-
forward feature-extraction path and a top-down guidance path.  

• The second is the scene memory sub-network, that autonomously
builds working memory feature representations of previously 
attended objects. 
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Introduction

• Here I am going to present a neural dynamic process model that 
builds on these two core sub-networks to account for the difference 
between feature and conjunctive search. 

• In this context, I will address the question of whether both the overall 
speed and the efficiency of conjunctive visual search can be improved 
by scene memory.

• I will also explain how we extended this model to understand the 
interplay between bottom-up processing and top-down guidance in 
visual search, an issue in need of theoretical resolution (Proulx, 
2007).

Proulx. Bottom-up guidance in visual search for conjunctions. JEP: Human Perception and Performance (2007)



In the classical view of Anne Treisman, visual search was either parallel or serial. 



Jeremy Wolfe, on the other hand, described the efficiency of visual search as 
forming a continuum. 



He defined the slope of the RT against set size function as the measure of 
efficiency. 



By this measure, single feature search is efficient as the reaction times are 
independent of set size. 



The target pops out. 



In the conjunctive condition RTs are proportional to the number of distractor items. 



Conjunctive search is, therefore, considered inefficient. 
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Visual search and scene memory

• The role of memory in visual search has been intensely studied in a 
variety of experimental paradigms.

• A prominent paradigm is the preview paradigm.
• Using this paradigm in a naturalistic setting, Hollingworth found 

benefits of scene preview.

Hollingworth. Two forms of scene memory guide visual search. Visual Cognition (2009)



Visual search and scene memory

• Hillstrom and colleagues extended this work by showing that 
information on the gist of scene can improve search efficiency. 

Hillstrom et al. The effect of the first glimpse at a scene on eye movements during search. Psychon Bull Rev (2012)
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Visual search and scene memory

• Hillstrom and colleagues extended this work by showing that 
information on the gist of scene can improve search efficiency. 

• These effects were not found for randomly ordered search arrays, 
indicating that it is specific to naturalistic scenes. 

• A common finding in the preview paradigm is that mean RTs are 
reduced if a preview of the search array is provided. 
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• Becker and Pashler argued that this provides strong evidence for 
guidance of attention by VWM.

Becker and Pashler. Awareness of the continuously visible. Perception & Psychophysics (2005)



Visual search and scene memory

• Becker and Pashler argued that this provides strong evidence for 
guidance of attention by VWM.

• In their experiments, efficiency was not increased by preview, 
however. 

Becker and Pashler. Awareness of the continuously visible. Perception & Psychophysics (2005)
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Scenario

• We chose the scene preview paradigm as a key behavioral task to 
address with the DFT model.

• We specifically addressed the question, why preview benefits 
observed for natural scenes did not generalize to randomly arranged 
search arrays.
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Grieben et al. Scene memory and spatial inhibition in visual search. Atten Percept Psychophys (2020)
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Grieben et al. Scene memory and spatial inhibition in visual search. Atten Percept Psychophys (2020)
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Model

• The model captures three fundamental processes of visual cognition:
• Exploring the visual array through sequences of attentional selection 

decisions, and at each attended location, committing the perceived feature 
values to scene memory. 

• Shifting attention to locations at which visual transients are detected and 
committing feature information from those locations to a working memory of 
the feature cue of visual search. 

• Visually searching for locations in the visual array at which the cued feature 
conjunctions are seen. 



Model

Grieben et al. Scene memory and spatial inhibition in visual search. Atten Percept Psychophys (2020)
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Subsystem 1: Feed-forward feature and salience maps

• Visual cognition builds on visual 
input from which features are 
extracted. 

• Visual input may take the form of 
a video stream from live camera 
input or from sequences of 
synthetic images. 

• Three simple features are used in 
the model: color, orientation, 
and size. 
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Subsystem 1: Feed-forward feature and salience maps

• Color is extracted by transforming 
RGB values into hue-space. 

• Saturation is passed through a 
threshold function and four 
elongated center-surround filters 
to extract orientation. 

• Size is extracted using a pyramid 
of center-surround filters of 
increasing size with a one-way 
inhibition along the scale 
dimension. 



Subsystem 1: Feed-forward feature and salience maps

• The normalized output of the 
feature extraction pathway
provides input into three 
space/feature fields, which each 
combine two dimensions of 
visual space with one feature
dimension. 
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Subsystem 1: Feed-forward feature and salience maps

• Each of the three scene 
space/feature maps projects to 
the scene spatial salience field.

