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ABSTRACT | Deep artificial neural networks apply principles of

the brain’s information processing that led to breakthroughs in

machine learning spanning many problem domains. Neuromor-

phic computing aims to take this a step further to chips more

directly inspired by the form and function of biological neural

circuits, so they can process new knowledge, adapt, behave,

and learn in real time at low power levels. Despite several

decades of research, until recently, very few published results

have shown that today’s neuromorphic chips can demonstrate

quantitative computational value. This is now changing with

the advent of Intel’s Loihi, a neuromorphic research processor

designed to support a broad range of spiking neural networks

with sufficient scale, performance, and features to deliver

competitive results compared to state-of-the-art contempo-

rary computing architectures. This survey reviews results that

are obtained to date with Loihi across the major algorithmic

domains under study, including deep learning approaches

and novel approaches that aim to more directly harness the

key features of spike-based neuromorphic hardware. While

conventional feedforward deep neural networks show modest

if any benefit on Loihi, more brain-inspired networks using

recurrence, precise spike-timing relationships, synaptic plas-

ticity, stochasticity, and sparsity perform certain computation

with orders of magnitude lower latency and energy compared
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to state-of-the-art conventional approaches. These compelling

neuromorphic networks solve a diverse range of problems

representative of brain-like computation, such as event-based

data processing, adaptive control, constrained optimization,

sparse feature regression, and graph search.

KEYWORDS | Computer architecture; neural network hardware;

neuromorphics.

I. I N T R O D U C T I O N
Neuromorphic computing seeks to understand and adapt
fundamental properties of neural architectures found in
nature in order to discover a new model of computer
architecture, one that is natively suited for classes of
brain-inspired computation that challenge the von Neu-
mann model. These properties include fully integrated
memory-and-computing, fine-grain parallelism, pervasive
feedback and recurrence, massive network fan-outs, low
precision and stochastic computation, and continuously
adaptive processes commonly associated with learning.
These properties also include sparse, spike-based interac-
tions to mediate distributed communication. Such spik-
ing neural networks (SNNs) naturally provide energy
efficiency by preferring inactive states and low-latency
processing by operating in an asynchronous, event-driven
manner.

The rethinking of computing that results from this pur-
suit intersects in unexpected ways with relevant fields,
such as machine learning, deep learning, artificial intelli-
gence, computational science, and computer architecture.
As the results in this survey show, a chip like Loihi and the
workloads that it supports do not fit within a well-defined
box, at least not a box that is well understood today.
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Some have viewed this ambiguity of scope and definition
critically, pointing to a woeful lack of a clear computational
model, such as the Turing machine, to guide principled
algorithm discovery. Such concerns are, of course, justified,
but, taking the long view, some patience is warranted.
Long before the arrival of the von Neumann architecture
and Turing’s mathematical abstraction, engineers were
devising special-purpose computing devices, dating back to
the 2000-year-old astrolabe and 18th-century mechanical
calculators. Those early machines, as special purpose as
they were, provided real-world value and guided the way
to the programmable instruction-sequenced model of the
general-purpose computer architecture that thrives today.

In the history of brain-inspired computing, one finds
many chips and systems dating back even before the
modern era of “neuromorphic” computing, as pioneered
by Carver Mead in the 1980s. The first of which, the Per-
ceptron Mark I [1] developed in the 1950s, implemented
16 analog neurons in a mainframe-sized cabinet enclosing
over four cubic meters of wires, mechanical potentiome-
ters, relays, and other state-of-the-art electrical devices of
its day. Almost all of these systems over the years were
designed as exploratory demonstrations, typically with no
expectations of outperforming conventional contemporary
computing technology for real-world problems.

More recent large-scale efforts include the Human Brain
Project systems, SpiNNaker [2], and BrainScaleS [3],
which were commissioned for the specific purpose of
accelerating neuroscience simulations [4]. Despite promis-
ing quantitative experiments [5], [6], these systems have
struggled to demonstrate value as a practical tool for
neuroscience discovery [7]. This illustrates the challenge
that the neuromorphic community faces: even with funda-
mental architectural advantages, it is difficult for research
systems to match the mature products of conventional
computing that have been optimized over generations
and even co-optimized with the underlying manufacturing
technology.

Traditionally, much of the hardware focus in this field
has gone to implementations of biological neural mech-
anisms in analog circuits, usually subthreshold circuits.
This has led to a long list of exotic chips over the past
three decades, beginning with Mead and Mahowald’s sil-
icon retina [8] through more recent chips impressively
integrating up to 65 536 analog neurons and boards with
one million neurons [9] and even some with synaptic plas-
ticity [10]. These chips have generally proven extremely
difficult to work with due to lack of software support,
highly constrained feature sets, small scale, and often
unpredictable operation. By far, the most impactful and
tangible outcome of this line of research is the event-based
vision sensor technology now being commercialized by at
least five companies, which traces a direct lineage back to
the original Caltech silicon retina research.

IBM’s TrueNorth [11] represents a milestone in neu-
romorphic research by showing that a highly integrated
digital neuromorphic chip can achieve compelling levels

of energy efficiency that many previously assumed would
require analog circuits. Implemented with a digital design
methodology, TrueNorth integrates one million neurons in
a single chip, far surpassing all prior neuromorphic chips,
and is able to support meaningful neural network inference
workloads at power levels as low as 70 mW. Nevertheless,
beyond generating a considerable body of proof-of-concept
application examples, few, if any, of TrueNorth’s published
results show it outperforming contemporary state-of-the-
art architectures. We speculate that this is due to its slow
speed exacerbated by a restrictive feature set. For example,
a recent demonstration of the locally competitive algo-
rithm (LCA) on TrueNorth [12] operates at similar power
levels as Loihi for the same size of the problem but requires
six to seven orders of magnitude longer to converge to a
solution as a result of the contortions necessary to run LCA
on that architecture.

Loihi, first published in 2018 [13], is a research proces-
sor developed with the goal of demonstrating the com-
putational value of neuromorphic architecture as realized
with today’s manufacturing technology. It has been made
available to a broad research community with a software
toolchain enabling rigorous performance and efficiency
benchmarking. Since Loihi was developed with the modest
resources of a research program and is currently being
used by a small (but brave) research developer community,
the value demonstrated may be considered a lower bound
on what this architecture is capable of delivering.

In our research with Loihi, we have encouraged a focus
on the fundamentals, theory, algorithms, and rigorous
benchmarking over hasty attempts to apply, demo, or com-
mercialize the technology. Given the many degrees of
freedom in the neuromorphic exploration space, the field
demands a rigorous, methodical approach for reliable
progress [14]. Demonstrations that appear impressive can
often obscure important caveats. We instead have focused
on the fundamentals, so the full scope of the technology
can be understood—both strengths and weaknesses. This
allows the most promising properties and pressing chal-
lenges to be prioritized appropriately.

In March 2018, Intel released Loihi for public use
with the launching of its Intel Neuromorphic Research
Community. This program, which now numbers over
100 research groups around the world, has led to a
growing body of quantitative results that, on the whole,
confirm both the value and the novelty of neuromorphic
architectures and algorithms compared to von Neumann
solutions. The results point to a niche for neuromorphic
chips that is different and more general than the prevailing
conventional view.

This article surveys these Loihi results and aims to
demarcate our understanding today of where this tech-
nology may provide practical value in the near future.
In addition to covering previously published work, we also
include new rigorously characterized examples that we
see confirming the breadth of neuromorphic computer
architecture.
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The rest of this survey is structured in six sections.
• Section II provides an overview of the Loihi chip,

systems, and software toolchain.
• Section III assesses the value of these systems for deep

learning applications that rely on backpropagation.
• Section IV describes results of running attractor net-

works, a class of algorithms that exploit the inherent
dynamics of spiking neuron models to solve problems
by converging to well-defined fixed points in phase
space.

• Section V describes results from more exotic
nongradient-based algorithms that leverage time- and
event-based computations to solve search, planning,
and optimization problems.

• Section VI surveys the use of the algorithmic method-
ologies from Sections II–V for enabling specific appli-
cations, some of which approach real-world practical
relevance.

• Section VII looks to the opportunities that emerge
from these Loihi results and what challenges remain.

The Supplementary Material provide more details about
the examples, results, and methodologies covered in this
survey.

II. L O I H I , S Y S T E M S , A N D S O F T W A R E
Here, we provide a brief overview of the Loihi chip, sys-
tems, and software stack as a foundation for the results
that follow. Interested readers are encouraged to refer
to prior publications [13], [15], [16] and Intel’s online
resources1 for further details.

A. Loihi Chip

Loihi implements 131 072 leaky-integrate-and-fire neu-
rons using a digital, discrete-time computational model
partitioned over 128 cores that are integrated into a spa-
tial, asynchronous mesh. Each core contains 128 kB of
synaptic state, and another 20 kB of routing tables that can
be flexibly allocated over its 1024 neurons, with network
compression and weight sharing mechanisms to support
the largest and most complex networks possible. All com-
munication between neurons occurs over spike events,
32-bit messages containing destination addressing, and,
sometimes, source addressing and graded-value payloads
that the network-on-chip routes between cores. Each core
is responsible for sending generated spikes to all down-
stream cores containing fan-out neurons and replicating
all ingress spikes to its associated fan-out neurons, based
on configured routing information. Weights and delays
associated with each synaptic connection control how the
replicated spikes are applied to the attached postsynaptic
neurons.

Numerous novel features distinguish Loihi from other
neuromorphic chips. Its synaptic memory is highly con-
figurable, supporting not just compression and weight

1https://www.intel.com/content/www/us/en/research/neuromorphic-
community.html

sharing but variable weight precision (from 1- to signed
9-b values), delays of up to 63 timesteps that are applied
uniquely to source–destination neuron pairs, and synap-
tic scratch variables called tags, inspired from biological
models of reinforcement learning, that serve as auxiliary
dynamic state variables associated with a synapse.

Plasticity rules may be specified by microcode and
assigned to synapses such that their state variables can,
if desired, programmatically evolve over time as a result
of presynaptic and postsynaptic spike activities that are
locally maintained and accessible to the synapse. For exam-
ple, Loihi supports the classic Bi and Poo Spike Timing
Dependent Plasticity rule, but it also supports a wide
range of other rules, such as rate-based Hebbian rules,
reward-modulated rules, and rules that mix activities fil-
tered on different timescales. Loihi’s plasticity rules have
found a use for a variety of adaptation, learning, and other
applications, sometimes in surprising ways. For example,
our graph search algorithm described in Section V-B uses
weight plasticity in conjunction with synaptic delays to
identify the shortest path in a given weighted graph.

Within a core, neurons may be distributed over multi-
ple compartments or dynamic state variables, each with
uniquely configured filtering dynamics. Compartments
communicate integer-value (graded) state variables over
tree topologies, analogous to a dendritic tree, and option-
ally generate spikes for communicating significant events
to other neurons. An example use of this multicompart-
ment feature is described in Section V-C, where they are
used to implement an online constraint satisfaction solver.

Other neuroinspired Loihi features include graded
reward spikes that modulate learning rules, axon and
refractory delays, pseudorandom noise that may be applied
to various neuron state variables, and a threshold adapta-
tion mechanism.

