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Introduction

* Most DFT models of higher cognition share two core sub-networks
that are crucial for object-oriented interaction with the environment.

e The first is the visual search sub-network, that consists of a feed-
forward feature-extraction path and a top-down guidance path.

* The second is the scene memory sub-network, that autonomously
builds working memory feature representations of previously
attended objects.
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Introduction

* Here | am going to present a neural dynamic process model that
builds on these two core sub-networks to account for the difference
between feature and conjunctive search.

* In this context, | will address the question of whether both the overall
speed and the efficiency of conjunctive visual search can be improved
by scene memory.

* | will also explain how we extended this model to understand the
interplay between bottom-up processing and top-down guidance in
visual search, an issue in need of theoretical resolution (Proulx,
2007).

Proulx. Bottom-up guidance in visual search for conjunctions. JEP: Human Perception and Performance (2007)
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In the classical view of Anne Treisman, visual search was either parallel or serial.
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Jeremy Wolfe, on the other hand, described the efficiency of visual search as
forming a continuum.
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He defined the slope of the RT against set size function as the measure of
efficiency.
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By this measure, single feature search is efficient as the reaction times are
independent of set size.
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The target pops out.
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In the conjunctive condition RTs are proportional to the number of distractor items.
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Conjunctive search is, therefore, considered inefficient.
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* The role of memory in visual search has been intensely studied in a
variety of experimental paradigms.

* A prominent paradigm is the preview paradigm.

Preview Scene (10 s,2s,0or 500 ms)  Target Probe (1500 ms) Search Scene

1200 ms Blank ISI

Hollingworth. Two forms of scene memory guide visual search. Visual Cognition (2009)



Visual search and scene memory

* The role of memory in visual search has been intensely studied in a
variety of experimental paradigms.

* A prominent paradigm is the preview paradigm.

* Using this paradigm in a naturalistic setting, Hollingworth found
benefits of scene preview.

Hollingworth. Two forms of scene memory guide visual search. Visual Cognition (2009)



Visual search and scene memory

* Hillstrom and colleagues extended this work by showing that
information on the gist of scene can improve search efficiency.

Hillstrom et al. The effect of the first glimpse at a scene on eye movements during search. Psychon Bull Rev (2012)
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Visual search and scene memory

* Hillstrom and colleagues extended this work by showing that
information on the gist of scene can improve search efficiency.

* These effects were not found for randomly ordered search arrays,
indicating that it is specific to naturalistic scenes.

* A common finding in the preview paradigm is that mean RTs are
reduced if a preview of the search array is provided.
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Becker and Pashler. Awareness of the continuously visible. Perception & Psychophysics (2005)



Visual search and scene memory

* Becker and Pashler argued that this provides strong evidence for
guidance of attention by VWM.

* In their experiments, efficiency was not increased by preview,
however.

Becker and Pashler. Awareness of the continuously visible. Perception & Psychophysics (2005)
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Scenario

* We chose the scene preview paradigm as a key behavioral task to
address with the DFT model.

* We specifically addressed the question, why preview benefits
observed for natural scenes did not generalize to randomly arranged
search arrays.



Experiment
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Grieben et al. Scene memory and spatial inhibition in visual search. Atten Percept Psychophys (2020)
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Grieben et al. Scene memory and spatial inhibition in visual search. Atten Percept Psychophys (2020)
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Model

* The model captures three fundamental processes of visual cognition:

* Exploring the visual array through sequences of attentional selection
decisions, and at each attended location, committing the perceived feature
values to scene memory.

 Shifting attention to locations at which visual transients are detected and
committing feature information from those locations to a working memory of
the feature cue of visual search.

* Visually searching for locations in the visual array at which the cued feature
conjunctions are seen.
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Grieben et al. Scene memory and spatial inhibition in visual search. Atten Percept Psychophys (2020)
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Subsystem 1: Feed-forward feature and salience maps

* Visual cognition builds on visual
input from which features are
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Subsystem 1: Feed-forward feature and salience maps
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Subsystem 1: Feed-forward feature and salience maps
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Subsystem 1: Feed-forward feature and salience maps
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* Color is extracted by transforming
RGB values into hue-space.

e Saturation is passed through a
threshold function and four
elongated center-surround filters

to extract orientation.



