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Road .
CAcER Neural dynamics

B Neuro-physics
B =—u+h+inputs ~integrate and fire...

B spiking mechanism replaced by the sigmoid threshold
function in population picture

Mattractor dynamics

B —u term is the source of the stability of neural states

M this dynamics as a low-pass filter of input



[from:Tresilian, 2012]

Neuro-physics

B membrane potential, u(?), evolves as a dynamical
system

tu(t) = — u(t) + h + iput(z)

B time scale, 7~ 10 ms
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Neuro-physics

M spikes when membrane potential exceeds

threshold.... and only spikes are transmitted to
downstream neurons
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Neuro-physics

B firing rate reflects level of input...
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Neural dynamics

B spiking mechanism replaced by a threshold function

B that captures the effective transmission of spikes in
populations

4 o(u)




Neural dynamics

M activation as a real number with threshold at zero,
abstracting from biophysical details ~ population
evel membrane potential

B low levels of activation: not transmitted to
downstream systems (including motor systems)

M high levels of activation: transmitted to
downstream systems




Neural dynamics

B dynamical system: the present state predicts the
future evolution of the state

B => given an initial level of activation, u(0), the time

course of activation, u(¢), for ¢t > 0O is uniquely

determined
A du/dt = f(u)

vector-field

—>->T<- <

resting \
() =—ul®)+h level




Neural dynamics

B fixed point = constant solution (stationary state)

M stable fixed point = attractor: nearby solutions
converge to the fixed point

A du/dt = f(u)

vector-field

—>->T<- <

Tilg, = — Up, + h=0 resting \
= Ug, = resting level level




Neural dynamics

M attractors structure the
ensemble of solutions
> (from all initial conditions)
resting e — ﬂOW

Ievel_>
v
T A du/dt = f(u)

vector-field

—>->T<-«— >

resting \
i(t) = — u(t) + h level




Neuronal dynamics

M inputs are contributions to the
rate of change of activation

A du/dt

M positive: excitatory

M negative: inhibitory
Tu(t) = — u(t) + h + s(r)

B => input shifts the attractor

M => activation tracks this
shift due to stability

>

resting
level, h

input, s

u(t)

ﬂu(t))
// time, t
>

l resting level, h



Neuronal dynamics

B transmitted to down-stream neurons/motor
systems: o(u(?))

B [we use o(u) and g(u) interchangeably in some

papers/the DFT book]

: : : A input,
B => the “input-driven solution” 'S(F:;’ :

of the neural dynamics low-
pass filters time varying input /g(u o)

/ time, t
>

Tl/.t(t) = — l/l(t) + h + S(t) _/ resting level, h
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Connectionism: similar abstraction

. o inputs
B neurons sum input activations

and pass them through a \ i J
sigmoidal threshold function
B some connectionist models
neglect the low-pass filtering/
time delaying properties of

the neural membrane

, output
dynamics

output = g ( Z (inputs))




Road
catmap Neural field

M defined by pattern of forward connectivity
to sensory/motor surfaces

M as described by tuning curves/receptive fields

M analogous to forward NN ...

B neglect sampling by discrete neurons =>
neural fields

B notion of feature spaces that are
represented in neural fields



Neural dynamic networks

B in networks neural activation

Sq So1  S3
variables, the forward ¢ ¢ ¢
connectivity determines “what O R ?
a heuron stands for”

Ug) (us)

B = space code (or labelled line

code) &
Min rate code, the activation 9(us)

level “stands for” something, ...

e.g.a sensed intensity Y Aactvation

Mgeneric neural networks Y /
combine both codes \ 4 intensity

activation )




Neural fields

sensory signal, s(x)

T dimension, x

>

® forward connectivity
from the sensory surface activation
field, u(y)

extracts perceptual .
feature dimension

dimension, y




B forward connectivity
predicts/models tuning

Neural fields

curves

>

Spike rate

>

Feature dimension

sensory signal, s(x)

T tuning curve

dimension, X
>

activation

field, u(y)

é dimension, y
>




® forward connectivity thus

Neural fields

generates a map from
sensory surface to

feature d

M neglect t

imension

ne sampling by

individua

neurons =>

activation fields

sensory signal, s(x)

‘ ~~_ dimension, x

activation
field, u(y)

dimension, y

A~



Neural fields

M analogous notion for
forward connectivity to
motor surfaces...