Loihi’s neuromorphic mesh and cores are built with
asynchronous circuits and, at the transistor level, commu-
nicate event-driven tokens of information between logic
stages. This allows spike messages and iterative processes
within each core to proceed as fast or slow as the com-
putation and pipeline activities allow without ever waiting
for clock edges or needlessly expending clock power dur-
ing periods of inactivity. Loihi’s asynchronous handshak-
ing extends to four off-chip interfaces that scale the 2-D
on-chip mesh into a similar second-level interchip mesh.
At their source, spikes destined for other chips are encap-
sulated with a 32-bit header that specifies the necessary
extra chip addressing.

In natural brains, various feedback processes introduce
synchronization and coherent information processing over
different neurons and brain regions. Loihi implements a
similar but comparatively brute force emergent synchro-
nization mechanism using periodic wavefronts of barrier
messages that may be viewed as a special category of
spikes. This barrier synchronization process allows all
chips and cores in a multichip mesh to operate indepen-
dently but, through barrier-mediated handshaking, still
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Fig. 1. Loihi systems. (a) Pohoiki Springs large-scale system with 768 Loihi chips. (b) Kapoho Bay USB form factor with two Loihi chips,

plus sensor, and event-based camera AER interfaces. (c) Nahuku 32-chip expansion board interfaced to the Intel Arria 10 FPGA development

system. Images copyright 2020 Intel, used with permission.

stay sufficiently synchronized in order to respect the
discrete-time computational model and ensure determin-
istic operation. Depending on application needs, timesteps
may be throttled to a real-time scale (one millisecond per
timestep is common), or the mesh may operate unthrot-
tled, proceeding as fast as the communication patterns in
the workload allow. The latter results in each timestep
consuming varying amounts of real time.

An important, perhaps surprising, ingredient in Loihi
is von Neumann processing. Each Loihi chip instantiates
three microcontroller-class x86 processors at the periphery
of the mesh that offloads management tasks from the
primary host CPU that is too frequent to run efficiently
off-chip, as well as SNN algorithmic processes that are too
infrequent to justify implementing in the neuromorphic
cores. The x86 cores are often used for data format conver-
sion, bridging between the dense, synchronous encodings
of conventional computing, and the spike- and event-based
encodings of the neuromorphic domain.

In space, time, and connectivity, Loihi’s architecture is
optimized for sparse and nonbatched computation. The
Loihi cores have narrow datapaths and memory word
sizes. Memory access is always local and hypergranular,
so data-dependent control flow is fast and efficient. Out-
side the core, all spike messages carry events related to
the activity of a single-source neuron, putting no pressure
on the architecture or algorithms to maintain activity over
blocks of neurons with shared connectivity. These prop-
erties place Loihi in a diametrically opposite architectural
regime compared to state-of-the-art von Neumann proces-
sors and deep learning accelerators, whose wide data-
paths, deep pipelines, and high memory access latencies
demand dense, deep, and predictably active networks in
order to achieve high performance and efficiency.

For more details on the Loihi chip architecture and
implementation, we refer the readers to Davies et al. [13].

B. Systems

Interfacing Loihi to conventional computer systems
requires bridging between the asynchronous, event-based
communication protocols of the neuromorphic domain
and the standard synchronous protocols of a host CPU

and peripherals. Any future commercialized form of the
architecture would integrate standard interfaces on-chip,
but, for Loihi, such straightforward engineering work was
outside the scope of what a small research team could
implement. As a consequence, the conversion must happen
off-chip in a field-programmable gate array (FPGA) device,
which introduces power and latency overhead whenever a
CPU transfers data to and from Loihi.

Three types of Loihi systems are available for use by
researchers, either through remote cloud access or on-site
in their labs:

• Kapoho Bay [see Fig. 1(b)]: A USB form factor device.
In addition to USB connectivity, this device includes
a second FPGA that exposes the Loihi mesh inter-
face in address event representation (AER) [17]
form compatible with the IniVation DAVIS240C [18]
event-based camera and offers extensibility for other
hardware sensors and actuators.

• Nahuku [see Fig. 1(c)]: A 32-chip Loihi board
provisioned with power supplies, power measure-
ment circuitry, and a standard FMC connector that
allows it to be interfaced to an Arria 10 FPGA
development board. The Arria 10’s embedded ARM
CPU, in coordination with a more distant Intel CPU
connected over Ethernet, handles data I/O and pro-
gramming of the Loihi mesh. The Arria 10 also pro-
vides interfaces to the DAVIS 240C camera and other
standard peripheral devices.

• Pohoiki Springs [Fig. 1(a)]: A rack-mounted chassis
enclosing 768 Loihi chips, FPGA interface boards,
and an integrated IA host CPU [16]. Pohoiki Springs
implements 100 million neurons in five standard
server rack units, corresponding to over 100 million
times less space per neuron than the Perceptron
Mark I. It typically operates at under 300 W, which
is less power than what most single-CPU datacenter
servers require.

C. Software

The Loihi system architecture is a spatially distributed,
heterogeneous collection of computing elements that calls
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for a unique software framework to make the overall
system functional and performant. No existing mainstream
framework provides suitable abstractions that span neu-
romorphic cores, embedded x86 processors, FPGA I/O
interfaces, and tiers of host CPUs. The unifying principle
of the system is event-based asynchronous communica-
tion. Across higher levels, communication occurs with
message passing over statically allocated channels using
standard interfaces, such as Ethernet and USB, with mes-
sages buffered in the memories of host von Neumann
processors. At the other extreme, within the neuromorphic
mesh, the granularity of messages is much smaller with
nanosecond-timescale messages communicating single-bit
spike events between neurons routed over hardware chan-
nels with no buffering.

We refer to the set of software tools for this sys-
tem as NxSDK. The framework provides APIs, com-
pilers, and debugging tools for programming Loihi,
as one would expect from any SDK, but it also includes
other necessary ingredients, such as a runtime for the
lower layers and interfacing to a variety of third-party
frameworks at both the development and runtime
levels.

Coding for this system involves a mixture of declarative
programming to specify the structure of the networks and
imperative programming of conventional code that runs
on the von Neumann processors. NxSDK defines a special
category of processes in the latter category called snips, or
sequential neural interfacing processes, that communicate
over channels and are relocatable over the embedded
x86 processors in the Loihi mesh. Snips are responsible
for interacting with neurons, often handling real-time data
format conversion, sequencing different phases of oper-
ation, such as learning and inference, and configuring
neuron parameters as needed.

NxSDK allows users to specify a network at various
levels of abstraction, from the lowest level where neuron
parameters are individually controlled, to an intermediate
level where neurons or groups of neurons are defined
by their desired behavior, to the highest level where the
network itself is abstracted away inside a prepackaged
parameterized module designed to perform a specific
task.

NxSDK also acts as a backend for several third-party
frameworks that allow users to specify networks in a
language that they are more familiar with. The neural engi-
neering framework (NEF) [19] and other related capabili-
ties are supported through the Nengo toolchain [20] from
Applied Brain Research. PyTorch and Tensorflow models
are supported through the SNN Conversion Toolbox [21],
and directly training deep SNNs is supported through
SLAYER [22].

Beyond interfacing with the spiking neurons running on
Loihi, snips on the host CPU provide real-time interfaces
to a variety of robotic and simulation frameworks. To date,
interfaces have been implemented for the Robot Operating
System (ROS), Yet Another Robot Platform (YARP), and

simulators, such as Mujoco, Gazebo, and the Neurorobotics
Platform [23].

III. D E E P L E A R N I N G F O R S P I K I N G
N E U R A L N E T W O R K S
Deep learning offers a natural starting point for SNN
research. The basic deep learning paradigm of applying the
error backpropagation algorithm to differentiable artificial
neural networks (ANNs) has proven to be a powerful tool
for optimizing these high-dimensional, nonlinear models
with precollected data sets to solve a wide range of prob-
lems. Given the success of deep learning for ANNs, one
may reasonably hope that the same approach would also
yield successes for SNNs.

However, before proceeding, we must first resolve a
common misconception that arises in this area. Many
incorrectly assume that SNN chips, such as Loihi, are
designed specifically to accelerate standard deep learning
models, such as MobileNets and ResNets, with the aim
being to outperform GPUs and ASICs in energy efficiency
and speed on these workloads. Based on this incorrect
assumption, the focus turns to compare the energy and
latency of the multiply-and-accumulate (MAC) operation
required by ANNs to the analogous “synaptic operations”
in SNNs. This view completely ignores the time and energy
cost of implementing the internal dynamics of spiking
neurons, which add important computational capabilities
to an SNN, but is not used by ANNs.

Even if we just focus on comparing MACs, the argument
goes that the synaptic operation is a simpler accumulation
operation than the MAC and should, therefore, reduce
energy. While this is true in principle, the energy for a
synaptic operation on Loihi is greater than a MAC in a
typical custom ANN accelerator. This comes from the over-
head of supporting sparse network architectures, a need
that goes hand-in-hand with supporting sparse activa-
tion in time- and event-driven computations. In contrast,
today’s state-of-the-art GPUs and ANN accelerators achieve
extremely low MAC energies with highly vectorized data-
paths and communication channels designed for streaming
dense batches of data. Furthermore, approximating a sin-
gle MAC in an SNN typically requires many synaptic oper-
ations spread out over time (with rate coding), resulting in
even higher energy and latency.

In short, it would be naïve to ignore ANN literature as
we search for effective SNN architectures, but it would be
equally naïve to expect SNNs to outperform ANN acceler-
ators on the very task that they have been optimized for.
Deep learning offers a fine starting point in a journey of
SNN algorithm discovery, but it represents only one niche
of the algorithmic universe available to neuromorphic
hardware.

Deep learning-inspired SNN algorithms broadly fall into
two main categories (Fig. 2): online approaches and offline
approaches. Online approaches first deploy an SNN to
neuromorphic hardware and then use on-chip plasticity
features to approximate the backpropagation algorithm
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Fig. 2. Deep learning methodologies for SNNs.

and training process itself, evolving the network para-
meters in real-time and in place as data arrives. Offline
approaches use a prerecorded data set to train a model
on a CPU or GPU and later deploy the trained model
to neuromorphic hardware. Offline approaches include
conversion approaches that convert a given ANN into an
approximately equivalent SNN and direct approaches that
build an exact ANN model using the SNN parameters
and then directly learn the SNN parameters by applying
backpropagation to the ANN model.

The Loihi research community has investigated a vari-
ety of deep SNN topologies and workloads using offline-
conversion, offline-direct, and online training approaches.
In the following review, we focus on examples that have
been rigorously benchmarked in accuracy, energy, and time
to solution (delay) against comparable or equivalent ANN
solutions running on conventional architectures.

In all examples, the accuracy of the trained SNNs
matches the accuracy of the reference implementations.
However, energy and delay comparisons vary widely
depending on the training approach, task complexity, and
implementation details. Fig. 3 summarizes energy and time
to solution ratios for eight tasks spanning from single-core
to multichip workloads. The diagonal line in Fig. 3 marks
energy–delay-product (EDP) parity above or below which
Loihi either outperforms or underperforms the given ref-
erence architecture, respectively. Some tasks are compared
on multiple reference architectures that are distinguished
by different markers.