Subsystem 1: Feed-forward feature and salience maps
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Subsystem 1: Feed-forward feature and salience maps
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Subsystem 1: Feed-forward feature and salience maps
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e Each of the three scene
space/feature maps projects to
the scene spatial salience field.
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Subsystem 1: Feed-forward feature and salience maps

* Each of the three scene
space/feature maps projects to
the scene spatial salience field.

* These projections marginalize the
feature dimension, so they are
purely spatial.
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Subsystem 2: Attentional selection
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* Visual cognition always entails
attentional selection decisions.

* This is the sub-system of the
neural dynamic architecture that
generates such selection
decisions.

* Central is the scene spatial
selection field, which represents
the current location of spatial
attention.
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support only a single supra-
threshold peak at any point in
time.
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Subsystem 2: Attentional selection
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Subsystem 2: Attentional selection
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 Sustained peaks in that field are

destabilized, however, whenever
movement is detected in the
scene. This happens through a
two-layer offset detector that
generates a transient activation
peak whenever salience input
moves or vanishes.
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* The number of peaks that can be
simultaneously sustained in the
spatial working memory field is
limited by accumulating
inhibition from these peaks.
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Subsystem 3: Feature matching
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Subsystem 3: Feature matching

CoD

Yy w—

244

no match match feature is
response /\. response specified

?peak detector ( )peak detector]

Qpeak detector

Attended Feature

Mismatch Detection

Expected Feature

ﬁ% 1 I ® ﬁﬂt
feature space feature space feature space
scene inputfl I search cue inputTI I

features

The feature matching sub-network
compares (in parallel across feature
dimensions) the expected feature
(search cue) and attended feature
at the attended location
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Subsystem 3: Feature matching
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Subsystem 3: Feature matching
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A peak in all three fields (attended
feature, expected feature, and
mismatch detection) signals a no
match, activating the no-match
response node
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A peak in all three fields (attended
feature, expected feature, and
mismatch detection) signals a no
match, activating the no-match
response node and inhibiting the
match response node
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Absence of a peak in the mismatch
detection field, with peaks in the
two other fields, signals a match
and activates the match response
node
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Together with the intention node,
these two nodes are used to
autonomously generate
sequences of neural processing
steps



Task 1: Visual exploration

 The default behavior of the
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visual exploration of the scene.
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 The default behavior of the
architecture is the autonomous
visual exploration of the scene.

* In visual exploration, salient
locations in the visual array are
sequentially selected into the
attentional foreground and
features at these locations are
transferred to working memory.



Task 1: Visual exploration

* This is the sub-network
responsible for visual exploration
and memory formation.
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sl scene spatial selection field and
Ny = the memory space /featu re

jA . E'L L | O selection fields, enabling these to
— generate peaks.
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Task 1: Visual exploration
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* The scene spatial selection field
forms a peak at a single location
that is favored by its inputs.
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Task 1: Visual exploration

Scene Memory Search
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i selection
Scene Spatial | .: ” :

Salience ®

* The attended location provides a
cylinder-shaped input to a set of
three-dimensional scene
space/feature selection fields,

Rl which have the same structure as
R the scene space/feature maps
Maps @ . g g . .
,,, A described earlier.
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Task 1: Visual exploration

Scene
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Memory Search
Guidance ) Cue

* Peaks form where input from the
scene space/feature maps

N L ‘l\/
Scesr;eiieS:::iaé : 7 \ Over!aps Wit.h the Spatia“y .
localized cylinders, representing
Rl the space/feature values of the
] _» attended object.
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Task 1: Visual exploration
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* Feature information is extracted
by integrating across space and
feeding that sum as slice input
into the corresponding
space/feature map in another set
of such three-dimensional fields,
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Task 1: Visual exploration

Scene Memory Search
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* In these memory fields, peaks
form again where these slices
overlap with cylinder input from
the scene spatial selection field.
These peaks are added to the
scene working memory.
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Task 1: Visual exploration