® (actually involves
behavioral dynamics)

B (e.g, through neural oscillators
and peripheral reflex loops)

A activation
field, u(r)

motor
dimension, r

Adr/dt

>

A\ 4



Road .
S Neural dynamics: state

B neural activation that is not entirely
determined by input...but depends on the
activation state

M this originates from recurrent connectivity
(“interaction” or “coupling”) that is
organized to keep activation states stable

B detection instability
M selection/competition

B => dynamic regimes/instabilities



Neuronal dynamics with self-excitation

v

M single activation variable with self-
excitation

B (representing a small population with
excitatory coupling)

Tu(t) = —u(t) + h+ s(t) + ¢ o(u(r))



Neuronal dynamics A duldt

with self-excitation
\(‘ |
T u

resting level \

A du/dt

u
>
B => nonlinear dynamics! \\//\
resting
level, h

tu(t) = —u(t) + h+ s(t) + ¢ o(u(r))



Neuronal dynamics
with self-excitation

A du/dt

A input strength

®varying input

resting
level, h

Tu(t) = —u(t) + h+ s(t) + ¢ o(u(r))



Neuronal dynamics
with self-excitation

A
Efor some inputs: bistable
dynamics
time, t
®m“on” vs “off” state | >
_— u(t)<0

tu(t) = — u(t) + h + s(t) + ¢ o(u(r))



Neuronal dynamics
with self-excitation durde

stimulus
strength

A fixed point

unstable
stimulus
N strength
stable

Mincreasing input strength

=> detection instability N 4 dufdt
N input strength
\\/

resting
level, h

tu(t) = — u(t) + h + s(t) + ¢ o(u(r))




Neuronal dynamics
with self-excitation p o

stimulus
strength

Bmdecreasing input
strength => reverse
detection instability A input strength

resting
level, h

tu(t) = — u(t) + h + s(t) + ¢ o(u(r))

N

fixed point

A
stable
stimulus
strength
unstable
A du/dt
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Neuronal dynamics
with self-excitation

Bthe detection and its
reverse == create
discrete events from
time-continuous changes

u(t)
A

reverse

detection P

instability -

l 4"'4&‘4‘
:/ time, t
A

detection
instability

tu(t) = — u(t) + h + s(t) + ¢ o(u(r))



Neuronal dynamics with competition

B two activation variables with ¢ ¢
reciprocal inhibitory connection

B (representing two small
populations with inhibitory
connections)

T (1) = — u(t) + h + 51(t) — cro(uy(2))
TUy(1) = — uy(1) + h + 5,(1) — ¢y10(u(2))



Neuronal dynamics with competition

B Coupling/interaction: the rate ¢ ¢
of change of one activation
variable depends on the level
of activation of the other
activation variable

coupling/interaction
T (1) = — u(t) + h + 51(t) — cro(uy(2))
TUy(1) = — uy(1) + h + 5,(1) — ¢y10(u(2))



Neuronal dynamics with competition

A du|/dt
h+s|
M assume u, > 0 => u, inhibits u, ! )
™N ul
M => attractor for u; < 0 s i-cra] Nrom iy
M => y, does not inhibit u, J duafe
1 "2
h+s,

Tty (1) = — u () + h + 51(2) — ¢1,0(uy(1))
TUy(1) = — uy(t) + h + 5,(t) — ¢r16(uy(2))



Neuronal dynamics with competition

Iassume> U, inhibits 1

B => attractor for u; < 0

B => y, does not inhibit u,

(1) = —u(t) + h+ 51(1)

TUy(1) = — uy(t) + h + 5,(t) — ¢r16(uy(2))

h+52

uj

u2



Neuronal dynamics with competition

M assume u, > 0 => u, inhibits 1,

B => attractor for

B => y, does not inhibit u,

T () = — uy () + h + s1(t) — c1,0(uy (1))
TUy(1) = — uy(t) + h + 5,(t) — ¢r16(uy(2))

uj

u2



Neuronal dynamics with competition

A du|/dt
h+s|
M assume u, > 0 => u, inhibits u, ! )
NG
M => attractor for u; < 0 s i-cra] Nrom iy
. L duy/d
B =>{, does not inhibit u, J 47
! "2
h+s,