Most comparisons against Loihi use a batch size of
1 (solid markers), which is beneficial for real-time tasks
that demand a low-latency response to new data. Increas-
ing the batch size requires waiting for more data to fill
up the batch before processing begins, thus increasing
latency. However, a lower response latency does not neces-
sarily equate to higher throughput. Batched and pipelined

architectures might have longer latencies, but they achieve
very high throughput by processing many samples at once,
whereas Loihi only processes one at a time. The EDP of

Fig. 3. Ratio of energy and delay between Loihi and reference

architectures for all deep SNNs benchmarked to date. Loihi achieves

similar accuracy to the reference architecture in all cases. Marker

shape indicates the reference architecture, marker size indicates the

number of Loihi cores required (log scale from 1 to 2320), and

marker color indicates the training method. Loihi always uses batch

size 1, but reference architectures can use a batch size of 1 (solid

markers) or many (hollow markers). Arrows indicate the reference

architecture’s improvement when batch sizes greater than 1 are

used. See Section S.I in the Supplementary Material for full

workload details. Points to the upper right of the diagonal line are

examples that run with superior EDP on Loihi; points to the bottom

left run with worse EDP on Loihi.
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both CPU and GPU architectures improves significantly
when batching is used (hollow markers).

The remainder of this section describes the general
trends and lessons that emerge from these examples.
Section S.I in the Supplementary Material provides more
details about the methodologies and individual workloads.

A. Deep SNN Conversion

Many frameworks achieve near-lossless conversion of
ANNs to SNNs on traditional image classification tasks,
such as CIFAR or ImageNet [21], [24]–[26]. ANN-to-SNN
conversion involves mapping the trained ANN parameters
into corresponding SNN parameters. The conversion
methodology ensures that the resulting SNN behav-
ior matches the ANN’s behavior according to some
spike-based information encoding model. As with conven-
tional low-power DNN accelerators, mapping parameters
to Loihi requires quantization, which can introduce errors.

Conversion frameworks typically represent a
continuous-valued ANN activation as a spike rate in
an SNN. While an ANN may process a single static input
vector, such as an image frame, through a series of
dense operations, the SNN performs a series of sparse
computations over multiple time steps or iterations. This
temporally “unrolled” computation can be a useful feature
of SNNs because it supports a dynamic tradeoff between
classification accuracy and inference latency (see Fig. S1 in
the Supplementary Material). However, when using a
spike rate to represent a neural activation, additional bits
of precision cost exponentially more encoding time.

Two end-to-end DNN conversion frameworks are
currently available for Loihi: NengoDL [24] and the SNN
Conversion Toolbox [21]. NengoDL invokes TensorFlow
to train an ANN offline, which is then converted to a
rate-coded SNN and optionally composed with other SNN
modules trained using Nengo’s NEF. The SNN Conversion
Toolbox ingests ANNs from frameworks, such as Tensor-
Flow, PyTorch, or Cafe, converts them to Loihi-compatible
deep SNNs using a custom Loihi backend, and maps the
resulting SNN to Loihi using NxTF [27].

Fig. 3 compares the latency and energy efficiency of
converted deep SNNs running on Loihi against the orig-
inal ANNs running on conventional hardware architec-
tures. The tasks include audio keyword spotting [28],
CIFAR image classification with MobileNet convolu-
tional networks, generation of embeddings for similarity
search [29], and segmentation of ISBI cell images using a
modified U-Net architecture [30].

Loihi is substantially more energy efficient on almost all
of these workloads (up to 100×). For small workloads that
use only a few Loihi cores (red, above parity line), Loihi’s
delay is on par with the reference architectures, even
for architectures that are specifically designed for batch
size 1 inference, such as the Movidius Neural Compute
Stick (triangles). In contrast, large-scale DNN workloads,
especially those spanning multiple chips, take significantly

longer on Loihi (red, below parity line) than on the refer-
ence architectures.

Loihi’s poor latency scaling with increasing workload
size results from two factors. First, higher layer counts
demand an increasing number of time steps in order
to achieve maximum accuracy. This is a well-understood
and fundamental property of rate-coded feedforward net-
works [21], [31], [32]. Second, the need to distribute
larger networks across multiple Loihi chips leads to con-
gestion in the links between the chips and often a dramatic
increase in execution time per time step. Converted deep
networks, with dense cross-sectional connectivity and high
aggregate spike rates, stress Loihi’s off-chip mesh links,
which have roughly 30× lower bandwidth than its on-chip
links.

B. Direct Deep SNN Training

Direct SNN training uses backpropagation to directly
optimize the parameters of an SNN. This relies on formu-
lating the SNN as an equivalent ANN with binary input,
a discontinuous spike generation function as the ANN’s
nonlinearity, and self-recurrent connections to model the
spiking neuron subthreshold state dynamics. This formu-
lation of SNN error backpropagation has been successfully
demonstrated in recent years [22], [33]–[36], and several
implementations have been applied to Loihi networks.

Direct training approaches lead to emergent
spike-timing codes that better optimize latency and
energy efficiency and are, therefore, of particular interest
when information is encoded in the relative timing
between input spikes, such as in data produced by
event-based neuromorphic sensors. More generally,
exploiting the temporal domain to encode information
leads to more efficient information encoding than rate
coding and accordingly fewer spikes, lower latency, and
lower energy per computation. In fact, latencies and spike
counts can be explicitly prioritized by the loss function.

While highly effective for small networks, directly train-
ing large networks proves challenging. Self-recurrence
turns training into a temporal credit assignment problem
and, therefore, requires backpropagation through time
(BPTT), treating the SNN as a recurrent ANN. Each time
step of the SNN represents one iteration of the recurrent
ANN, which leads to an enormous increase in the time
and memory footprint of training compared to training
a feedforward ANN of the same size. Furthermore, back-
propagation requires calculating the derivative of the dis-
continuous spike function, which is undefined. Instead,
a surrogate function is used in the derivative’s place,
an approximation that introduces errors that accumulate
with increasing network size.

Directly trained SNNs benchmarked on Loihi to
date have used the Spike Layer Error Reassign-
ment (SLAYER) algorithm [22], spatiotemporal backprop-
agation (STDB) [37], and a combination of BPTT with
deep rewiring proposed in [36], which trains recurrent
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long short-term SNNs (LSNNs) with capabilities similar to
conventional LSTMs.

SLAYER was used to train a network for DVS Ges-
ture recognition, a task first proposed in [33] as an
SNN on TrueNorth. Loihi’s greater flexibility allows for a
smaller network than TrueNorth, which combines with a
faster operation to result in a 50× lower EDP. SLAYER
with Loihi has also been used for tactile digit recogni-
tion by See et al. [38] and for sensor fusion because of
the ease of combining modalities in the spike domain.
Ceolini et al. [39] combined EMG and vision data in a ges-
ture classification task, and Taunyazov et al. [40] combined
vision and tactile data in a grasping task.

STDB was used by Tang et al. [41] with Loihi in a robot
navigation task, in which Loihi is comparable to an edge
GPU in speed but lower in power, resulting in an 83× lower
EDP.

We first applied LSNNs on Loihi to solve the Sequential
MNIST problem, achieving 6 × 104 lower EDP than a GPU
for batch size 1 and 37× compared to larger batch sizes
for which GPUs are better suited. Recently, much larger
collections of LSNNs interconnected with feedforward sub-
networks, all trained with BPTT, have solved relational
reasoning problems from the bAbI question-answering
data set [42]. Running on Loihi, interchip congestion
and rate coding inefficiencies from the network’s feed-
forward components degrade its performance compared
to a standalone LSNN, but the example still manages
to outperform similarly structured LSTM-based solutions
of the problem [43] running on a GPU. This example,
which consumes up to 2320 Loihi cores, is the largest
deep learning network to date showing gains compared to
conventional architectures.

Results for these experiments are shown in tones of blue
and purple in Fig. 3 above the EDP parity line. These
workloads vary in scale from 1 to 2320 Loihi cores but
always outperform the reference architecture by orders
of magnitude. This outperformance illustrates the benefit
of direct training to produce sparsely active and highly
efficient SNNs.

C. Online Approximations of Backpropagation

Sections III-A and III-B describe offline training meth-
ods, but it is also desirable to learn online from streaming
data. While backpropagation is an effective algorithm for
training DNNs, it is expensive to implement in terms of
time, computation, and memory, especially for BPTT [44].
A particular contributor to this expense is the locking
problem [45] that originates from the dependence of a
layer’s update on propagating its output forward and the
resulting error backward that makes native BPTT ill-suited
for incremental online learning.

To harness backpropagation for neuromorphic hard-
ware, specific simplifications of the algorithm have been
proposed, which narrow its scope and approximate its gra-
dient descent behavior, such as random feedback connec-
tions [46], synthetic gradients [45], eligibility propagation

as a way to circumvent locking [47], skip connections in
the backward path to avoid backpropagating data through
multiple layers [48], or only adapting pretrained output
layers during online learning instead of training an entire
DNN from scratch.

Several of these approaches are under development
for Intel’s neuromorphic architecture. As the first step,
instances of the delta rule2 Δw ∝ xpre · σ�

post · δypost

for single-layer online learning have been demonstrated
on Loihi, including Surrogate Online Error Learning
(SOEL) [49] and the Prescribed Error Sensitivity (PES)
rule [50]. SOEL was used to train the last layer of a pre-
trained DVS gesture recognition network online, allowing
Loihi to learn new gestures in real time. The PES learning
rule was used to endow an SNN robotic arm controller
with the ability to adapt to changes in real-time, such as
when the arm picks up a heavy object. The approach is
currently being evaluated for use as an assistive robotic
arm controller for wheelchair users. Using the PES rule,
Loihi outperforms an alternative CPU implementation by
around 100× in EDP (see Fig. 3).

IV. AT T R A C T O R N E T W O R K S
Unlike the standard artificial neuron, spiking neurons have
temporal behavior. Therefore, networks of spiking neu-
rons become high-dimensional, highly nonlinear dynami-
cal systems. One defining characteristic of brains is that
the computation that they perform is the result of the
collective interactions between their neurons, an emergent
phenomenon, such as eddies in a stream. This is funda-
mentally different from conventional models of computing,
including ANNs, that are defined by precise, fully compre-
hensive, and usually sequentially formulated specifications
of their behavior. Spiking neurons in the brain have no such
precise model. Through feedback, adaptation, and interac-
tions with the environment, neurons evolve to collectively
behave in some desired manner despite uncertainty or
nondeterminism in the precise behavior of each individual
neural unit.

In deep learning, the training process is a dynamic
system exhibiting these characteristics, but the execution
of a trained ANN is not. With SNNs, a much broader
range of computation under study, beyond just supervised
learning, depends on collective dynamics.

Attractor dynamics are the simplest form of collec-
tive dynamics that lead to useful, nontrivial computation.
One rigorous strategy for developing an attractor-based
SNN algorithm is to prove that the network satisfies a
convergence guarantee, known as a Lyapunov condition.
A Lyapunov condition does not precisely describe the net-
work’s dynamics, but its existence implies that the network
will, eventually, converge to a particular well-defined equi-
librium state. Sometimes, the network’s equilibrium states
can be mathematically characterized in closed form, as is

2xpre refers to the presynaptic activation, σ�
post is the postsynaptic

pseudoderivative of the activation function, and δypost is the postsy-
naptic error.
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the case for the LCA described in the following, but, even
when not, the network may behave in an intuitively under-
standable manner that allows for complex attractor-based
behavior to be engineered, as in the case of dynamic neural
fields (DNFs) described in Section IV-B.

In short, attractor networks are a class of SNN algo-
rithms that solve problems or provide useful behavior with
their emergent dynamics based on the equilibrium states
they converge to given static inputs. This class provides a
fruitful next step in a journey of SNN algorithm discovery
beyond the deep learning paradigm.