Scene Memory Search
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* The number of peaks that can be
simultaneously sustained in the
memory space/feature maps is
limited by the accumulation of
inhibition as additional peaks
arise.
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Task 1: Visual exploration

Scene Memory Search
Guidance ® Guidance @ Cue '0)
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i selection
Scene Spatial | .: ﬂ
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* The capacity limit depends on
the balance of neural excitation
and inhibition in these fields and,
as was the case for spatial WM, is
a key factor for fitting the
experimental results.
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Task 1: Visual exploration

| oo, o | ey * The memory space/feature maps

\;nal/ """"" ‘l\/ provide three-dimensional input
i selection
7 to an analogous set of three
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Task 1: Visual exploration

| oo, o | ey * In these fields, one item from the
\;nal'/ """"" ‘l\/ input is selected and brought

i selection

. AT \ above threshold, again based on
R I— — T overl ap Wlth Cylinder input from
1 the scene spatial selection field.
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Task 1: Visual exploration

o * In these fields, one item from the

Scene
Guidance ®

\:al’/ ---------- ‘l\/ input is selected and brought
e o \ above threshold, again based on
' S — Overlap Wlth Cy“nder inpUt from
L | O the scene spatial selection field.
e . | * The result is an isolated
R representation of the memory
item at the attended location.
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Task 1: Visual exploration

Scene

| oo, o | ey * Projections from both this

\/ .......... ‘l\/ representation and the scene
i selection - -
space/feature selection fields

Scene Spatial | .:

Salience @ : Loy = 76
P F 2 \ e [T converge onto a neural feature
B Ol | O matching mechanism, which

Soone s L detects whether the attended

T | AL i § item’s features have been
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Task 1: Visual exploration

Scene
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 When this detection occurs, the
task node is deactivated through
an inhibitory connection.
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Task 1: Visual exploration

Scene Memory Search
Guidance ® Guidance @ Cue '0)
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* When this detection occurs, the
task node is deactivated through
an inhibitory connection.

* This concludes one step in the
exploration sequence.



Task 1: Visual exploration

Scene Memory Search
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* By default, that is, unless another
task becomes active, the task
node is then reactivated, thus
initiating another cycle of
attentional selection and
commitment to working memory.
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Task 2: Retaining feature cue
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* This is the sub-network that is
responsible for retaining a
feature cue for visual search.
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* This is the sub-network that is
responsible for retaining a feature
cue for visual search.

* It is activated by the retain task
node, which may itself be
activated from different sources
depending on the cognitive task
at hand.



Task 2: Retaining feature cue

[ o @h Reso * In the current context, the task
Guidance Guidance . -
®L\ 3 Fa node is activated by the onset
" 1 detector when that system
onset detector @ scene spatla selection

detects a change in the visual
scene.
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Task 2: Retaining feature cue
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[ r— L@‘ seacd | | | * The retain process consists of
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‘T peaks in the search cue fields.
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These are one-dimensional since
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------------------- cue, not its location, are relevant.
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Task 2: Retaining feature cue

[ r— @h henin * To forward feature values from
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Task 2: Retaining feature cue

r— @h Retsn * The retain sub-task is terminated
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Task 2: Retaining feature cue
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e Upon deactivation of the retain
node, peaks in the attention field
and the gating fields decay,
whereas in the search cue fields
the cue’s feature values are
retained for later use.



Task 3: Visual search for cued feature conjunctions

* The search task node drives a
sub-network which increases the

likelihood that attention will be
focused on a location where all
features of the search cue are
present.
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Task 3: Visual search for cued feature conjunctions
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 The search task node drives a
sub-network which increases the
likelihood that attention will be
focused on a location where all
features of the search cue are
present.