Tty (1) = — u () + h + 51(2) — ¢1,0(uy(1))
TUy(1) = — uy(t) + h + 5,(1) & ¢p16(uy(2))



Neuronal dynamics with competition

A du|/dt
h+s|
By, >0andu; <0 ' X
™ e uj
B symmetry: u, < 0 and u; > 0 s icr] NGrom
B => competition/selection J et
! "2
h+s,

T () = — uy () + h + s1(t) — c1,0(uy (1))
T, (1) = — uy(t) + h + 5,(t) — cy0(u;(2))
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Neural dynamics of fields

>

activation field

B combine detection m'oca' excitation
with selection global inhibition

M => |ocal excitation/
global inhibition

dimension



Neural dynamics of fields

>

A activation field

w(Xx-x")
m local excitation
X-X' global inhibition
>

dimension

tu(x,t) = —ulx, )+ h+ s(x, t) + Ja’x’ w(x —x') o(u(x’))



Relationship to the dynamics of
discrete activation variables

ALII ALI2

mutual

_selt- 7 inhibition | self
excitation excitation
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Attractors and their instabilities

reverse
detection detection

instability instability

M input driven solution (sub-
threshold) l

M self-stabilized solution
(peak, supra-threshold)

M selection / selection
instability

® working memory /

memory instability
Noise is critical

M boost-driven detection near instabilities

instability



Dynamic regimes

B which attractors and instabilities arise as
input patterns are varied

M examples

B “perceptual regime”: mono-stable sub-threshold =>
bistable sub-threshold/peak => mono-table peak..

B “working memory regime” bistable sub-threshold/peak
=> mono-table peak.. without mono-stable sub-threshold

M single (“selective”) vs. multi-peak regime



Readmap  Case study: DFT account of
sensory-motor decision making

M assessed in reaction-time tasks

M information processing: how much information
is processed...

B DFT: contents of task matters... embodiment

B DFT: decisions evolve continuously in time and
metric space



Reaction time (RT) paradigm

Imperative
signal=
go signal
response
tlme

RT

M
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Hiclds law: RT increases with # choices
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Metric effect

M predict faster
response times for
metrically close
than for metrically
far choices

narrow
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Metric effect;

experiment
Copper
Wire
2 - Choice 3 - Choice
320 r
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preshaped activation field

maixmal activation

same metrics, different probability

different metrics, same probability

t 1

movement parameter

| probability

high

I' low
' probability

350 450 550

time

250

VL

movement parameter

- probability

high

. low
probability |

250 350 450 550
time

-4

A |

TTL

movement parameter

 high
 probability

I' low
probability

350 450 550

time

250

[from Erlhagen, Schéner: Psych. Rev. 2002]



rare

A frequent [are
frequent A/
wide narrow
Reaction Time P300 Amplitude Fz
7
2 6
S 5
E 4
] : 8 3] [ ]
>
B = 2
o
u € 1
| < 0
Wide Wide Narrow Narrow Wide Wide Narrow Narrow
Frequent Rare Frequent Rare Frequent Rare Frequent Rare
Target Target

[from McDowell, Jeka, Schéner, Hatfield, 2002]



Continuous evolution of
sensory-motor decisions

® timed movement initiation paradigm

imperative stimulus

\ 4

>

111 X
T time

move on 4th to tone

‘(- imposed SR interval

[Ghez and colleagues, 1988 to 1990’s]
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Number of trials

theoretical account for Henig et al. Experimental results of Henig et al
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[Erlhagen, Schoner: Psychological Review 109, 545-572 (2002)]



Metric
effect

Edirectly observe

the preshaped
field ...