A. Locally Competitive Algorithm

The simplest attractor networks, for example, Hopfield
networks, have a number of neurons that are connected in
an all-to-all fashion with a symmetric weight matrix. The
dynamics of all such networks satisfy a Lyapunov condition
and will converge to a fixed point that corresponds to
a minimum value of an energy function. Conventionally,
these networks are defined with analog-valued rate neu-
rons that make them mathematically tractable. For neu-
romorphic applications, it is often possible to rigorously
link the rate neuron dynamics with the corresponding
dynamics of an equivalent SNN, given a suitable choice of
leaky-integrate-and-fire neuron model [51].

One simple attractor network that performs the useful
nontrivial computation in its dynamics is the LCA [52].
In an LCA network, an input signal is projected to a
set of feature neurons that are mutually inhibited with
recurrent connections. The balance between feedforward
input and recurrent inhibition induces competition in the
network, and over time, the system converges to a sparsely
active set of features that best explain the input. If the
parameters of the network are configured according to
the LCA algorithm, then the network’s equilibrium state
will exactly correspond to the solution of the well-known
LASSO regression problem. LASSO long predates LCA and
today finds wide use in statistics as a technique for reduc-
ing overfitting and identifying sparse feature sets.

Previous results [13], [53] demonstrated the efficiency
of neuromorphic architectures, such as Loihi, for solv-
ing LASSO problems with LCA, especially the convo-
lutional form of the problem.3 Convolutional LASSO,
typically applied to sparse coding of images, applies a
translation-invariant dictionary over patches or windows
of the input. Sharing dictionary weights between patches
reduces the memory required to store weights. Unlike
traditional feedforward convolutional neural networks,
convolutional LCA with overlapping patches recurrently
connects all feature neurons associated with all patches of
an image. This creates a challenging problem for conven-
tional gradient descent-based LASSO solvers using matrix
data structures since they must process the entire feature
and dictionary matrices sequentially to convergence.

3See Section S.II.A in the Supplementary Material for LCA network
architecture.

Fig. 4. Time-to-solution (top) and dynamic energy

consumption (bottom) for two ways of generating a sparse code for

an input image by solving a LASSO optimization problem: LCA

implemented on Loihi (blue) and FISTA implemented on x86 CPU

(red). Region I corresponds to small LASSO problems, for which a

nonconvolutional variant of LCA suffices (16 × 16 pixel input image

and dictionaries consisting of 32–1024 elements). On the other

hand, convolutional LCA is used to solve the LASSO problems in

regions II–IV. The input sizes for regions II and III are 24 × 24 and

76 × 76 pixels, respectively, with dictionaries of 50–180 elements.

In region IV, input sizes are in the range of 130 × 130–300 ×
300 pixels with dictionaries containing 120–250 elements. In all

convolutional regions (II–IV), a patch and a stride size of 8 × 8 and

4 pixels are used, respectively. CPU implementation of FISTA is

nonconvolutional. The problem sizes analyzed in region IV span

multiple Loihi chips and are too large to benchmark on a CPU.

We refer to LCA as task 9 in Section VIII.

NxSDK provides a compiler for convolutional LCA net-
works that exploit weight sharing to make efficient use
of on-chip memory and support networks spanning mil-
lions of feature neurons. Fig. 4 compares LCA on Loihi4

to a CPU4 running FISTA [54], the leading conventional
algorithm. Both algorithms generate sparse codes of input
images5 by solving the same LASSO problem to the same
quality of the solution, as measured by the LASSO objective
function. Loihi LCA objective values typically saturate at
∼1% of the optimal value, which sets the convergence
threshold of the evaluations. This is approximate but suffi-
cient for many applications.6

4Loihi: Wolf Mountain board with NxSDK v0.75; CPU: Intel
Core i7-4790 3.6-GHz w/ 32-GB RAM. BIOS: AMI F5. OS: Ubuntu
16.04 with HyperThreading disabled, running SPAMS solver for FISTA
http://spams-devel.gforge.inria.fr/

5Randomly chosen images from the Oxford-IIIT Pet data set [55].
6Given sufficiently long run times, FISTA can solve LASSO to much

lower objective values than LCA on Loihi. We also evaluated least angle
regression (LARS) [56] and found that it performs worse than FISTA for
our problem’s sparsity levels and approximate convergence thresholds.
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Regime I in Fig. 4 corresponds to small problem sizes
that are solved using nonconvolutional LCA on Loihi. While
the time and energy to solution increase exponentially
for FISTA on the CPU, the same metrics increase only
moderately at first on Loihi until a problem size of around
500 unknowns, for which the LCA network fits on a sin-
gle neuron core. Beyond this point, the time to solution
actually declines slightly due to increasing multicore par-
allelism. As a result, LCA on Loihi outperforms FISTA on
CPU by one to two orders of magnitude in this regime.

Continued scaling is shown in regimes II–IV. The prob-
lem sizes considered in regimes II and III fit on a single
Loihi chip but differ by an order of magnitude in the
number of cores used to solve the problem. At the end of
regime III, when compared against the CPU running FISTA,
we observe up to five orders of magnitude advantage in
time-to-solution and six orders of magnitude advantage
in energy consumption for LCA on Loihi for the largest
problem sizes of ∼105 unknowns, as shown in Fig. 4.

FISTA does not exploit the convolutional structure of
these problems7 and, therefore, has a bloated memory
footprint compared to Loihi. However, profiling revealed
that FISTA’s performance would be relatively unaffected
by dictionary feature sharing. Its performance is limited
by internal control flow, not DRAM access latency or
bandwidth, over any of the tested regimes. DRAM-related
power is excluded from our calculation of the CPU’s
dynamic energy in Fig. 4.

Regime IV corresponds to LCA networks distributed
over two to 26 chips, with input sizes approaching those
typically seen in real-world applications. Fig. 4 shows a
slowdown in convergence as the growing LCA networks
are scaled over an increasing number of chips. The slow-
down is almost entirely due to spike congestion on Loihi’s
chip-to-chip interfaces. Nevertheless, scaling in regime IV
remains superior to the CPU’s general trend extrapolated
from regimes I–III. Spike congestion is not unique to large
LCA workloads; it is also seen in deep spiking networks.

LCA provides one of the best illustrations of a
fine-grained parallel algorithm with sparse activation
leveraging the matching properties of neuromorphic archi-
tecture to achieve order of magnitude gains. With highly
vectorized datapaths suffering large penalties for bit-level
data-dependent branching, conventional architectures are
unable to efficiently exploit the algorithm’s sparse activity
and fine-grain parallelism. We refer the readers to [57] for
details of this example.

Looking ahead to applications of LCA, sparse coding
attracts interest for real-time feature extraction as part
of visual processing pipelines, so much as to moti-
vate research into fast feedforward approximations of
LASSO [58]. One study showed that neuromorphic sparse
coding can provide some protection from adversarial
images, with Loihi’s LCA implementation giving results
on par with CPU-based full precision algorithms [59].

7See Section S.II.B in the Supplementary Material.

Fig. 5. Connectivity motive of a DNF and the activation profile

(membrane potential) of neurons in the excitatory layer. The spiking

activity only forms over a small strongly activated region; it can be

sustained if the external input ceases.

This suggests a natural deployment of LCA as the first
processing layer of such a neuromorphic pipeline. This
also raises the need for online, unsupervised dictionary
learning to form efficient sparse representations of sen-
sory input. To date, numerous approaches for dictionary
learning with SNNs have been proposed [60]–[62] with
work underway to map these and further generalizations
to Loihi.

B. Dynamic Neural Fields

DNFs provide a modular algorithmic framework for
implementing states, relations, behavior, and memory
using neural attractor networks. In the DNF framework,
attractor states correspond to behavioral attractors, such as
the location of an object or the velocity of ego-motion [63].
A particular DNF network typically implements a single
behavioral variable with all-to-all connectivity, where exci-
tation from input stimulation is balanced by inhibition
from active states, as in a winner-take-all (WTA) net-
work (see Fig. 5). The most strongly stimulated state or
states manifest as persistent activation that discourages
the expression of other less stimulated states, a working-
memory-like construct. In addition, local excitatory con-
nections between neurons with similar receptive fields
stabilize the manifold structure of the neural field [64].
Neuroscience studies have found DNFs to successfully
model many cognitive brain processes that require working
memory [63].

The DNF computational framework has been proposed
as an intuitive programming abstraction for neuromor-
phic hardware to facilitate computing in neural state
machines [64], [65]. Stable states help to cope with intrin-
sic variability of analog neuromorphic circuits and sensory
noise [66]. Each DNF unit is defined by a small number
of parameters that determine its dynamical behavior, e.g.,
single- or multipeak solutions, persistent, or input-driven
activation.

Although DNFs have been used as a programming
framework for autonomous systems and cognitive robots,
such as the C++ toolbox Cedar [67], their high com-
putational cost has hindered scaling to useful real-world
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tasks. Similar to LCA, sparse activity and pervasively recur-
rent connections prevent them from running efficiently on
conventional CPU, GPU, or DNN accelerator architectures.
They are, however, very well suited for Loihi’s central fea-
tures, such as fine-grained parallelism, sparse event-based
processing, and effective weight sharing.

A two-layer 2-D DNF network has been implemented
on Loihi to track a moving object viewed by a DVS
event-based camera [68]. The first layer in this network
filters out sensor noise and forms multiple activity “bumps”
over locations of moving objects. In the second layer,
the DNF tracks the selected object, inhibiting other dis-
tractor objects, even if the tracked object stops or the
distractor events strengthen or briefly occlude the tracked
object. The network on Loihi reliably tracks objects with a
precision of 3.5 pixels when processing 240 × 180 input on
a 64 × 64 neural grid in real time. This simple module can
be used to track visual features on Loihi and may serve
as a preprocessing step for visual odometry and SLAM
(see Section VI-C), for setting an attentional focus on
objects in complex scenes, or to visually track navigation
targets [69].

V. C O M P U T I N G W I T H T I M E
The results from applying backpropagation directly to
SNNs (see Section III-B) hint at the gains in efficiency and
speed that may come from optimizing SNNs to encode and
process information using spatiotemporal spike patterns.
While backpropagation and other gradient-based optimiza-
tion techniques can exploit fine-scale timing when given a
suitable differentiable network architecture, to more fully
explore the very large space of networks that compute
with precise spike timing relationships, especially those
involving dynamic state, delay, plasticity, and stochasticity,
we must cast a wider net.

A number of handcrafted SNN algorithms have been
proposed in recent years to solve well-defined computa-
tional problems using spike-based temporal information
processing. When implemented on neuromorphic architec-
tures, these algorithms promise speed and efficiency gains
by exploiting fine-grain parallelism and event-based com-
putation. Examples include computational primitives, such
as sorting, max, min, and median operations [70], a wide
range of graph algorithms [71]–[74], NP-complete/hard
problems, such as constraint satisfaction [75], boolean
satisfiability [76], dynamic programming [77], and
quadratic unconstrained binary optimization [78], [79],
and novel Turing-complete computational frameworks,
such as Stick [80] and SN P [81].

Due to the insufficient maturity of prior neuromorphic
platforms, few of these proposed algorithms have been
mapped to neuromorphic hardware platforms and those
that have were often demonstrated in a rudimentary form
with no reported speed or energy measurements. With
Loihi, researchers are now able to evaluate these novel
spike-based algorithms at a sufficient scale and perfor-
mance to support meaningful benchmarking. This section

covers examples obtained to date that have been rigorously
characterized and compared to conventional solutions.
So far, these examples are confirming their promise to
provide orders of magnitude gains.