* This is primarily achieved
through top-down guidance from
two sources, the visual scene
itself and scene memory.
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Task 3: Visual search for cued feature conjunctions
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* Each of these components
includes three three-dimensional
space/feature overlap fields
which combine sub-threshold
input from the scene maps or the
memory maps with feature input
from the search cue.
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Task 3: Visual search for cued feature conjunctions
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e Each of these components
includes three three-dimensional
space/feature overlap fields
which combine sub-threshold
input from the scene maps or the
memory maps with feature input
from the search cue.

e Supra-threshold peaks emerge at
locations where there is overlap
between the cued feature values
and the scene or memory.
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* These peaks are projected into
two-dimensional spatial guidance
fields which bias attentional
selection in the scene spatial
selection field.
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Task 3: Visual search for cued feature conjunctions

Y e \ 4
Scene Guidance Memory Guidance
0
‘ND H
L-A
— ;

; s

o > o B

o - 5 o

it : =

" Search
Cue

uoIjeJUSLIO

* These peaks are projected into
two-dimensional spatial guidance
fields which bias attentional
selection in the scene spatial
selection field.

* Importantly, the resting level of
the scene spatial guidance field
is down-regulated dynamically
via inhibitory connectivity from
each search cue field.
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Task 3: Visual search for cued feature conjunctions

v P —
Scene Guidance Memory Guidance l i e The strength of the inhibitory
© 2 RN connections is such that when
S | only one feature is cued it
T suffices for items to share only

| that cue feature in order to
- SN create peaks in the scene spatial
: 0 guidance field; when more than
one feature are cued, peaks
emerge for all items that differ at
most in one of the cued feature
dimensions.
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Task 3: Visual search for cued feature conjunctions

Scene Guidance :  Memory Guidance

o i * Therefore, attentional guidance

is most effective in single feature
search, in which peaks arise only
for items that completely match
the cue.
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Task 3: Visual search for cued feature conjunctions
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Task 3: Visual search for cued feature conjunctions

* The influence of memory on
attentional selection described
thus far is purely excitatory and
based on the overlap of memory
: items with cue features.
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Task 3: Visual search for cued feature conjunctions

A4 ./v\
TN I U * The influence of memory on
sl N IRk attentional selection described
= 2= || thus far is purely excitatory and
DV | based on the overlap of memory
A ||l a | | items with cue features.
* This excitatory bias from

memory explains the overall
faster reaction times in the
preview condition of the
experiment.
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Task 3: Visual search for cued feature conjunctions

influence on attentional selection
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 Jr— =" comes from the spatial working
(i ES Ryt TR memory field, that represents

locations that have been
committed to memory during the
exploration phase.
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Task 3: Visual search for cued feature conjunctions

\ 4 /—V\ ................... . . . o] o
ScmeGuidanes Mooyt { S * An additional, inhibitory

sl L ] influence on attentional selection
e —aliy——10k comes from the spatial working
i ESHE st ST T memory field, that represents
"divm | e | locations that have been
' committed to memory during the

exploration phase.

* Their influence decreases the
likelihood that attention revisits
such locations.
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Task 3: Visual search for cued feature conjunctions
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ryh * The inhibited locations may
include items that match the

-’A q .
 Jr— =" visual search cue. The strength of
{3 S TR inhibition is low enough,

however, to be overruled by
excitatory biases from the other
sources.
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Task 3: Visual search for cued feature conjunctions
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| somsime et VS0 . The |nh|.b|ted locations may

| [ | |r]clude items that match the
o S (- ] visual search cue. The strength of
N S inhibition is low enough,
e | b however, to be overruled by

- SO IR excitatory biases from the other
sources.

* This inhibitory bias from spatial
memory explains the increased
efficiency in the preview
condition of the experiment.
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Task 3: Visual search for cued feature conjunctions

S/F Overlap Fields
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* The visual search process is
terminated when the features at
an attended location match all
specified cue features.



Task 3: Visual search for cued feature conjunctions

A4 /—V\ ................... R .
Sometuidnee | WemoryGuidaee S5 * The visual search process is
terminated when the features at
an attended location match all
] | T specified cue features.