• These projections marginalize the 
feature dimension, so they are
purely spatial. 
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• Visual cognition always entails 
attentional selection decisions. 

• This is the sub-system of the 
neural dynamic architecture that 
generates such selection 
decisions.

• Central is the scene spatial 
selection field, which represents
the current location of spatial 
attention. 
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Subsystem 2: Attentional selection

• This field is in the dynamic regime 
of selection so that it can support 
only a single supra-threshold 
peak at any point in time. 

• It receives multi-modal input 
from the salience field and 
selects the most salient location. 

• That selection is biased by three
additional sources of input. 



Subsystem 2: Attentional selection

• First, it is biased away from 
previously attended locations by 
inhibitory input from the 
inhibition of return memory 
trace that reflects the recent 
history of activation of the scene 
spatial selection field.



Subsystem 2: Attentional selection

• Second, it is biased away from 
locations that receive inhibitory 
input from the spatial working 
memory field. 



Subsystem 2: Attentional selection

• Sustained peaks in that field are 
destabilized, however, whenever 
movement is detected in the 
scene. This happens through a 
two-layer offset detector that 
generates a transient activation 
peak whenever salience input 
moves or vanishes. 
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limited by accumulating 
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Subsystem 2: Attentional selection

• The exact number, that reflects 
the capacity of working memory, 
depends on the balance of neural 
inhibition and excitation in this 
field and provides an important 
constraint for fitting the 
experimental results. 



Subsystem 2: Attentional selection

• Third, attention is attracted to 
locations at which rapid changes 
of spatial salience occur. This bias 
arises due to input from an onset 
detector, a two-layer neural 
dynamic field that generates a 
transient activation peak in 
response to shifts of input. 



Subsystem 2: Attentional selection

• Spatial attention, represented by 
a self-stabilized peak in the 
scene spatial selection field, 
plays a critical roll in feature 
binding. Feature binding occurs in 
the model in a manner that could 
be viewed as a neural 
implementation of Treisman’s
feature integration theory. 
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The feature matching sub-network 
compares (in parallel across feature 
dimensions) the expected feature 
(search cue) and attended feature 
at the attended location

Subsystem 3: Feature matching
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A peak in all three fields (attended 
feature, expected feature, and 
mismatch detection) signals a no 
match, activating the no-match 
response node and inhibiting the 
match response node

Subsystem 3: Feature matching



Absence of a peak in the mismatch
detection field, with peaks in the 
two other fields, signals a match
and activates the match response 
node

Subsystem 3: Feature matching



Mismatch within a single feature 
dimension is sufficient to activate
the condition of dissatisfaction 
(CoD)

Subsystem 3: Feature matching



In contrast, the condition of 
satisfaction (CoS) node is only
activated if all attended features
match the search cue

Subsystem 3: Feature matching



Together with the intention node, 
these two nodes are used to 
autonomously generate
sequences of neural processing 
steps

Subsystem 3: Feature matching
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Task 1: Visual exploration

• The default behavior of the 
architecture is the autonomous 
visual exploration of the scene. 

• In visual exploration, salient 
locations in the visual array are 
sequentially selected into the 
attentional foreground and 
features at these locations are 
transferred to working memory. 
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Task 1: Visual exploration

• The attended location provides a 
cylinder-shaped input to a set of 
three-dimensional scene 
space/feature selection fields, 
which have the same structure as 
the scene space/feature maps 
described earlier. 
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scene space/feature maps 
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Task 1: Visual exploration

• Feature information is extracted
by integrating across space and 
feeding that sum as slice input 
into the corresponding
space/feature map in another set 
of such three-dimensional fields, 
the scene memory, which is 
operated in the dynamic regime 
of sustained activation. 



Task 1: Visual exploration

• In these memory fields, peaks
form again where these slices
overlap with cylinder input from 
the scene spatial selection field. 
These peaks are added to the 
scene working memory. 



Task 1: Visual exploration

• The number of peaks that can be 
simultaneously sustained in the 
memory space/feature maps is 
limited by the accumulation of 
inhibition as additional peaks 
arise.  



