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Neural dynamics 

Neuro-physics 


   ~integrate and fire… 


spiking mechanism replaced by the sigmoid threshold 
function in population picture 


attractor dynamics


 term is the source of the stability of neural states 


this dynamics as a low-pass filter of input

τ ·u = − u + h + inputs

−u

Roadmap



Neuro-physics
membrane potential, , evolves as a dynamical 
system

u(t)

[from: Tresilian, 2012]

τ ·u(t) = − u(t) + h + input(t)

time scale, τ ≈ 10 ms



Neuro-physics

Figure 2.8

[from: Tresilian, 2012]

spikes when membrane potential exceeds 
threshold….  and only spikes are transmitted to 
downstream neurons



Neuro-physics

firing rate reflects level of input… 

[from: Tresilian, 2012]



Neural dynamics

spiking mechanism replaced by a threshold function


that captures the effective transmission of spikes in 
populations

1

0

σ(u)

u



Neural dynamics

activation as a real number with threshold at zero, 
abstracting from biophysical details ~ population 
level membrane potential 

low levels of activation: not transmitted to 
downstream systems (including motor systems)


high levels of activation: transmitted to 
downstream systems
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Neural dynamics

dynamical system: the present state predicts the 
future evolution of the state 


=> given an initial level of activation, , the time 
course of activation, , for  is uniquely 
determined

u(0)
u(t) t > 0

du/dt = f(u)

u

resting
level

vector-field

τ ·u(t) = − u(t) + h



Neural dynamics

fixed point = constant solution (stationary state)


stable fixed point = attractor: nearby solutions 
converge to the fixed point

du/dt = f(u)

u

resting
level

vector-field

τ ·ufp = − ufp + h = 0
⇒ ufp = h resting level



Neural dynamics

attractors structure the 
ensemble of solutions 
(from all initial conditions) 
= flow

0 0.05 0.1 0.15 0.2 0.25 0.3

time, t

u(t)

resting
level

T du/dt = f(u)

u

resting
level

vector-field

τ ·u(t) = − u(t) + h



Neuronal dynamics
inputs are contributions to the 
rate of change of activation

positive: excitatory


negative: inhibitory
u

h+s

input, s

resting
level, h 

du/dt

time, t

u(t)

resting level, h

g(u(t))

input, sτ ·u(t) = − u(t) + h + s(t)

=> input shifts the attractor


=> activation tracks this 
shift due to stability



Neuronal dynamics

transmitted to down-stream neurons/motor 
systems: 

[we use  and  interchangeably in some 
papers/the DFT book]

σ(u(t))

σ(u) g(u)

τ ·u(t) = − u(t) + h + s(t)

u

h+s

input, s

resting
level, h 

du/dt

time, t

u(t)

resting level, h

g(u(t))

input, s=> the “input-driven solution” 
of the neural dynamics low-
pass filters time varying input



dynamicfieldtheory.org

=> simulation
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Connectionism: similar abstraction

neurons sum input activations 
and pass them through a 
sigmoidal threshold function 


some connectionist models 
neglect the low-pass filtering/
time delaying properties of 
the neural membrane 
dynamics

output = g (∑ (inputs))

inputs

output 

1

0

g(u)

u



Neural field

defined by pattern of forward connectivity 
to sensory/motor surfaces


as described by tuning curves/receptive fields


analogous to forward NN …


neglect sampling by discrete neurons => 
neural fields 


notion of feature spaces that are 
represented in neural fields 

Roadmap



Neural dynamic networks

in networks neural activation 
variables, the forward 
connectivity determines “what 
a neuron stands for” 


= space code (or labelled line 
code) 


in rate code, the activation 
level “stands for” something, 
e.g. a sensed intensity


generic neural networks 
combine both codes

 Neural Dynamics 11

is uniquely represented by a particular rate of neural firing. In general, however, the map is 
invertible, so that a many-to-one mapping may result. This is the case, for instance, when dif-
ferent patterns of input are mapped onto the same “response.” Still, information-theoretical 
terms are sometimes used to characterize such networks by saying that the output neurons 
“encode” particular patterns of input, perhaps with a certain degree of invariance, so that a 
set of changes in the input pattern do not affect the output. A whole field of connectionism or 
neural network theory is devoted to finding ways of how to learn these forward mappings from 
examples. An important part of that theory is the proof that certain classes of learning meth-
ods make such networks universal approximators; that is, they are capable of instantiating any 
reasonably behaved mapping from one space to another (Haykin, 2008). In this characterization 
of a feed-forward neural network, time does not matter. Any time course of the input pattern 
will be reflected in a corresponding time course in the output pattern. The output depends only 
on the current input, not on past inputs or on past levels of the output or the hidden neurons.