* This is detected by the feature
matching component, whose CoS
node activates when such a
match occurs, which signals task
completion.
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Task 3: Visual search for cued feature conjunctions
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* If instead one or more cued
feature values are not present in
the attended location, the CoD
node of the feature matching
component becomes active and
inhibits the search task node.
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v eSSy S deactivated, so that the search

task node can reactivate and
drive the attentional selection of
a hew location.
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Model - Results
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Grieben et al. Scene memory and spatial inhibition in visual search. Atten Percept Psychophys (2020)



Extension: Understanding the
interplay between bottom-up
orocessing and top-down

cuidance in visual search




Bottom-Up and Top-Down Attention

* The capacity of the brain to process sensory stimuli is limited
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* Neural resources are focused according to the current contingencies



Bottom-Up and Top-Down Attention

* The capacity of the brain to process sensory stimuli is limited
* Neural resources are focused according to the current contingencies
* This cognitive process is called attention
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* Attention can be categorized into two distinct functions
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e Attention can be categorized into two distinct functions
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Bottom-Up and Top-Down Attention
e Attention can be categorized into two distinct functions

Bottom-up attention

e Attentional guidance driven
purely by external factors

e Saliency of stimuli depend on
their inherent properties relative
to the background

 E.g., local feature contrasts like
red/green or sudden movement

* Is the phylogenetically older
system
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Bottom-Up and Top-Down Attention

e Attention can be categorized into two distinct functions

Top-down attention

e Attentional guidance driven by
internal factors

* Like prior knowledge, current task
or goal, etc...

* Guidance of visual search: e.g.
the location of a known object is
unknown in the current scene
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The Binding Problem

* Different attributes (features) of a stimulus (e.g., color, size,
orientation) are processed by different areas of the cortex

* Yet, they are experienced (in consciousness) as a unity (object)

e Artificial neural networks ignore this problem
* => superposition catastrophe (von der Malsburg, 1999)

* Yet, binding is highly relevant for correct knowledge representation

* It is unknown how the brain correctly links up all the different
features of complex objects
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. . * The most influential psychological
Object Object N . -
Pe“epmn Recognition model of human visual attention

Attentional
Spothght

* Developed in 1980 by Anne

/ é e Treisman and Garry Gelade
ap
of Locations .

* Features are extracted in parallel
m in a preattentive stage

N\ / /Do / * Objects and their features are
vape N\ O// bound by sequentially attentional
.Do M iy selection (attentional bottleneck)
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Does visual attention select objects or
ocations?

* The effects associated with location-based attention tend to be
large and are found consistently across experiments
 This favors binding through attentional selection of a location

« Feature integration theory (Treisman & Gelande, 1980) is the prevalent
theory

* Object-based attention effects, however, are small and found
less consistently across experiments
* This is seen as evidence for binding without attention
» As postulated by similarity theory (Duncan & Humphreys, 1989)
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Similarity Theory of Attention
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 Similarity between targets and
distractors is the important factor
for RTs

* The capacity limit of VSTM is the
origin of the attentional
bottleneck

e Some findings cannot be
explained by FIT
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Guided search (GS)
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* By Jeremy Wolfe (1994)
* Prevalent model of visual search

* In the spirit of FIT, postulates
binding through attention

* Was able to explain the findings
that FIT failed to explain

e Still in active development
(Wolfe, 2021)
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Are Features bound with or without
attention?

 Since both similarity theory and guided search delivered a plausible
theory, the question remained open

* In 1998 Found provided evidence, that a third feature that was
correlated but irrelevant, could improve the efficiency of conjunctive
visual search

* Found considered its findings to be consistent with “preattentive
binding” as proposed by the similarity theory and not with guided
search
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Are Features bound with or without
attention?

* Proulx (2007) expanded on these considerations and found that
salient, task-irrelevant singleton features influenced search efficiency

* This led Proulx to propose that both GS and similarity theory
understate the role of bottom-up saliency in conjunction searches

* He concluded that understanding the role of top-down and bottom-
up guidance is crucial for models of visual search

* And that on a theoretical level, the surprising evidence that bottom-
up processing guides attention in conjunction search will need to be
addressed by models of visual search
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* Nordfang and Wolfe (2014)
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* Nordfang and Wolfe (2014)
revisited triple conjunction
searches

* They found evidence that both:

* grouping, the number of different
distractor groups in a search
display,

* and feature sharing, the number of
features shared between a
distractor and the target,

* had a substantial effect on search
efficiency
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Triple Conjunction Visual Search