A. Nearest Neighbor Search

As the first demonstration of an efficient and scalable
application to run on our 768-chip Pohoiki Springs system,
we prototyped a temporally coded implementation of the
approximate nearest neighbor search problem [16]. This
implementation directly encodes search query patterns
with the relative times of a single synchronized spike wave-
front distributed to all Loihi chips in the system. By com-
puting the cosine distance of the query value against all
datapoints distributed over the system’s cores, Pohoiki
Springs is able to rapidly identify the closest matches,
as defined by the angular (cosine) distance metric.

For normalized datapoints and query vectors, cosine
similarity corresponds to the dot product, an operation that
can be computed by integrate-and-fire neurons over time
as query spikes arrive. Each stored datapoint is mapped
over the input weights of a single neuron, with one
eight-bit weight assigned per datapoint dimension. Given
a particular broadcast input query, neurons correspond-
ing to sufficiently close datapoints will produce output
match spikes in a temporally ordered manner similar to
the encoding of input query spikes, with an earlier spike
indicating a stronger match. Hence, the subsequent sorting
task is simplified to just observing the order in which
output spikes are generated. When only the k nearest
matches are needed, the network can stop as soon as k

spikes are observed.
While data-parallel architectures are able to efficiently

compute batched dot products using their plentiful
multiply-accumulator resources operating in parallel, they
are extremely inefficient at executing the sequential top-k
sorting operation. A high-speed implementation of the
top-k computation on a GPU requires considerable effort
and extra latency and is the focus of GPU k-NN search
implementations. In contrast, the operation comes nearly
for free for the Loihi SNN implementation since waiting
for the earliest spikes to arrive consumes no incremental
energy or time.

Moreover, in contrast to the most optimized conven-
tional approximate nearest neighbor implementations,
new datapoints can be added to the search database online
with O(1) complexity simply by configuring more neurons
in the database, which are already physically provisioned
in the system.

The actual Loihi implementation uses a dimensional-
ity reduction step, involving principal and independent
component analysis (PCA/ICA), in order to support arbi-
trary input data types while limiting the stored datapoint
dimensionality to a fixed value. The PCA/ICA reduction
step also simultaneously projects the queries to a sparse
representation suitable for efficient spike encoding. Both
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query routing resources and synaptic memory resources
scale linearly with increasing dimensionality, so a tradeoff
must be made between the accuracy of the dot product
calculation and the number of datapoints that can be
stored in the system.

The Loihi k-NN implementation was evaluated against
other state-of-the-art approximate nearest neighbor algo-
rithms on a number of standard data sets comprising as
many as 1M datapoints with 960 dimensions each. For
each individual metric, it is possible to find an algo-
rithm that outperforms Loihi, but the Loihi implementation
achieves comparable accuracy while offering a unique
combination of low latency (3.03 ms), high throughput
(366 queries/s), low power (10.8-W dynamic neuromor-
phic power and 10× lower than CPU solutions), fast build
time, and online insertion of new datapoints with O(1)

complexity. Compared to an equivalent brute force dot
product implementation on a CPU, the Pohoiki Springs
implementation outperforms by a factor of 685 in EDP
(see [16] for details). We refer to a k-NN search as task 11
in Section VIII.

B. Graph Search

Our next example of computing with time is inspired
by spike wavefronts observed in the hippocampus during
route planning. These wavefronts appear to be part of a
mental search for the shortest route through a map of
the space [82]. Ponulak and Hopfield [71] proposed an
algorithm that uses a spike wavefront to temporally search
a graph embodied in an SNN. Synapses are modified by
plasticity rules as the wavefront passes, allowing the path
to later be read out of the network. Other wavefront-based
algorithms have been proposed, including the classic
Dijkstra algorithm, but SNN formulations, in particular,
promise excellent performance by exploiting parallelism,
time-based computation, and sparse spike activity.

We implemented a streamlined version of the
Ponulak and Hopfield [71] algorithm, simplifying it
with linear integration dynamics and binarized synaptic
plasticity rules, while enhancing it with synaptic delays
encoding small (6-bit) positive integer edge costs. A formal
specification of this algorithm is provided in Section S.III
in the Supplementary Material.

Searching a graph on Loihi involves first partitioning
and mapping the graph to the physical cores of a multi-
chip Loihi system. This host compilation process can take
hours for a million-node graph, so Loihi is best suited for
repeated queries on a single static graph. The source node
of a search is selected by configuring its corresponding
neuron to route its spikes to the host CPU. Next, the search
is triggered by stimulating the destination node (neuron)
to fire. This causes a wavefront of spikes to propagate
through the graph until reaching the source node; at
that time, the host CPU will receive a spike and halt the
execution. During propagation, whenever a spike in the
wavefront first reaches an intermediate neuron, plasticity

rules zero the weight of the connection(s) on which it
arrived, leaving behind the connection facing in the oppo-
site direction. Once the search completes, the host CPU
reads the network state, following the path of nonzero
weights to discover the shortest path.

A theoretical analysis of the search phase suggests
the search time scales as O(nd

√
E), where n refers to the

number of edges along the graph’s shortest path, d is the
average edge cost along the path, and E is proportional to
the number of edges (and nodes) in the graph. The

√
E

term arises as a result of the 2-D Loihi system topology
and the fact that the barrier synchronization has to touch
all neurons. This is a fundamental factor often overlooked
in SNN performance analyses that erroneously assume
that timesteps have a constant global value regardless of
network scale.

The final readout phase relies on sequential von
Neumann execution, which is not reflective of how such a
search function would be deployed in a larger SNN applica-
tion. Nevertheless, the sequential readout scales as O(n·e),
where e is the average number of fan-out edges per node
along the critical path, so, interestingly, this does not affect
the asymptotic scaling behavior. Asymptotically, for large
graphs, the neuromorphic algorithm, therefore, scales as
O(

√
E), whereas even modern Dijkstra implementations

that are optimized for bounded edge costs scale at best
linearly in N and E [84], [85].

To assess the actual performance of Loihi’s graph search
implementation, we evaluated 1651 searches between ran-
domly selected nodes in 34 Watts–Strogatz small-world
graphs [83]. The graphs spanned 100 to one million
nodes and 10–290 edges per node. We chose small-world
graphs since they arise in many real-world settings, such
as social, electrical, semantic, and logistics networks,
are easily synthetically generated, and stress the com-
munication/sorting functions of both neuromorphic and
conventional search implementations. We compared the
wavefront search times of Loihi to the search times of
a CPU implementation8 of Dial’s algorithm, a variant of
Dijkstra’s algorithm optimized for bounded integer edge
costs. Search time results as a function of total edges, E,
are shown in Fig. 6(b).

As expected, the CPU shows an approximately linear
dependence on E over the evaluated graphs. Loihi’s search
times initially show a sublinear dependence on E, as pre-
dicted by theory, but the maximum search times in larger
graphs show an increasing dependence, closer to linear.
As the likely explanation, we found that spike conges-
tion dominates the search times, especially between Loihi
chips in the larger graphs. The small graph diameters of
small-world networks exacerbate this effect since most
searches will typically visit the majority of all edges in
the graph by the time the critical path is identified.

8CPU: Intel Xeon Gold 6136 with 384-GB RAM, running SLES11,
evaluated with Python 3.6.3, NetworkX library augmented with an
optimized graph search implementation based on Dial’s algorithm. Loihi:
Nahuku and Pohoiki Springs system running NxSDK 0.97.
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Fig. 6. (a) Example Loihi SNN graph search. A given directed graph is mapped to its Loihi SNN implementation, where each node becomes

one or more neurons such that graph edge costs are mapped to synaptic delays, under the requirement that neurons with more than one

fan-out have zero added delay. Edges are annotated as pairs of (delay and weight). During a backward-propagating search starting from the

specified destination node, synaptic weights are zeroed such that the final shortest path(s) will be encoded by paths with remaining nonzero

weights. (b) Graph search time comparisons for a variety of small-world graphs [83] spanning 100 to one million nodes and 10–290 edges per

node, with a rewiring probability of 0.1. The main plot shows distributions of measured search times of a CPU9 running Dijkstra’s algorithm

optimized for small integer edge weights, and those for Loihi to search and mark all synaptic weights along the critical path (see text for

details). Depending on the size of the graph, between 1 and 102 Loihi chips are used. The outliers signify data that are below fifth and above

95th percentiles, and the boxes capture the interquartile range from Q1 to Q3. The inset shows the ratio of mean CPU search times to mean

Loihi search times from the main plot. We refer to graph search as task 12 in Section VIII.

Nevertheless, these results show Loihi outperforming the
CPU by over 100× for all but the smallest graphs tested.

The shortest path search is a foundational graph
algorithm, and our formulation here is representative
of many similar SNN algorithms proposed in recent
years that support a much broader range of graph
computations [72]–[74], [77]. Loihi’s encouraging quanti-
tative results suggest that similar order-of-magnitude gains
may be realized as this domain is further developed and
mapped to neuromorphic hardware.

C. Stochastic Constrained Optimization

Precise spike timings can also be employed to solve
the NP-complete class of constraint satisfaction problems
(CSPs). A CSP involves finding permissible values to a
set of variables X that satisfy a set of constraints C on
the domain of allowed values of those variables. The
combinatorial NP-complete nature of CSPs arises from an
exponentially increasing set of possible solution configu-
rations as the number of variables grows. Thus, finding a
general solution is intractable despite the fact that verify-
ing candidate solutions is computationally cheap.

State-of-the-art algorithms for CSPs are either system-
atic or stochastic greedy. In the case of systematic strate-
gies, metaheuristics, such as backtracking, generate new
candidates for X iteratively, which is guaranteed to find
the complete set of solutions given enough time, but such
complete solvers have exponential worst case complexity.

Stochastic search strategies, in contrast, randomly draw
new assignments for X resulting in an incomplete solution
set and are not guaranteed to find any solutions. Never-
theless, stochastic search algorithms tend to exhibit better
scalability and can also be applied to more general con-
straint optimization problems by designing cost functions
that penalize nonsatisfied constraints.

Motivated by the early work of Hopfield and Tank [86]
on solving CSPs with Boltzmann machines, neuromorphic
approaches have adopted such cost function-based strate-
gies. Jonke et al. [87] proposed the use of stochastic SNNs
governed by an energy function

E = ST (t) · W · S(t) =
�

i

(Si ·
�

j

Wij · Sj) (1)

to solve CSPs. In (1), S is the instantaneous spike vector
and W the synaptic weight matrix. In contrast to Boltz-
mann machines, W can be either symmetric or asymmetric.
The SNN is set up in such a way that different values of
the CSP variables X are represented by one-hot coded
WTA subnetworks, and W encodes the constraints C.
Buesing et al. [75] had shown that the stochastic dynamics
of such networks converge exponentially fast to a probabil-
ity distribution p ∝ exp(−E/η), where η parameterizes the
degree of stochasticity. In addition, the fine-scale timing
dynamics of SNNs allow them to readily escape from
local minima, making them more effective in finding the
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Fig. 7. (a) Top: configuration of multiple WTA networks participating in one exemplary row/column constraint of the Latin square problem

during a state transition from time ti to ti�1 that reduces the number of conflicting variable assignments. Each variable with a legal (green)

or conflicting (red) assignment is represented by a WTA network. Bottom: illustration of iterative search space pruning. As neurons fire

(green), they inhibit other conflicting neurons (red). (b)–(d) Average energy, time, and EDP scaling performance over a range

of 4–400 variables of the Loihi CSP solver compared to CBC algorithm on a CPU11. For each problem size, the average is over five random

initialization of the compartments voltage shown as data points. In the case of the 20× 20 problem ECPU/ELoihi � 2.79× 103,

TCPU/TLoihi � 4.39× 101 and EDPCPU/EDPLoihi � 1.22× 105. (e) Decomposition of the time to solution T into the number of time steps to

solution t (left) and mean time per timestep τ (right). We refer to CSP as task 13 in Section VIII.

global minimum than Boltzmann machines, even though
both sample from the same underlying distribution. For
an accessible overview of how stochastic spiking neurons
solve such problems, see [88].