A recurrent network such as the one illustrated in Figure 1.3 cannot be characterized by 
such an input–output mapping. In a recurrent network, loops of connectivity can be found so 
that one particular neuron (e.g., u4 in the figure) may provide input to other neurons (e.g., u6), 
but also conversely receive input from those other neurons either directly (u6) or through some 
other intermediate steps (e.g., through u6 and u5 or through the chain from u6 to u5 to u2 to u4).  
The output cannot be computed from the input value because it depends on itself! Recurrence 
of this kind is common in the central nervous system, as shown empirically through methods 
of quantitative neuroanatomy (Braitenberg and Schüz, 1991).

To make sense of recurrent neural networks, the notion of time is needed, at least in some 
rudimentary form. For instance, neural processing in such a network may be thought of as 

s1

u1

s3s2

g(u6)

u2 u3

u4 u5

u6

FIGURE 1.2: In this sketch of a feed-forward neural network, activation variables, u1 to u6 , are symbolized by the 
circles. Inputs from the sensory surface, s1 to s3, are represented by arrows. Arrows also represent connections where 
the output of one activation variable is input to another. Connections are ordered such that there are no closed loops 
in the network.

s1 s3s2

g(u6)

u1 u2 u3

u4 u5

u6

FIGURE 1.3: Same sketch as in Figure 1.2, but now with additional connections that create loops of connectivity, 
making this a recurrent neural network.
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Neural fields

forward connectivity 
from the sensory surface 
extracts perceptual 
feature dimension

sensory signal, s(x)

dimension, y

dimension, x

activation
field, u(y)



Neural fields

forward connectivity 
predicts/models tuning 
curves

sensory signal, s(x)

tuning curve

dimension, y

dimension, x

activation
field, u(y)

62 Fou n dat ions  of Dy na m ic  Fi e l d T h eory

interactions effects. In Chapter  2, we described 
how such interactions bring about the activation 
dynamics in DFs that form peaks and create deci-
sions. Here we will show that lateral interactions 
in DFs are consistent with empirical data and can 
account for the observed activation patterns in 
the visual cortex. In this context, we will present 
an extension of the basic DF model, the two-layer 
field. The two-layer field ref lects more closely the 
biological connectivity within neural populations 
and is particularly aimed at capturing the tempo-
ral details of population dynamics. With this tool, 
we can also demonstrate how to fit activation pat-
terns for the preparation of reach movements in the 
motor cortex with a DF model.

The analysis method of DPA plays a key role in 
all of this by bringing empirically measured popu-
lation responses into the same format used in DF 
models. This makes it possible to directly compare 
activation patterns in DF models with neural data. 
In particular, this method allows us to make test-
able predictions from DF models about activation 
patterns in biological neural populations. The DPA 
method thereby provides the neural grounding for 
the dynamic field theory (DFT), establishing a 
direct link between the level of neural activity and 
DF models of behavior and cognition.

L I N K I NG  N E U R A L  AC T I VAT ION 
T O   P E RC E P T ION,  C O G N I T ION, 
A N D  BE H AV IOR
This section concerns the link between neuro-
physiology and things that actually matter to liv-
ing, behaving biological agents like you and me. Is 
this apple green or red? Where do I  have to move 
my hand to grab it? Some aspect of neural activation 
must ref lect the state of affairs on this macroscopic 
level—the level of perceptual decisions, cogni-
tive states, and overt behavior. As presented in the 
introduction, we believe that this role is played by 
patterns of activation in neural populations. To sub-
stantiate this claim, we need to take a brief detour to 
the realm of single neurons, and then work our way 
up to population-based representations.