Task 1: Visual exploration

• The capacity limit depends on 
the balance of neural excitation
and inhibition in these fields and, 
as was the case for spatial WM, is 
a key factor for fitting the 
experimental results. 



Task 1: Visual exploration

• The memory space/feature maps
provide three-dimensional input
to an analogous set of three 
memory space/feature selection 
fields. 
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Task 1: Visual exploration

• In these fields, one item from the 
input is selected and brought 
above threshold, again based on 
overlap with cylinder input from 
the scene spatial selection field.

• The result is an isolated
representation of the memory
item at the attended location. 



Task 1: Visual exploration

• Projections from both this 
representation and the scene 
space/feature selection fields 
converge onto a neural feature 
matching mechanism, which 
detects whether the attended 
item’s features have been 
successfully committed to scene 
working memory.  
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Task 1: Visual exploration

• When this detection occurs, the 
task node is deactivated through 
an inhibitory connection. 

• This concludes one step in the 
exploration sequence. 



Task 1: Visual exploration

• By default, that is, unless another 
task becomes active, the task 
node is then reactivated, thus 
initiating another cycle of 
attentional selection and 
commitment to working memory. 
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Task 2: Retaining feature cue

• This is the sub-network that is 
responsible for retaining a feature 
cue for visual search.

• It is activated by the retain task 
node, which may itself be 
activated from different sources 
depending on the cognitive task 
at hand. 



Task 2: Retaining feature cue

• In the current context, the task 
node is activated by the onset
detector when that system 
detects a change in the visual 
scene. 



Task 2: Retaining feature cue

• The retain process consists of 
storing currently attended
feature values as self-sustained 
peaks in the search cue fields. 
These are one-dimensional since 
only the feature values of the 
cue, not its location, are relevant. 



Task 2: Retaining feature cue

• To forward feature values from 
the scene space/feature 
selection fields to the search cue 
fields, the retain node
homogeneously boosts activation 
in the retain gate fields, enabling
them to build peaks and thus to 
pass on activation. 



Task 2: Retaining feature cue

• The retain sub-task is terminated
once the content of the search-
cue fields matches the features
of the currently attended item. 



Task 2: Retaining feature cue

• Upon deactivation of the retain
node, peaks in the attention field 
and the gating fields decay, 
whereas in the search cue fields 
the cue’s feature values are
retained for later use.
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Task 3: Visual search for cued feature conjunctions

• The search task node drives a 
sub-network which increases the 
likelihood that attention will be 
focused on a location where all 
features of the search cue are 
present. 

• This is primarily achieved
through top-down guidance from 
two sources, the visual scene 
itself and scene memory.
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Task 3: Visual search for cued feature conjunctions

• Each of these components 
includes three three-dimensional 
space/feature overlap fields 
which combine sub-threshold 
input from the scene maps or the 
memory maps with feature input 
from the search cue.

• Supra-threshold peaks emerge at 
locations where there is overlap
between the cued feature values 
and the scene or memory. 
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Task 3: Visual search for cued feature conjunctions

• These peaks are projected into 
two-dimensional spatial guidance 
fields which bias attentional 
selection in the scene spatial 
selection field.

• Importantly, the resting level of 
the scene spatial guidance field
is down-regulated dynamically
via inhibitory connectivity from 
each search cue field. 



Task 3: Visual search for cued feature conjunctions

• The resting level thus depends
on the number of cued features, 
decreasing as more search cue 
fields contain peaks. 



Task 3: Visual search for cued feature conjunctions

• The strength of the inhibitory
connections is such that when 
only one feature is cued it 
suffices for items to share only 
that cue feature in order to 
create peaks in the scene spatial 
guidance field; when more than 
one feature are cued, peaks
emerge for all items that differ at
most in one of the cued feature
dimensions. 
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Task 3: Visual search for cued feature conjunctions

• Therefore, attentional guidance is 
most effective in single feature 
search, in which peaks arise only 
for items that completely match 
the cue. 

• In conjunctive search, non-target
items may become active as well, 
making conjunctive search less
effective in this account. 
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Task 3: Visual search for cued feature conjunctions

• The influence of memory on 
attentional selection described 
thus far is purely excitatory and 
based on the overlap of memory 
items with cue features. 