For a neuromorphic CSP solver to be viable, the SNN
must not only visit energetically minimum states but
also detect when one is visited. Previous neuromor-
phic hardware implementations [89]–[96] required a von
Neumann processor to continuously read out the entire
high-dimensional network state S to evaluate the cost
function and identify solutions. This leads to an imprac-
tical off-chip communication bottleneck that only wors-
ens with increasing problem size. Instead, our solver
(see Section S.IV in the Supplementary Material) also com-
putes the cost function in a distributed and event-based
way in the neuromorphic network. It only communicates
with a CPU whenever a solution is found.

We use the NP-complete Latin square problem9 to
demonstrate and assess the performance of our distributed
Loihi CSP solver. Fig. 7(a) depicts the principle of opera-
tion of the solver. WTAs represent individual variables X

in the Latin square problem, with the ith neuron in each
WTA corresponding to the variable assuming value i ∈
(1, . . . , N). The all-different constraints between variables
in a row or column are realized by inhibitory connections
between WTA neurons corresponding to conflicting vari-
able assignments. As a result of the stochastic network
dynamics, some neurons will fire earlier than others and
inhibit other conflicting neurons whose activity would
contradict the current state. This process results in an
iterative pruning of the search space until, finally, only

9A Latin square consists of an N × N array of variables, each of
which can take on N possible values such that no number is repeated
in a row or column of the grid.

nonconflicting neurons remain active, corresponding to the
solution of the Latin square problem.

Following this approach, we have benchmarked the time
and energy required by Loihi to find solutions against
those of a mixed-integer linear programming solver on a
CPU.10 We chose the Coin-or Branch and Cut (CBC) solver
provided by COIN-OR projects11 since, like the Loihi solver,
it uses an incomplete energy minimizer and is among the
best performing open-source linear programming solvers
in a range of benchmarks [97].

The results in Fig. 7(b)–(d) illustrate that the Loihi
solver is significantly faster and more energy-efficient than
the CPU reference. Overall, it achieves at least three orders
of magnitude lower energy–delay product over a wide
range of problem sizes spanning from four to 400 CSP
variables. Besides Loihi’s energy efficiency, the key reason
behind Loihi’s outperformance in this domain is the scaling
behavior of the time to solution T = t · τ , which is
composed of the algorithmic timesteps to solution t and the
average time per timestep τ , as shown in Fig. 7(e). The ini-
tial rise of T in the single-core regime up to a problem
with 25 variables is mainly driven by τ . However, as the
problem size grows further across multiple cores, τ flattens
out favorably below 8 μs per timestep due to multicore par-
allelism. Beyond 25 variables, a continued exponential rise
of T driven by t is expected as an unavoidable consequence
of the exponentially growing search space.

Although, like any incomplete solver, our solver is not
able to formally guarantee the existence of a solution or
to always find any or all solutions, in practice, it has
found optimal solutions for the largest CSPs to date of any

10Loihi: Nahuku board running NxSDK 0.95; CPU: Intel Core
i7-9700K; and RAM: 128 GB, running Ubuntu 16.04.6 LTS.

11www.coin-or.org/projects/
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neuromorphic system without yet exhausting the resources
of a single Loihi chip. Furthermore, its ability to find
solutions incrementally makes it particularly attractive for
time-critical applications. Relaxing the notification thresh-
old of the online energy evaluation network causes the
solver to more quickly identify approximate solutions,
which provides a latency–accuracy tradeoff mechanism
that could be valuable for some applications.

Loihi has also been used to solve other types of CSP
problems, such as assigning optimal asset allocations in
the context of real-time decision making [98], achiev-
ing 1000× faster execution than an exact algorithm on
GPU or to tackle Boolean satisfiability problems [76]
(see Section S.IV in the Supplementary Material).

These results illustrate how stochastic spike timing
dynamics can expand the space of computation supported
by neuromorphic networks, yielding surprisingly fast and
efficient results. This domain is still in its infancy, with
much still to be learned. For example, a better under-
standing of the role that noise correlations play in our
CSP solver may unlock even greater gains, as discussed in
Section S.IV in the Supplementary Material. Furthermore,
stochastic SNNs show promise for a number of challeng-
ing computational problems beyond constraint satisfaction
and optimization. Applying methods from probabilistic
signal processing, stochastic SNNs can be designed to
tackle a variety of inference and learning problems that
optimally leverage their time-coding capabilities [99]. Sto-
chastic SNNs have been shown to perform probabilistic
inference on general graphical models through spike-based
stochastic sampling and can even learn such models using
unsupervised synaptic plasticity mechanisms [88]. These
algorithms are conventionally expensive to compute and,
therefore, stand to benefit substantially once fully formu-
lated in this neuromorphic paradigm.

VI. A P P L I C AT I O N S
Beyond algorithmic benchmarking, a number of promis-
ing applications have been demonstrated on Loihi,
as described here.

A. Event-Based Sensing and Perception

Event-based sensing is a rapidly evolving sister technol-
ogy to neuromorphic computing. Event-based vision sensor
pixels each detect intensity changes over time, asynchro-
nously generating events whenever the change exceeds a
threshold. They exhibit an impressive combination of prop-
erties, including self-adaptation, low-power consumption,
low-latency, and high dynamic range [100]. Unfortunately,
their spiking output differs so significantly from traditional
computer vision frames that new processing algorithms
and architectures must be developed in order to realize
compelling real-world applications.

Great early strides have been made on extracting useful
information from spiking vision data (recently reviewed
in [101]). However, these algorithms are still nascent.

Many can only handle low-resolution data, and they often
rely on offline or frame-based processing pipelines that
negate the desirable low-power and low-latency character-
istics of the sensors themselves.

Architectures such as Loihi preserve these characteristics
by natively operating on spiking data in an event-based
fashion. Much work remains to be done on the spik-
ing algorithm front, but steady progress is being made.
Early efforts demonstrate digit recognition, fusion of visual
and tactile perception [40], fusion of visual and EMG
information [39], persistent attention and tracking [68],
and online learning of gestures [102] using event-based
sensors interfaced to Loihi.

As the resolution of event-based sensors continues to
scale, we require computing architectures that can scale
with them, and scalable parallel computing architecture,
such as Loihi, is a natural choice. However, increasing
resolution also increases the communication bandwidth
requirement between sensor and processor, which, in turn,
introduces a number of challenges relating to power,
interface cost, and degraded temporal resolution. These
motivate a fresh look at the partitioning of neuromorphic
processing across sensor and computing elements, a topic
of ongoing research (see Section VII-C).

B. Odor Recognition and Learning

Olfaction is another emerging sensing domain showing
promise for Loihi. Although odor and chemical sensing
may not obviously benefit from spike-based low-latency
processing, odor sensing poses its own technical challenges
that make it a good match for neuromorphic technol-
ogy. Today’s odor sensors, just like odor sensing neurons,
are unreliable and require frequent recalibration. High
levels of noise and occlusion inherent to this modality
create a difficult and potentially compute-intensive recog-
nition problem at odds with edge device deployment.
A large diversity of real-world odors with significant nat-
ural variability calls for online learning and fine-tuning in
the field.

At the same time, chemical sensing is one of nature’s
oldest sensing modalities. The neural circuits found in the
mammalian olfactory bulb and the insect antenna lobe are
examples of convergent evolution, having independently
evolved over hundreds of millions of years to solve the
same problem in remarkably similar ways [103]. This
suggests that these circuits are specially optimized for this
task, and studying them may yield new ideas for machine
learning. In fact, neuroscience in this domain is relatively
mature and motivates a bottom-up approach to algorithm
discovery.

Harvesting insights from recent neuroscience modeling,
Imam and Cleland [104] abstracted a biophysical model
of the olfactory bulb to a level that could be mapped
into the Loihi architecture. They implemented mechanisms
supporting both odor recognition and new odor learning
and evaluated the model’s performance using a publicly
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available gas sensor array data set [105]. The model
invokes many features that are uncommon in conventional
machine learning, such as phasor attractor dynamics, spike
phase coding of information, random high-dimensional
projection through recurrent neuron populations, neuro-
genesis, and fast-acting learning rules mixing both delay
and weight adaptation. While a conventional formulation
of the algorithm can surely be written to run on a von
Neumann processor, it would be more difficult to formulate
and inefficient to execute.

Given single training samples over ten classes of chem-
icals, Loihi’s neuroscience-inspired algorithm is able to
successfully classify test samples drawn from the same
data set or corrupted with high levels of impulse noise.
Loihi achieves a high level of classification accuracy (92%),
outperforming by over 40% four other conventional algo-
rithms, including a seven-layer backprop-trained deep
autoencoder with the same number of units as the Loihi
model. Furthermore, the Loihi algorithm is able to learn
new odors sequentially with no discernable degradation
in classification performance on odor classes learned ear-
lier, whereas, with a similar training sequence, the deep
autoencoder’s performance drops to chance level. Given
a sufficient number of training samples (3000 per class),
the deep autoencoder is able to reach the same 92%
classification accuracy as Loihi achieves with a single
sample, and given a further doubling of training samples
(to 6000 per class), it can outperform Loihi by 4%. Scaled
over a wide range of network sizes from 20 cores to 128,
Loihi is able to classify odor samples in under 3 ms with
less than 1 mJ of energy [104].

C. Closed-Loop Control for Robotics

Closing the loop between sensing and actuation is
another exciting area for neuromorphic computing and
Loihi. Event-driven processing in neuromorphic hardware
matches the temporal character and low-latency require-
ments of closed-loop control. Several approaches to motor
control have been demonstrated on Loihi.

The NEF and Nengo [20] have been used to config-
ure an adaptive neural implementation of a proportional–
integral–differential (PID) controller, in which Loihi’s
learning features allow the integral (I) term to adapt
online to mitigate state-dependent perturbations. The lat-
ter was demonstrated using a simulated SNN [106] and
was recently realized on Loihi to control a six-degree-of-
freedom force-controlled robot arm [50]. This adaptive
PID controller on Loihi outperforms CPU and GPU imple-
mentations [50]. The CPU and GPU use 4.6× and 43.2×
more power than Loihi, respectively. The CPU and Loihi
had similar latency, but the GPU was 42% slower. Fast
processing leads to faster convergence to the set value and,
thus, more precise control. The lower Loihi latency also
resulted in 1.49× and 1.57× improved accuracy over the
CPU and GPU when subjected to a model of accelerated
frictional wear.