To determine the link between the activity of 
a single neuron and external conditions, neuro-
physiologists record the spiking of the neuron via 
a microelectrode placed near (or within) the cell 
while varying sensory or motor conditions in a 
systematic fashion. This could mean, for instance, 
varying the color or position of a visual stimulus or, 
in the motor case, varying the direction of a limb 

movement that an animal has to perform. Not all 
neurons are sensitive to all parameters, so the first 
step is to determine which parameters cause the 
neuron to change its activity level. When we find a 
parameter that reliably affects the spike rate of the 
recorded neuron, we can proceed to assessing the 
exact nature of the relationship. In order to do this, 
the parameter value is varied along the underlying 
dimension and the spike rate for each sample value 
is recorded. The results of this procedure can be 
visualized by plotting spike rate against the param-
eter dimension. An idealized function may be fitted 
to the data points, interpolating spike rate between 
sample values. The resulting curve is called the tun-
ing curve of the neuron.

This technique has revealed that, throughout 
the brain, many neurons share a roughly similar 
type of mapping between parameter dimension and 
spike rate, which is characterized by Gaussian-like 
tuning curves (Figure 3.1). That is, they fire most 
vigorously for a specific “preferred” parameter 
value, while spike rate declines with rising distance 
from that value, reaching the neuron’s activity base-
line for very distant values.

A classic example for these characteristics 
can be found in the visual cortex, where many 
cells respond strongly to bars of light of a par-
ticular orientation and reduce their firing as the 
angle of orientation deviates from that preferred 
value (Hubel & Wiesel, 1959, 1968). Visual cells 
show tuning along other feature dimensions as 
well, such as color (Conway & Tsao, 2009), shape 
(Pasupathy & Connor, 2001)  or the direction of 
motion (Britten & Newsome, 1998). Neurons in 
nonvisual areas exhibit similar properties, such 
as cells in auditory cortex that are tuned to pitch 
(Bendor & Wang, 2005), or cells in somatosensory 
cortex that are tuned to the orientation of tactile 
objects (Fitzgerald, 2006).The most common 
scheme, however, is tuning to locations in physical 
space. In sensory areas, most cells are tuned to the 

Feature dimension

Sp
ik

e 
ra

te

FIGURE  3.1: Schematic illustration of an idealized 
tuning curve.
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Neural fields

forward connectivity thus 
generates a map from 
sensory surface to 
feature dimension


neglect the sampling by 
individual neurons => 
activation fields

sensory signal, s(x)

dimension, y

dimension, x

activation
field, u(y)



Neural fields

analogous notion for 
forward connectivity to 
motor surfaces… 


(actually involves 
behavioral dynamics)


(e.g., through neural oscillators 
and peripheral reflex loops)

motor 
dimension, r

activation
field, u(r)

motor
state, r

dr/dt



Neural dynamics: state
neural activation that is not entirely 
determined by input…but depends on the 
activation state 


this originates from recurrent connectivity 
(“interaction” or “coupling”) that is 
organized to keep activation states stable  


detection instability


selection/competition


=> dynamic regimes/instabilities 

Roadmap



Neuronal dynamics with self-excitation

single activation variable with self-
excitation


(representing a small population with 
excitatory coupling)

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))



u 

du/dt 

resting
level, h

=> nonlinear dynamics!

Neuronal dynamics 
with self-excitation

du/dt

u

resting level

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))



u 

du/dt 

resting
level, h

input strength

varying input

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

Neuronal dynamics 
with self-excitation



for some inputs: bistable 
dynamics


“on” vs “off” state

u

du/dt

time, t

u(t)<0

u(t)>0

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

Neuronal dynamics 
with self-excitation

“off” “on”



increasing input strength 
=> detection instability

u 

du/dt 

resting
level, h

input strength

u 

du/dt 

�

fixed point

unstable

stable
stimulus
strength

stimulus
strength

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

Neuronal dynamics 
with self-excitation



decreasing input 
strength => reverse 
detection instability

u 

du/dt 

resting
level, h

input strength

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

Neuronal dynamics 
with self-excitation

u 

du/dt 

�

fixed point 

unstable

stable 

stimulus
strength

stimulus
strength
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=> simulation
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the detection and its  
reverse => create 
discrete events from 
time-continuous changes

time, t

u(t)

detection 
instability

reverse
detection 
instability

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

Neuronal dynamics 
with self-excitation



Neuronal dynamics with competition

two activation variables with 
reciprocal inhibitory connection


(representing two small 
populations with inhibitory 
connections)

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))