• This excitatory bias from 
memory explains the overall 
faster reaction times in the 
preview condition of the 
experiment. 
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• An additional, inhibitory 
influence on attentional selection 
comes from the spatial working 
memory field, that represents 
locations that have been 
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such locations. 
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Task 3: Visual search for cued feature conjunctions

• The inhibited locations may 
include items that match the 
visual search cue. The strength of 
inhibition is low enough, 
however, to be overruled by 
excitatory biases from the other 
sources.

• This inhibitory bias from spatial
memory explains the increased
efficiency in the preview
condition of the experiment. 
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Task 3: Visual search for cued feature conjunctions

• The visual search process is 
terminated when the features at 
an attended location match all 
specified cue features. 

• This is detected by the feature 
matching component, whose CoS
node activates when such a 
match occurs, which signals task
completion. 



Task 3: Visual search for cued feature conjunctions

• If instead one or more cued 
feature values are not present in 
the attended location, the CoD
node of the feature matching 
component becomes active and 
inhibits the search task node. 



Task 3: Visual search for cued feature conjunctions

• This destabilizes the scene 
spatial selection field, which in 
turn leads to the CoD itself being 
deactivated, so that the search
task node can reactivate and 
drive the attentional selection of 
a new location.



Model - Results

Grieben et al. Scene memory and spatial inhibition in visual search. Atten Percept Psychophys (2020)

Experiment Model



Extension: Understanding the 
interplay between bottom-up 

processing and top-down 
guidance in visual search
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Bottom-Up and Top-Down Attention

• The capacity of the brain to process sensory stimuli is limited
• Neural resources are focused according to the current contingencies
• This cognitive process is called attention
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Bottom-Up and Top-Down Attention

• Attention can be categorized into two distinct functions

Bottom-up attention
• Attentional guidance driven 

purely by external factors
• Saliency of stimuli depend on 

their inherent properties relative 
to the background 

• E.g., local feature contrasts like 
red/green or sudden movement

• Is the phylogenetically older 
system

Top-down attention
• Attentional guidance driven by 

internal factors
• Like prior knowledge, current task 

or goal, etc…
• Guidance of visual search: e.g. 

the location of a known object is 
unknown in the current scene
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The Binding Problem

• Different attributes (features) of a stimulus (e.g., color, size, 
orientation) are processed by different areas of the cortex 

• Yet, they are experienced (in consciousness) as a unity (object)
• Artificial neural networks ignore this problem

• => superposition catastrophe (von der Malsburg, 1999)

• Yet, binding is highly relevant for correct knowledge representation
• It is unknown how the brain correctly links up all the different 

features of complex objects
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Does visual attention select objects or 
locations?
• The effects associated with location-based attention tend to be 
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• Features are extracted in parallel 

in a preattentive stage
• Objects and their features are 

bound by sequentially attentional 
selection (attentional bottleneck)
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Does visual attention select objects or 
locations?
• The effects associated with location-based attention tend to be 

large and are found consistently across experiments
• This favors binding through attentional selection of a location
• Feature integration theory (Treisman & Gelande, 1980) is the prevalent 

theory
• Object-based attention effects, however, are small and found 

less consistently across experiments
• This is seen as evidence for binding without attention
• As postulated by similarity theory (Duncan & Humphreys, 1989)
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Similarity Theory of Attention 
• Duncan and Humphreys (1989)
• Is an alternative theory to FIT
• Objects are grouped by similarity 
• Binding of features without 

attention
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Similarity Theory of Attention 
• Similarity between targets and 

distractors is the important factor 
for RTs

• The capacity limit of VSTM is the 
origin of the attentional 
bottleneck

• Some findings cannot be 
explained by FIT
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Guided search (GS)
• By Jeremy Wolfe (1994)
• Prevalent model of visual search
• In the spirit of FIT, postulates 

binding through attention
• Was able to explain the findings 

that FIT failed to explain
• Still in active development 

(Wolfe, 2021)



Are Features bound with or without 
attention?
• Since both similarity theory and guided search delivered a plausible

theory, the question remained open



Are Features bound with or without 
attention?
• Since both similarity theory and guided search delivered a plausible 

theory, the question remained open
• In 1998 Found provided evidence, that a third feature that was 

correlated but irrelevant, could improve the efficiency of conjunctive
visual search