Glatz et al. [107] proposed another SNN controller
design, later implemented on Loihi by Stagsted et al. [108]
to control a one-degree-of-freedom drone platform.
Demonstrating the benefits of event-based vision,
the drone processes input from a DAVIS240C event-based
camera to visually track the high-speed roll motions of
an artificial horizon drawn on a spinning disk [109]
(see Fig. S5 in the Supplementary Material). An earlier
implementation used a conventional embedded CPU
to process the event input. On each event arrival,
it computed the horizon angle with a Hough transform,
which was then passed to a PID controller to generate
motor control signals that actively drive the horizon
angle to zero. The Loihi implementation improves on that
earlier result by replacing the CPU with an end-to-end
event-based SNN. It implements the Hough transform
with a prestructured four-layer SNN followed by an
event-based PID controller implemented with DNF
attractor networks. DNF populations store the controller’s
measured and set values that are combined through
relational connections to compute the controller’s error,
derivative, and integral terms. The Loihi implementation
supports control rates of up to 20 kHz with less than 1-ms
latency [110], improving the earlier CPU-based control
rate by 22× and its latency by 15%. Moreover, while the
CPU implementation offers no efficient path to supporting
more complex visual processing, the Loihi implementation
can easily integrate other event-based inference networks,
such as backprop-trained convolutional SNNs, to greatly
expand its onboard visual processing intelligence while
maintaining low latency and power.

Another example of neuromorphic motor control uses
central pattern generators (CPGs), inspired by neural
circuits generating rhythmic activity patterns in ani-
mals [111]. Several groups have demonstrated their
capability to generate locomotion patterns of insect-like
robots [112]. Recently, Polykretis et al. [113] realized a
CPG on Loihi to control the gait of a hexapod robot. They
configured a circuit of spiking neurons to exhibit bursting
behavior, connected these bursting circuits into oscillating
pairs, and used their activity to generate gaits for the
robot. Using a similar approach of mimicking biological
circuits, Balachandar and Michmizos [114] demonstrated
precise (error < 3◦) real-time control of a robotic head,
inspired by oculomotor control in animals. CPG-based
control can be an important component of the overall
control architecture, in which complex rhythmic patterns
need to be generated in a parametric and adaptive way, as,
e.g., in robots that change their locomotive behavior when
switching between environments (water versus ground)
[115]. This is an active area of research both in bioinspired
robotics and neuromorphic computing [116]–[119].

D. Simultaneous Localization and Mapping

Simultaneous Localization and Mapping (SLAM) is an
important robotics task that requires: 1) state estimation
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Fig. 8. Neuromorphic SLAM SNN: the velocity signal, scaled with

plastic synapses to the shift neurons, drives the path integration

network, in which an attractor-bump forms over current HD. When a

visual cue (a blinking LED) is detected, plastic synapses store

associations between the visually driven LED neurons and the HD

rings. When the visual landmark is revisited, an error between the

current HD estimate and the previously learned one is computed.

Depending on the sign and magnitude of the error, the learned map

is updated, and the velocity representation is calibrated.

from onboard sensory information, often using sensor
fusion and path integration, to maintain the absolute
position of the agent and 2) formation of a map, often by
storing locations of objects of interest in the environment.
Because of errors and drift in the state estimation, the key
problem in SLAM is to detect and reduce errors when
forming the map. The problem is typically formulated as
optimization and becomes a prohibitively costly computa-
tion in large environments.

Neural network solutions to the SLAM problem were
inspired by biological circuits, known from neurophysio-
logical studies of animal navigation. The first such SLAM
network, RatSLAM, was proposed by Milford et al. [120].
Functional modules of this network, such as head direc-
tion, speed, place, and visual landmark cells, have been
implemented on Loihi on a simple mobile robot platform,
showing how precise state estimation can be achieved in
a neuromorphic chip and how maps can be formed using
on-chip synaptic plasticity [121].

In this work, DNFs (see Section IV) are used to represent
the heading direction (HD) and position of the robot. The
1-D HD “ring” (see Fig. 8) integrates information from
different sources. If HD cannot be directly sensed, dead
reckoning based on path integration of motor commands
or IMU velocity measurements can be used instead. Precise
path integration is achieved by using velocity measure-
ments to drive a set of rate-coded velocity neurons (“shift
neurons” in Fig. 8). A stronger input results in a higher
firing rate of the corresponding velocity neuron and a
faster shift of the attractor-bump in the HD ring. As shown
in [122], this velocity mapping can be precisely calibrated,
achieving an error below 1◦.

Drift in the pose representation is corrected when the
robot recognizes a location that it has previously visited.

To achieve pose correction in an SNN, positions in the
environment are associated with visual cues, using plas-
tic synapses on Loihi, shown as red arrows in Fig. 8.
Whenever a visual cue learned in this way is recognized
later, the pose is recalled. The competitive dynamics of
the DNF storing the HD inhibit the current path-integrated
estimation of the pose and allow it to be replaced with
the memory-induced estimation. Synaptic potentiation and
depression lead to online updates of the map.

In a similar line of work, Tang et al. [123] realized a 1-D
SLAM network on Loihi that performed head direction esti-
mation using spike-based recursive Bayesian inference and
map formation based on perceived distances to objects.
In this SNN, also inspired by RatSLAM, a DNF performs
path integration, while a network of multicompartment
neurons combines the dead reckoning estimate with the
perceived one in an approximately Bayesian way. A net-
work for reference frame transformation forms an allo-
centric representation of the environment in another DNF,
which uses synaptic plasticity rules to learn and update
the map. This SLAM model was benchmarked on Loihi
against a standard particle-filter-based SLAM implemen-
tation, GMapping, running on a CPU (Intel i7-4850HQ).
Loihi was found to consume 100× less dynamic power
than the CPU while achieving similar accuracy (within five
degrees of angular precision). We refer to 1-D SLAM as task
10 in Section VIII.

E. Other Applications

A number of other early stage application demonstra-
tions with Loihi have been published. Some recent exam-
ples include a feedforward associative memory with the
ability to learn new patterns online [124], a dynamic radio
frequency (RF) waveform adaptation algorithm for robust
communication in noisy RF environments [125], and an
event-driven random walk-based solver for the heat diffu-
sion equation running on both Loihi and TrueNorth [126].

Many other application domains are being actively pur-
sued without any published results to date. These include
anomaly detection for security and fault monitoring, sparse
coding and reconstruction applications, particle collider
trajectory classification, brain-computer interfacing with
EEG sensors and direct neural probes, drone-based struc-
tural health monitoring, and numerous audio applications,
such as low-power keyword spotting, speech recognition,
speaker identification, denoising, and sound localization.

VII. O U T L O O K
A. Deep Networks

Our results in Section III show that ANNs converted
to rate-coded deep SNNs on Loihi may offer significant
gains in energy efficiency compared to ANNs on con-
ventional architectures but generally result in long laten-
cies, especially for large-scale problems spanning multiple
chips. Interchip mesh congestion is a problem in these
networks. The congestion can be mitigated by introducing
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relay cores or multicast interchip links in future silicon
to perform spike fan-out locally on the destination chip,
but, even with such measures, the latency versus pre-
cision tradeoff remains for these networks and worsens
with deeper networks. These attributes render converted
rate-coded models less attractive for neuromorphic archi-
tectures optimized for sparsity and, therefore, demand
other approaches.

At the algorithmic level, direct training approaches have
already demonstrated vast improvements in latency and,
thereby, also indirectly in energy. When combined with
conversion approaches, hybrid direct approaches promise
to reduce congestion and latency. Wu et al. [127] proposed
the TANDEM framework for cotraining of an ANN and
SNN, while Rathi et al. [32] developed a hybrid SNN train-
ing approach, in which backpropagation is used to train the
network further after conversion. Both approaches result
in inference times on the order of 10× shorter compared
to standard rate coded networks. Another direction is
to use temporal instead of rate-based spike coding to
represent ANN activities. Zhang et al. [128] have shown
that temporal coding using a logarithmic time scale is the
most efficient, second only to time-to-first-spike (TTFS)
[129] coding. However, compared to TTFS, the logarithmic
time scale approach is more compatible with popular deep
learning techniques.

Various forms of network compression developed
recently [130] save both energy, time, and memory
resources that are especially precious for compute-
in-memory architectures. These include dimensionality
reduction techniques and opportunities to exploit sparsity
arising from pruning before, during, or after offline train-
ing. In addition, algorithms such as deep rewiring [36],
which keeps the level of sparsity stable and constantly
recycles less important synapses to where they are most
needed for a task, lend themselves well for memory-
constrained, adaptive online learning approaches on
neuromorphic systems.

B. Online Learning

Today, online backprop approximation algorithms, such
as SOEL and PES (see Section III-C), provide valuable
examples that work within the constraints of the Loihi
architecture. Longer term, more general algorithms, such
as eligibility propagation [47] and equilibrium propaga-
tion [131] that approximate BPTT without the anticausal
requirement of propagating information back in time, may
succeed in scaling up online learning. These neuromor-
phic approaches face hardware efficiency and convergence
challenges, given that they process training data sample-
by-sample rather than in batches, and their weight updates
throughout the network tend to be nonsparse. Fundamen-
tally, all online backprop approximation algorithms suffer
from the same basic challenge that network parameters are
updated in small gradient-directed steps and require large
numbers of supervised training samples to generalize.

Achieving supervised real-time online learning repre-
sents a significant challenge to the field of artificial intel-
ligence in general, and we are still very far away from
realizing it in deep networks. New ideas are needed to
achieve continual learning from sequential data samples
that do not naturally arrive independently and identically
distributed.

Looking to nature as a guide, as well as to the examples
running on Loihi today, we foresee a greater focus on net-
work modularity and shallow learning algorithms that form
associations between different neuron populations and
between distributed semantic representations. We view
backpropagation primarily as a tool for offline training
using large precollected data sets, with a diversity of
fast-acting shallow plasticity rules providing rapid online
learning and adaptation.

C. Sensor Integration

Loihi’s low latency is particularly valuable for sen-
sory processing where the value of sensory information
degrades rapidly over time. However, as the algorithms
and applications for sensory processing mature and scale,
they will demand more of the architecture and interfaces.
In order to move beyond the relatively low-dimensional
data streams featured in the examples of this survey,
it would not be enough to simply boost the bandwidth of
chip interfaces and spike encoding functions. Neuromor-
phic chips are fundamentally incompatible with standard
data formats, which tend to come in dense arrays cap-
tured on synchronous intervals, i.e., the legacy of decades
of conventional computing. To truly unlock the value
of neuromorphic computing at scale, offering compelling
power and latency advantages for all manner of computing
devices processing real-world data streams, the sensors
themselves will need to be rearchitected in an event-based
paradigm. They will need to perform sufficient sparse
feature coding to avoid saturating low-power interface
bandwidths with irrelevant or unchanging raw data that
only degrade timing resolution and waste downstream
processing power.

Accordingly, we see a need for tighter integration of
sensors and processing, motivating disruptive codevelop-
ment across neuromorphic sensing circuits, architecture,
and algorithms. For example, the PCA/ICA preprocess-
ing performed on the host CPU in our k-NN example
(see Section V-A) suggests a simple linear transform that
could be embedded in any sensor to sparsify its output
data. LASSO-style sparse coding offers another technique
that might conventionally be seen as too heavyweight
for sensor integration but, in its neuromorphic LCA form,
comes nearly for free in power and latency. Following
nature’s lead, we foresee more exotic nonlinear trans-
formations providing even greater gains, such as spec-
tral transforms with Hopf oscillator cascades, as in the
cochlea [132], and motion detection or segmentation
using synchronization effects as some have modeled in the
retina [133].
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Vision applications are likely to be the first to
demand such tighter integration. Event-based cameras
and spike-based neuromorphic processing are two parallel
architectures communicating over a serial interface, and
raw vision data require particularly high bandwidth. The
3-D vertical integration offers the potential to drastically
reduce the power and latency of the interface and allow
for a tileable sensory processing architecture. From an
engineering perspective, the design and fabrication of
this interface remain open challenges, but the required
technologies are already maturing in conventional vision
sensors.