Neuronal dynamics with competition

Coupling/interaction: the rate 
of change of one activation 
variable depends on the level 
of activation of the other 
activation variable

coupling/interaction

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))



assume  =>  inhibits  


=> attractor for 

=>  does not inhibit 

u2 > 0 u2 u1

u1 < 0

u1 u2

u1

h+s1

du1/dt

u2

h+s2

inhibition
from u2

du2/dt

h+s1-c12

Neuronal dynamics with competition

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))



assume  =>  inhibits  


=> attractor for 

=>  does not inhibit 

u2 > 0 u2 u1

u1 < 0

u1 u2

u1

h+s1

du1/dt

u2

h+s2

inhibition
from u2

du2/dt

h+s1-c12

Neuronal dynamics with competition

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))



assume  =>  inhibits  


=> attractor for 

=>  does not inhibit 

u2 > 0 u2 u1

u1 < 0

u1 u2

u1

h+s1

du1/dt

u2

h+s2

inhibition
from u2

du2/dt

h+s1-c12

Neuronal dynamics with competition

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))



assume  =>  inhibits  


=> attractor for 

=>  does not inhibit 

u2 > 0 u2 u1

u1 < 0

u1 u2

u1

h+s1

du1/dt

u2

h+s2

inhibition
from u2

du2/dt

h+s1-c12

Neuronal dynamics with competition

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))



 and 

symmetry:  and 

=> competition/selection

u2 > 0 u1 < 0

u2 < 0 u1 > 0
u1

h+s1

du1/dt

u2

h+s2

inhibition
from u2

du2/dt

h+s1-c12

Neuronal dynamics with competition

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))



dynamicfieldtheory.org

=> simulation
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Neural dynamics of fields

combine detection 
with selection 


=> local excitation/
global inhibition

dimension

global inhibition

input

activation field

local excitation



Neural dynamics of fields
σ(u)

u

x�x�

�(x�x�)

τ ·u(x, t) = − u(x, t) + h + s(x, t) + ∫ dx′￼ w(x − x′￼) σ(u(x′￼))

w(x − x′￼) = wexce
− (x − x′￼)2

2σ2 − winh

dimension

global inhibition

input

activation field

local excitation



Relationship to the dynamics of 
discrete activation variables

self-
excitation

mutual
inhibition

s(x)
u(x)

u1 u2

x

s1
s2

self-
excitation
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=> simulation

http://dynamicfieldtheory.org


Attractors and their instabilities

input driven solution (sub-
threshold) 


self-stabilized solution 
(peak, supra-threshold)


selection / selection 
instability 


working memory / 
memory instability 


boost-driven detection 
instability

detection 

instability

reverse

detection 

instability

Noise is critical

near instabilities



Dynamic regimes

which attractors and instabilities arise as 
input patterns are varied


examples


“perceptual regime”: mono-stable sub-threshold => 
bistable sub-threshold/peak => mono-table peak..


“working memory regime” bistable sub-threshold/peak 
=> mono-table peak.. without mono-stable sub-threshold


single (“selective”) vs. multi-peak regime 



Case study: DFT account of 
sensory-motor decision making 

assessed in reaction-time tasks


information processing: how much information 
is processed… 


DFT: contents of task matters… embodiment


DFT: decisions evolve continuously in time and 
metric space

Roadmap



Reaction time (RT) paradigm

time

imperative 
signal=
go signal

response

RT

task set



Model the task set by preshape

which choices are available 


how many, how probable 


how different from each other


how easy to recognize/perform 


choices known to the 
participant before the 
imperative signal comes 


=> preshape the field

movem
en

t 

pa
ram

ete
r

time

activation

1.0

task
input

movement parameter 

0.0
preshaped
field

-0.4 0.0

preshaped
field

specific input
arrives

specific input



Hick’s law: RT increases with # choices
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[Erlhagen, Schöner, Psych Rev 2002]



Metric effect

predict faster 
response times for 
metrically close 
than for metrically 
far choices
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[from Schöner, Kopecz, Erlhagen, 1997]
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Metric effect: 
experiment�

[McDowell, Jeka, Schöner ]