* They concluded that their findings could be explained by preattentive
binding

e But that very efficient top-down guidance based on a nonlinear
sharing effect and/or nonlinear grouping effects in bottom-up

salience may also account for the observations without resorting to
preattentive binding

* As they expected these to be not trivial to model, the verification of
their proposal remained open

 Until today there is no model of visual attention and/or search able
to fit or explain these intriguing findings
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Grieben and Schoner. A neural dynamic process model of combined bottom-up and top-down guidance
in triple conjunction visual search. CogSci (2021)



Model

* To ease understanding, we
reduced our previous neural
dynamic process model (Grieben
et al., 2020) to its visual search
component only (removing sub-

| networks related to scene

Feature ®] memory and transient detection)

Matching

Scene < [ search
Guidance ® Cue ®

Scene Spatial
Selection ©
Scene S/F
Selection B

Scene Spatial
Salience ©

t

Camera Scene S/F
Image ® Maps

* Green outlines highlight sub-
networks changed with respect
to the previous model
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Results

Table 1: The slopes of the RT x set size functions from the experiments, the previous model, and our model.

Experiments (Nordfang & Wolfe, 2014) Model (Grieben et al., 2020) | Model (this paper)

la | 1b | 3 4 6 Slopes X Slopes X Slopes X
3D(0) -1.2 | -1.2 -1.2 | 0.0 0.0 | 0.0 0.0
3D(1) 20 140243024 ]20-401|28 |00 00 | I.1-238 1.9
12(1) 2.8 | 438 2.8-48 |38 | 00 0.0 | 2.1-3.1 2.5
3D(012) | 2.3 | 43 58 |37 |23-58 |40 |24-44 3.5 | 2.0-5.7 4.0
26D 49 | 65| 34| 6.2 34-65 | 53% | 20-44 25 | 3.7-63 4.8
12D(012) 3.7 ] 6.7 3.7-6.7 | 5.2% | 22-44 35 | 39-6.7 5.3
3D(2) 19.8 | 19.8 19.8 | 8.2-15.1 11.2 | 19.8-22.3 | 21.2

* The mean for the 12D(012) condition is possibly misleading and the result of too few data points, since, from the direct
comparison on a per experiment level it seems clear that this condition is presumably less efficient than condition 26D.
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Conclusion

* In conclusion, the model provides a neural process account of the
visual search paradigm that includes the detection of the search cue
from visual transients, its commitment to feature memory, the
autonomous generation of a sequence of attentional selection
decisions, and the matching of the cued feature values to feature
values extracted at each attended location.

* The model accounts for conjunctive searches in a way that is
consistent with the original notion of binding through space.
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Conclusion

* | showed experimentally that allowing observers to first build a scene
working memory before performing visual search not only speeds
visual search as often reported, but also increases search efficiency,
an effect that has remained elusive for a long time.

* | explained how this effect emerges from the time- and state-
continuous neural processes in our model.
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Conclusion

* We extended our neural dynamic process model for scene perception
and top-down guided visual search (Grieben et al., 2020) to
qgualitatively fit the feature sharing and grouping effects found by
Nordfang and Wolfe (2014) for triple conjunction searches

* The new version of our model accounts for the differences between
the conditions observed by Nordfang and Wolfe (2014) without
resorting to preattentive binding



Conclusion

* We also addressed a major theoretical weakness of models of
conjunctive visual search (Proulx, 2007)



Conclusion

* We also addressed a major theoretical weakness of models of
conjunctive visual search (Proulx, 2007)

* Even though bottom-up salience may disturb the efficiency of top-
down guided visual search, it is crucial for the visual exploration of a
crowded scene in the absence of a task



Conclusion

* We also addressed a major theoretical weakness of models of
conjunctive visual search (Proulx, 2007)

* Even though bottom-up salience may disturb the efficiency of top-
down guided visual search, it is crucial for the visual exploration of a
crowded scene in the absence of a task

* Through the incorporation of bottom-up salience our model is now
able to autonomously explore the scene by bringing objects into the
attentional foreground through selective competition, even in the
absence of a task-induced top-down bias



Questions?

Thank you for your attention!
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