D. Robotics

For many decades, technologists and science fiction
authors alike have foreseen robots that are able to navigate
and interact in the real world, operating with autonomy
and agility alongside humans. Such robots remain out
of reach today although great strides are being made
on some of the required sensing, actuation, mechanical,
and energy storage technologies. To intelligently control
these robots of the future, a difficult integration must
occur between classical control theory that relies on precise
models of the environment and artificial intelligence that
would ground such models in perception. Interacting with
dynamic and often unpredictable real-world environments
remains challenging for the most advanced modern robots,
but it comes effortlessly to humans. It is exactly the task
that biological brains have evolved to solve, and it is one
of the most promising application areas of neuromorphic
technology.

Deep neural networks have enabled state-of-the-art
results in computer vision and are the natural first choice
when building powerful perceptual systems for robots.
Despite excellent results in constrained environments
where sufficient training data can be precollected, deep
learning approaches still fall short of addressing the needs
of real-world robotic vision even for tasks such as object
recognition that are commonly considered solved [134].
While today’s neuromorphic technology might lower the
power and latency of DNNs for certain visual infer-
ence tasks, new adaptive algorithms are needed that can
cope with the full variability and unpredictability of the
real world. We believe that these will be well matched
for the unique features of neuromorphic architectures
and will come in time with ongoing algorithm-hardware
codevelopment.

Beyond basic visual inference, robust robotic systems
will need to integrate multiple sensing modalities: vision,
sound, proprioception, and touch. Loihi has shown early
promising results for combined tactile and visual sens-
ing [40], showing how event-based data coding and
processing can provide a unifying language for effi-
cient multisensory integration, with spikes encoding both
temporal and spatial information of significance to the
task across modalities. The dynamical nature of certain

neuromorphic networks, such as DNFs (see Section IV-B),
provides another unifying primitive, in which memory
states can be created in attractor networks to bridge the
different timescales of diverse sensory streams. Further-
more, these neuromorphic networks with recurrent and
feedback connections enable top-down, attentional modu-
lation of sensory processing, focusing computing resources
on the most relevant aspects for the task while helping to
ignore noise and occlusions affecting input from any one
modality.

Demonstrating progress toward the above goals,
we recently integrated multiple neuromorphic sensory-
motor networks into a single Loihi chip to control a
humanoid robot’s interaction with its environment in an
object-learning task.12 In this work, three SNNs were
implemented on Loihi: an object-recognition network
receiving input from an event-based camera and labels
extracted from speech commands; a spatial-memory net-
work that tracked the pose of the robot’s head from its
motor encoders and memorized object locations using
on-chip plasticity; and a DNF-based neural state machine
responsible for reconfiguring different parts of the archi-
tecture as required by the current behavior (looking, learn-
ing an object, recognizing it, or communicating with the
user). While we are still far from implementing the robust,
adaptive brains that future robotic systems will require
to interact freely in the real world, this work shows that
we can already build relatively complex neuromorphic
applications by composing heterogeneous modules draw-
ing from a toolbox of common algorithmic primitives,
such as spike-based communication, attractor networks,
top-down and bottom-up attention, working memory, and
local learning rules.

E. Planning, Optimization, and Reasoning

Planning and reasoning are arguably the most advanced
and elusive capabilities of natural intelligent systems.
While recent progress in deep learning has provided great
gains in subsymbolic inference and learning, neural net-
works have yet to offer the same gains for higher order
symbolic and analogical reasoning tasks, and let alone
provide a unified system that can leverage these capabil-
ities to plan actions and optimize for high-level objectives.
Vector symbolic architectures (VSAs) offer a mathemat-
ical, connectionist framework that supports rich knowl-
edge representations and reasoning in high-dimensional
spaces [135]. VSAs interfaced with deep networks and
generalizations of the optimization and search algorithms
described in this survey could provide a path to enabling
fast, efficient, and scalable next-generation AI capabilities
on neuromorphic hardware.

The first step toward a scalable VSA framework was
recently implemented on Loihi in the form of a spike-based
phasor associative memory network, TPAM [136]. Asso-
ciative memories in high-dimensional VSA representations

12See https://vimeo.com/intelpr/review/486107679/6863af9df8
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require a cleanup operation that relies on all-to-all commu-
nication across vector dimensions, limiting VSA’s scaling
and efficiency on any hardware architecture. The TPAM,
in contrast, and especially Loihi’s spike-based TPAM imple-
mentation, introduces sparsity in both the connectivity and
activity of the network, thereby increasing its ability to
scale. The phasor-based dynamics of TPAM also provide
other novel benefits, such as the ability to reliably store and
operate on graded-valued patterns, unlike traditional Hop-
field networks that can only reliably store binary-valued
patterns, even when implemented with graded-value rate
neurons.

A future fully developed spike-based phasor VSA frame-
work promises sufficient capacity to solve nontrivial AI
problems quickly and efficiently. In scaled form, emerging
VSA algorithms, such as the Resonator for vector fac-
torization [136], [137], could provide breakthroughs for
AI problems that are poorly solved today, such as scene
understanding and hierarchical semantic decomposition.

F. Programming Model

With Loihi’s promising results and the broad space of
possibility that these open up, soon, one of the most
pressing problems facing the neuromorphic field will be
its fragmented and noncomposable collection of pro-
gramming models and frameworks. While a number of
SNN development frameworks have been released for
use, they all generally fall into one of three categories:
point tools for optimizing SNN parameters with super-
vised training, usually with deep learning techniques
(SNN Conversion Toolbox [21], SLAYER [22], Whet-
stone [138], and EONS [139]), SNN simulators for conven-
tional architectures that offer low-level programming APIs
(Brian 2 [140], BindsNET [141]), or low-level interfaces
and runtime frameworks for configuring neuromorphic
hardware (PyNN [142], Fugu [143], and our own NxSDK).
While the increasing level of exploration and activity in
this space is encouraging, none of these frameworks yet
present compelling new programming abstractions that
are composable and span a wide diversity of algorithms
understudy in the field, such as those that are covered by
the examples in this survey.

One possible exception is Nengo [20], a toolchain
built around its foundational NEF [19] that optimizes the
parameters of spiking neuron populations to implement
defined dynamical system equations. Nengo has proven to
be successful at composing a particular class of rate-coded
SNNs, including deep networks, to construct large-scale
applications with promising functionality in simulation,
for example, the SPAUN model [144]. Nengo supports
a number of conventional and neuromorphic execution
platforms, including Loihi through its back-end interface
to NxSDK. Several applications coded in Nengo run today
on Loihi and have been covered in this survey [28], [30],
[50]. Importantly, members of the neuromorphic commu-
nity who are not Nengo developers have successfully used

the toolchain to develop their own applications and run
them on Loihi [124], [125].

Based on the perspectives that emerge from our survey
of Loihi results, Nengo provides a good first step toward
a productive development framework, but a fundamental
expansion of the abstractions and compositional tools will
be needed to encompass the wider scope of computation
that neuromorphic networks support, especially the sto-
chastic, temporally coded, and directly trained networks
that have demonstrated the greatest quantitative gains in
latency and efficiency.

Without such a broader framework utilizing new
abstractions, many of the compelling examples character-
ized on Loihi will remain isolated studies showing promise
but unable to connect to other modules and enable func-
tionality that is at least equal to the sum of their parts,
if not greater.

G. Economic Viability

The tight integration of memory and computation in
neuromorphic architectures is both its blessing and its
curse. The elimination of the von Neumann bottleneck
frees the hardware implementation to splinter into an
arbitrarily granular collection of tiny processing elements
without any need for a monolithic memory. This is optimal
for energy efficiency and sparsity but is potentially devas-
tating for overall system cost.

The overall economics of today’s semiconductor industry
are highly optimized for the von Neumann architecture.
The per-bit cost of monolithic dynamic random access
memory (DRAM) is on the order of 100× cheaper than
the per-bit cost of the densest memory available in a
logic process. For large-scale memory-bound workloads,
conventional architectures achieve a cost optimum by
partitioning their physical implementation between cheap
DRAM and expensive logic. A neuromorphic implemen-
tation must choose one or the other, and architecture as
complex as Loihi’s, with over half of its silicon area devoted
to logic circuits, can only be implemented in a logic process
today. Hence, scaling up Loihi’s architecture comes at the
cost of expensive logic state bits.

For large-scale applications, this inevitably puts neuro-
morphic technology into a high-end niche. To broaden this
niche, neuromorphic technology needs to add value for
small-scale problems, which suggests that its first commer-
cially viable applications will emerge at the edge and in
tightly integrated sensors and robotic systems.

Long-term, fundamental manufacturing technology
innovations will be needed to reduce the cost of neuro-
morphic architectures. This could come from dense and
cheaply integrated emerging memories, such as crossbars
of resistive, magnetic, or phase change devices. Further
cost gains could come from storing multiple bits per device,
although a truly analog memory needs to maintain its
density and cost advantages without forcing too much
of the surrounding architectural elements into the analog
domain, which would introduce its own cost challenges.
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Fig. 9. Unified energy and delay ratio plot over a selection of benchmark workloads from this survey. Each point corresponds to a

comparison of a particular workload running on Loihi versus the equivalent workload on a reference architecture. All comparisons have been

controlled for accuracy, and Loihi’s accuracy is approximately equal or better than the reference solution precision. The class of reference

architecture is indicated by the marker shape: Circles indicate Intel Core or Xeon CPUs; diamonds indicate Nvidia GPUs; triangles indicate

Intel Movidius Neural Compute Stick; and crosses indicate IBM’s TrueNorth architecture. All workloads correspond to batch size 1 processing,

except for open markers that indicate batched data configurations (all workloads on Loihi are batch size 1). Marker color indicates the class

of network: Blue: feedforward rate-coded networks; red/orange: backpropagation-trained; gray: feedforward networks with online learning;

green: attractor networks; and yellow: SNNs exploiting temporal coding or precise spike timing. The size of the datapoints represents the

complexity of a task as measured by the required number of cores on Loihi (logarithmic scale).

Without breakthroughs in the density of low energy,
high-speed CMOS-integrated memory, the cost will limit
the proliferation of all but small-scale neuromorphic
technology into mainstream devices—even once the
architecture, algorithms, and software challenges are
resolved.

VIII. C O N C L U S I O N
Fig. 9 presents many of the latency and energy benchmark-
ing results described in this survey in a unified view. This
2-D plot emphasizes the two primary benefits offered by
Loihi and event-based neuromorphic architectures, in gen-
eral, compared to today’s commercially available program-
mable architectures. The diagonal dashed line in this chart
represents the energy-delay ratio parity line; comparison
points to the bottom left of this line indicate the reference
architectures outperforming Loihi, whereas points further
to the top right of that line indicate better performance by
Loihi.

Clear trends emerge from this unified view. Feedforward
networks and especially rate-coded feedforward networks
are the least compelling match for Loihi, especially larger
networks that perform significantly worse on Loihi. Great
gains are possible when spike timing becomes computa-
tionally significant, whether through supervised optimiza-
tion using backpropagation or through analytical design.

All of the best performing workloads on Loihi make use of
highly recurrent networks.

Other evaluation dimensions, such as throughput when
processing batched data, maximum achievable accuracy,
and silicon cost per function, in general, show a less
favorable view for Loihi. Nevertheless, it is clear that, for
a particular expanding collection of workloads, the par-
ticular scope of which is still ongoing research, neuro-
morphic architectures can provide gains measured not
in percentage points but in factors or even orders of
magnitude.
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