-4

-3

-2

0

2

4

-4

-3

250 350 450 550
-2

0

2

4

time

-4

-3

0

2

4

250 350 450 550
time

250 350 450 550
time

pr
es

ha
pe

d 
ac

tiv
at

io
n 

fie
ld

m
ai

xm
al

 a
ct

iv
at

io
n 

movement parameter

same metrics, different probability different metrics, same probability

high
probability

high
probability

high
probability

low
probabilitylow

probability

low
probability

movement parameter movement parameter

[from Erlhagen, Schöner: Psych. Rev. 2002]



Wide
Frequent

Wide
Rare

Narrow
Frequent

Narrow
Rare

320

300

280

260

240

220

200

Target

7

6

5

4

3

2

1

0
Wide

Frequent
Wide
Rare

Narrow
Frequent

Narrow
Rare

Target

[from McDowell, Jeka, Schöner, Hatfield, 2002]

wide narrow

Reaction Time P300 Amplitude Fz

T
im

e
 (

m
s
)

A
m

p
li
tu

d
e
 (

m
ic

ro
V

)

rare
rare

frequent

frequent



Continuous evolution of 
sensory-motor decisions

time
move on 4th to tone

imperative stimulus

imposed SR interval

[Ghez and colleagues, 1988 to 1990’s]

timed movement initiation paradigm



[Favilla et al. 1989]



[Favilla et al. 1989]



[Erlhagen, Schöner: Psychological Review 109, 545–572 (2002)] 
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place with minimal changes in the hand paths. Table 1
shows the means and standard errors of curvature and
linearity indices (see Materials and methods) across sub-
jects (n = 5) for predictable targets and for each time in-
terval for unpredictable targets. Small increases in curva-
ture of 1°–2° and reductions in linearity occur among
movements initiated between 80 and 200 ms after target
presentation. However, all values are well within the
range of normal values for linearity in reaching move-
ments (e.g. Atkeson and Hollerbach 1985; Georgopoulos
1988a, b; Georgopoulos and Massey 1988; Gordon et al.
1994b). Moreover, as can be noted among the hand paths
illustrated in Fig. 5, change in direction associated with
curvature did not appreciably reduce the directional error
at the end point. Similarly, the improvement in accuracy
was not achieved through variations in movement time.

Those data will, however, be considered in greater detail
below when the systematic effects of target separation on
movement time are described (see Fig. 10).

Threshold target separation
for discrete directional specification

Figure 7 shows the distributions of initial movement di-
rections in one subject at five target separations and
smoothed for clarity. Data from the same three succes-
sive S-R time interval bins used in earlier figures are
shown in different line types. For the 30° degree target
separation, at S-R intervals ≤ 80 ms (dotted line and his-
togram to show effect of smoothing) initial directions are
distributed unimodally around the midpoint of the range

224

Fig. 7 Experiment 2. Distribu-
tions of movement directions at
the time of peak acceleration in
one subject for five target sepa-
rations. In each plot, distribu-
tions were fitted with a smooth
line using a cosine function
(Chambers et al. 1983). The ar-
rows on the x-axis point to the
required direction for each tar-
get separation. In the top plot,
the actual histogram for re-
sponses with S-R intervals
≤ 80 ms is displayed to demon-
strate the relationship of the fit-
ted line to the actual distribu-
tion. On the right side of each
plot, the actual target locations
are displayed for reference &/fig.c:

[Ghez et al 1997]

directly observe 
the preshaped 
field … 


and infer the 
width of preshape 
peaks

Metric 
effect



Neural observation of field

center-out sensori-
motor selection task 


varying prior 
information


macaque

Bastian, Riehle, Schöner, 2003

movement
direction



Tuning of neurons in MI to 
movement direction 

hand lands on target

hand lifts off start button



Distribution of Population 
Activation (DPA) <=> neural field

precue

response
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PS
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4
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6
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[Bastian, Riehle, Schöner, 2003]
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movement direction

Distribution of population activation =
tuning curve * current firing rate3

neurons

[after Bastian, Riehle, Schöner, submitted]

note: neurons are not 
localized within DPA! 



DPA

note: neurons are not localized within DPA! 


[notion of projection cortical neurons really 
are sensitive to many dimensions


motor: arm configuration, force direction


visual: many feature dimensions such as spatial frequency, 
orientation, direction... 