®and infer the
width of preshape
peaks

[Ghez et al 1997]
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Neural observation of field

B center-out sensori-

motor selection task O O
a0 O ©
B varying prior / o O \
information o0 O o o
O —b0 0 0— +O 0-@:
B macaque O © O O
3 2
\ . /
cO O ©
O @
- | | | I
Start trial 500ms PS 1000 ms RS MVT
movement « PP - “ RT —

direction

Bastian, Riehle, Schoner, 2003



Tuning of neurons in Ml to
movement direction

Complete Information

Y o AL H G 1
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R AR st srn
PS RS ‘\
hand lands on target

hand lifts off start button



Distribution of Population
Activation (DPA) <=> neural field

Distribution of population activation =
2 tuning curve * current firing rate

neurons

activation
activation
o
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required in this trial

B nhote: neurons are not
localized within DPA! [Bastian, Riehle, Schéner, 2003]



DPA

M note: neurons are not localized within DPA!

® [notion of projection cortical neurons really
are sensitive to many dimensions

B motor: arm configuration, force direction

B visual: many feature dimensions such as spatial frequency,
orientation, direction...

B => DPA is a projection from that high-
dimensional space onto a single dimension]



DPA pre-shaped
by pre-cue
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Decision making
in D PA Go signal

(o
Oo eo dorsal
Color cue OOO pre-motor
cortex

o
Memory

Spatial cues

®
(o

0

Cog Activity

with respect to

[Cisek, Kalaska 2005] baseline



R0admeP Case study: embodiment

® neural dynamic fields can be linked to time-
varying sensory inputs and can control
motor systems in closed loop



Driving fields from sensory signals

® robot that orients
toward sound sources

microphones

\

Robot ™~ Microphones

[from Bicho, Mallet, Schéner, Int J Rob Res,2000]

& " . 2 l,‘. ' \
direction} IR detectors



Sensory surface

® each microphone samples heading direction

A

 sensitivity cone of each microphone

heading
direction

>



Sensory input

® each microphone

provides input to + activation
the field = field heading
K direction
Ioud.n.es.s g
sensitivity cone
1 input from sensory surface
heading
direction

two sound sources



Detection instability as
intensity of sound source increases

input

4 .

oo N

source % 0

activation
field

\\\\\\\\\ QN

= N
SR
St

R

L
otlNona

source 3 0

[from Bicho, Mallet, Schoner: Int. J. Rob. Res., 2000]

IR detectors



arget selection in the presence of
two sources
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Robust estimation in the
presence of outliers




Tracking moving sound source




Working
memory

B g
source o= 9 ‘\

activation

‘ \ ._:.:.__:{l
source % o ’(\

on
v
A h (resting level)
-0.05 |- ' .
0.1
-0.15
0.2
-0.25
x 5 10 t15 20 25 35 0 e
input on input off memory has decayed

[from Bicho, Mallet, Schoner: Int | Rob Res 19:424(2000)]



How to generate the behavior!?

® “reading out” the
peak location to
specify heading!?

A . .
activation

field

specified value

dimension

>

peak position



“Reading out” from a neural field?

M standard idea: (1)~
probability density

N specified value
activation

field

B but: normalization! . .
dimension

B => problem when there
is no peak: divide by

peak position

zero!
A activation no value specified
field
¢ _ Jd¢ ¢ 6(u(¢’ t)) dimension
0 T ——




Generating behavior actually
entails dynamics

B behavioral dynamics with attractor at desired heading

A do/dt

heading
direction ¢ ',"

attractor

vehicle



“Reading out” => erect an attractor!

specified value I no value specified
activation

field

dimension dimension

3 3
> >

1 activation
field

L dx/dt L dx/dt

\ 4
A 4




“Read out’ => erect an attractor!

b= Jdcﬁ'a(u(qbe D[ (@ — Boea)

dp’ (¢ — ¢') o(u(@’, 1))

Ao specified value Ao no value specified
activation activation
field field
dimension dimension
L ... ]

. dx/dt . dx/dt

\ | |







Conclusion

B sensory-motor cognition from neural
dynamic fields that are coupled to sensory
surfaces and act on the motor surfaces
(through behavioral dynamics)

M instabilities make decisions

B detection
B selection

M working memory



Road
cadmap Outlook

M how do we go from sensory-motor
cognition to “real” cognition!?