Are Features bound with or without 
attention?
• Since both similarity theory and guided search delivered a plausible 

theory, the question remained open
• In 1998 Found provided evidence, that a third feature that was 

correlated but irrelevant, could improve the efficiency of conjunctive 
visual search

• Found considered its findings to be consistent with “preattentive
binding” as proposed by the similarity theory and not with guided 
search
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Are Features bound with or without 
attention?
• Proulx (2007) expanded on these considerations and found that 

salient, task-irrelevant singleton features influenced search efficiency
• This led Proulx to propose that both GS and similarity theory 

understate the role of bottom-up saliency in conjunction searches
• He concluded that understanding the role of top-down and bottom-

up guidance is crucial for models of visual search
• And that on a theoretical level, the surprising evidence that bottom-

up processing guides attention in conjunction search will need to be 
addressed by models of visual search



Triple Conjunction Visual Search

• Nordfang and Wolfe (2014) 
revisited triple conjunction 
searches

Nordfang and Wolfe. Guided search for triple conjunctions. Atten Percept Psychophys (2014)
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• Nordfang and Wolfe (2014) 
revisited triple conjunction 
searches

• They found evidence that both:
• grouping, the number of different 

distractor groups in a search 
display, 

• and feature sharing, the number of 
features shared between a 
distractor and the target, 

• had a substantial effect on search 
efficiency
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Triple Conjunction Visual Search

• They concluded that their findings could be explained by preattentive
binding

• But that very efficient top-down guidance based on a nonlinear 
sharing effect and/or nonlinear grouping effects in bottom-up 
salience may also account for the observations without resorting to 
preattentive binding

• As they expected these to be not trivial to model, the verification of 
their proposal remained open

• Until today there is no model of visual attention and/or search able
to fit or explain these intriguing findings



Model

• To ease understanding, we 
reduced our previous neural 
dynamic process model (Grieben
et al., 2020) to its visual search 
component only (removing sub-
networks related to scene 
memory and transient detection)

Grieben and Schöner. A neural dynamic process model of combined bottom-up and top-down guidance 
in triple conjunction visual search. CogSci (2021)



Model

• To ease understanding, we 
reduced our previous neural 
dynamic process model (Grieben
et al., 2020) to its visual search 
component only (removing sub-
networks related to scene 
memory and transient detection)

• Green outlines highlight sub-
networks changed with respect 
to the previous model
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Feed-Forward Feature Maps and Salience Map

Responsible for the grouping effect
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Responsible for the sharing effect



Attentional Selection and Visual Search



Attentional Selection and Visual Search



Results



Results



Conclusion

• In conclusion, the model provides a neural process account of the 
visual search paradigm that includes the detection of the search cue 
from visual transients, its commitment to feature memory, the 
autonomous generation of a sequence of attentional selection 
decisions, and the matching of the cued feature values to feature 
values extracted at each attended location. 
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• In conclusion, the model provides a neural process account of the 
visual search paradigm that includes the detection of the search cue 
from visual transients, its commitment to feature memory, the 
autonomous generation of a sequence of attentional selection 
decisions, and the matching of the cued feature values to feature 
values extracted at each attended location. 

• The model accounts for conjunctive searches in a way that is 
consistent with the original notion of binding through space. 
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Conclusion

• I showed experimentally that allowing observers to first build a scene 
working memory before performing visual search not only speeds 
visual search as often reported, but also increases search efficiency, 
an effect that has remained elusive for a long time. 

• I explained how this effect emerges from the time- and state-
continuous neural processes in our model.
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Conclusion

• We extended our neural dynamic process model for scene perception 
and top-down guided visual search (Grieben et al., 2020) to 
qualitatively fit the feature sharing and grouping effects found by 
Nordfang and Wolfe (2014) for triple conjunction searches

• The new version of our model accounts for the differences between 
the conditions observed by Nordfang and Wolfe (2014) without 
resorting to preattentive binding
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Conclusion

• We also addressed a major theoretical weakness of models of 
conjunctive visual search (Proulx, 2007)

• Even though bottom-up salience may disturb the efficiency of top-
down guided visual search, it is crucial for the visual exploration of a 
crowded scene in the absence of a task

• Through the incorporation of bottom-up salience our model is now 
able to autonomously explore the scene by bringing objects into the 
attentional foreground through selective competition, even in the 
absence of a task-induced top-down bias



Questions?

Thank you for your attention!
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