=> DPA is a projection from that high-
dimensional space onto a single dimension]



DPA pre-shaped 
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Figure 2
Population activity in the dorsal premotor cortex during a reach-selection task. The 3D colored surface
depicts neural activity with respect to baseline, with cells sorted by their preferred direction along the
bottom edge. Diagrams on the left show the stimuli presented to the monkey at different points during the
trial (cross indicates the cursor). Note that during the period of ambiguity, even after stimuli vanished, the
population encodes two potential directions. Data from Cisek & Kalaska (2005).

converted to a motor plan after the decision
is made. In contrast, we propose that multiple
movement options are specified within the same
system that is used to prepare and guide the ex-
ecution of the movement that is ultimately se-
lected. The simultaneous specification of mul-
tiple actions can even occur when only a single
object is viewed. For example, the multiple af-
fordances offered by a single object can evoke
neural activity in the grasp-related area AIP that
can represent several potential grasps until one
is instructed (Baumann et al. 2009), in agree-
ment with the predictions of theoretical models
(Fagg & Arbib 1998).

Evidence that the nervous system can si-
multaneously represent multiple potential ac-
tions suggests a straightforward interpretation
of the finding, described above, that early re-
sponses in many premotor and parietal re-
gions first appear to encode information about
relevant stimuli and later change to encode
motor variables. Perhaps the early activity,

time-locked to stimulus appearance, does not
encode the stimuli themselves but rather the set
of potential actions that are most strongly asso-
ciated with those stimuli (Wise et al. 1996), such
as actions with high stimulus-response com-
patibility (Crammond & Kalaska 1994). This
would imply that the functional role of this ac-
tivity does not change in time from sensory to
motor encoding but simply reflects the arrival
of selection influences from slower but more
sophisticated mechanisms for deciding which
action is most appropriate.

Recent computational models have pro-
posed that whenever multiple potential targets
are available, representations of potential ac-
tions emerge within several frontoparietal neu-
ral populations, each composed of a continuum
of cells with different preferences for the po-
tential parameters of movement (Cisek 2006,
Erlhagen & Schöner 2002, Tipper et al. 2000).
In each population, cells with similar prefer-
ences mutually excite each other (even if they
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[Cisek, Kalaska 2005]

Decision making 
in DPA

dorsal

pre-motor 


cortex



Case study: embodiment

neural dynamic fields can be linked to time-
varying sensory inputs and can control 
motor systems in closed loop

Roadmap



Driving fields from sensory signals

robot that orients 
toward sound sources



Sensory surface

each microphone samples heading direction

heading
direction

sensitivity cone of each microphone



activation
field

heading
direction

two sound sources

input from sensory surface

heading
direction

each microphone 
provides input to 
the field = 
loudness * 
sensitivity cone

Sensory input



Detection instability as�
intensity of sound source increases



Target selection in the presence of 
two sources



Robust estimation in the 
presence of outliers



Tracking moving sound source



Working 
memory 



How to generate the behavior?

“reading out” the 
peak location to 
specify heading? 

dimension

activation
field

specified value

peak position



“Reading out” from a neural field? 

standard idea: ~ 
probability density 


but: normalization! 


=> problem when there 
is no peak: divide by 
zero! 

σ(u)

dimension

activation
field

specified value

peak position

dimension

activation
field

no value specified

ϕpeak =
∫ dϕ ϕ σ(u(ϕ, t))
∫ dϕ′￼ σ(u(ϕ′￼, t))



behavioral dynamics with attractor at desired heading

Generating behavior actually 
entails dynamics

vehicle

target

Y

Y
tar

F

dF/dt

attractor

heading 

direction ϕ



dimension

activation
field

specified value

dimension

activation
field

no value specified

x

dx/dt

x

dx/dt

“Reading out” => erect an attractor!



dimension

activation
field

specified value

dimension

activation
field

no value specified

x

dx/dt

x

dx/dt

“Read out” => erect an attractor!
·ϕ = − [∫ dϕ′￼σ(u(ϕ′￼, t)](ϕ − ϕpeak)

= − ∫ dϕ′￼ (ϕ − ϕ′￼) σ(u(ϕ′￼, t))





Conclusion

sensory-motor cognition from neural 
dynamic fields that are coupled to sensory 
surfaces and act on the motor surfaces 
(through behavioral dynamics)


instabilities make decisions


detection


selection 


working memory 



Outlook

how do we go from sensory-motor 
cognition to “real” cognition? 

Roadmap


