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Sequences

M all actioning and thinking consist of sequences
of movements, perceptual states, and
inferences

B sometimes in a fixed order (routines, action
patterns)

B but potentially highly flexible: serial order,
productivity...



Challenge

B DFT postulates that all neural states driving
behavior/mental process are attractors

B that resist change...
M sequences require change...

B answer: induce an instability to access new
attractor



Road .
2EE® Sequence generation

M an illustrative example

B the neural/mathematical mechanism



lllustration

M search for objects of a given color in a given order

M | blue
‘ target 2

M 2 red ‘

M green

target |
obstacles

M stably couple to
objects once they
are detected

M ignore objects
when their turn
has not yet come
(distractors) vehicle

target 3




Implementation as an imitation task

B [earn a serially ordered B perform the serially
sequence from a single ordered sequence with
demonstration new timing
yellow-red-green-blue-red yellow-red-green-blue-red

[Sandamirskaya, Schoner: Neural Networks 23:1163 (2010)]



red a distractor red a target

[Sandamirskaya, Schoner: Neural Networks 23:1163 (2010)]



ordinal dynamics

Condition of %

Satisfaction
(CoS) E;q

intention field condition of satisfaction

¢ field

space-color field
robot \‘

navigation visual input

dynamics
[Sandamirskaya, Schoner: Neural -
Networks 23:1163 (2010)] .




Visual search
Camera image

B 2D visual input color vs.

horizontal space

M intensity of input from a
color histogram within
each horizontal location
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Visual search

B current color searched provides ridge input
into a color-space field

Color-space DF

search cue




Color-space DF
Intention DF
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ordinal stack

intentional state
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transition . Ordinal nodes
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Learning Production
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A intention

Mathematical mechanism
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Sequence of instabilities

®the CoS is pre-shaped by the intention field, but is in
the sub-threshold state

® until a matching input pushes the CoS field through
the detection instability

®the CoS field inhibits the intention field that goes
through a reverse detection instability

®the removal of input from the intention to the CoS
field induce a reverse detection instability

® both fields are sub-threshold y inenir T
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Generalization

B match-detection => CoS

® mis-match (or change) detection => CoD (condition of

dissatisfaction)

[Grieben, Schoner, CogSci 2021]
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Roadmap How is the next state selected?

B once the current state has been
de-activated...

B three notions

B gradient-based selection
B chaining

B positional representation

M an illustration



How is the next state selected?

B once the current state has been deactivated...

® 3 notions (~Henson Burgess 1997)

.................................................

................................................

M | gradient-based selection

B 2 chaining sz; " ; lé?

B 3 positional representation

Ordinal nodes
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Gradient-based

M 2 field/set of nodes is released from inhibition
onhce the current state is deactivated...

M a new peak/node wins the selective
competition based on inputs...

B e.g. salience map for visual search

M e.g. overlapping input from multiple fields..

B return to previous states avoided by inhibition
of return . Vo

[Grieben, Schoner, CogSci 2021] X X
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Gradient-based

B this is used in many of the DFT architectures
M visual search
B relational grounding

B mental mapping

....................... ) A
@ ...................................................
Y IR y
[Grieben, Schoner, CogSci 2021] X pes o
:  gcene spatia,] selection ....... innipition of return -
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Chaining

B for fixed sequences...

B e.g. reach-grasp

B fixed order of mental operations... e.g. ground reference
object first, then target object

M |ess flexible (e.g.. when going through the same
state with different futures)

B could be thought to emerge with practice/habit
from the positional system

P.
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Positional representation

® a neural representation of ordinal position is
organized to be sequentially activated...

B the contents at each ordinal position is determined by
neural projections from each ordinal node...

Ordinal nodes
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Ordinal nodes
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[Sandamirskaya, Schoner: Neural Networks 23:1163 (2010)]
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Positional representation

M essentially chaining with flexible contents

B good for fast learning of sequences...
M e.g. imitation

M 2 Hippocampus function?

B but: must have potential synaptic links to
many representations...

B => such ordinal systems must exist for sub-
representations... embodiment effects...



Serial order d

[Tekulve et al,,
Frontiers in
Neurorobotics

(2019)]
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FIGURE 5 | Time course of learning a three element sequence with varying presentation time.
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FIGURE 6 | Time course of recalling a three element sequence through pointing at colored objects.
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d
Roadmap How far does such

autonomy take us!

B the concept of intentionality to guide the
building of an embodied cognitive architecture

B two directions of fit and the CoS

M an illustration



How does the mind emerge from
neural processes!

B What do | mean by “mind”?

B Intentionality = the capacity of nervous
systems to generate mental states that are
about things in the world

B things may include an organism’s own body

B things may include the nervous system’s own states



Two directions of fit of intentional
states (according to John Searle)

B world-to-mind: the world must match the
intentional state to fulfill that state’s condition-
of-satisfaction (CoS)

B => the motor flavor of intentionality

B mind-to-world: the intentional state must match
the state of the world to fulfill the CoS

B => the perceptual flavor of intentionality



From the logical definition of
intentionality to neural processes

B CoS of world-to-mind (motor) intentionality
B control the sequential unfolding of actions
B intention critical to initiate actions

B CoS is critical to terminate action intentions

B CoS of mind-to-world (perceptual) intentionality

B the intentional state itself must match the state of the
world => is its own CoS... arises with the intentional state

B the match is a property of the process

B possibility of error (e.g. mis-perception)



Searle’s six psychological modes

B mind-to-world ® world-to-mind
B perception B intention-in-action
B memory B prior intention
M belief M desire

M as a heuristic for building
cognitive architectures ...

M that reflect the sensory-motor
basis of cognition




lllustration: a neural dynamic intentional
agent in a simple world




Scenario: intentional
agent in simple world

Camera
Image

B world

M colored objects (small)
M paint buckets (tall)

B vehicle with arm
B perception
M see color/height feature

B sense position, arm, paint in
gripper

Bintention in action
B movein ID

M reach to take up paint

B reach to apply a coat of
paint



Scenario: intentional
agent in simple world

Camera
Image

B memory

B of the scene (feature maps)

B prior intentions

B search to

B secarch to

daint

oad paint

B reach to apply paint

B move to a recalled location



Scenario: intentional
agent in simple world

Camera
Image

B beliefs

M rules that link color
concepts: which paint on
which canvas generates
which outcome color

B desires

B for particular colors



Neural dynamic architecture
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Perception
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Perception and memory
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Intentional systems

B => special lecture Jan Tekulve on Friday



Roadmap
What does it all mean...

® why do neural dynamic architectures work!?

B how do embodied (neural dynamic)
architectures relate to classical cognitive
architectures !

B what does embodiment mean?

B how does DFT relate to deep NN, to VSA!?



DFT architectures

B why are attractors and their instabilities preserved
as fields are coupled into architectures?

B stability => structural stability = invariance of
solutions under change of the dynamics

B => dynamic modularity: fields retain their dynamic
regime as activation elsewhere varies

activation field activation field
4 4

1% input

z ——
dimension

sub-threshold

input
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dimension

self-excited self-excited




DFT architectures

B why do fields retain their meaning...

B coupling among fields must preserve the fields’
dimensions: “non-synesthesia principle”

B informational modularity (encapsulation)

B => neural dynamic
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What does “embodiment” mean?

B cognition activates motor systems!
B cognition is based on sensor systems!

B not necessarily!




What does “embodiment” mean?

B continuous state, continuous time

B continuous/intermittent link to the sensory
and motor surfaces is possible

B closed loop => stability!




Embodiment hypothesis

M all cognitive processes inherit the dynamic

properties of sensory-motor cognition: stability,
instabilities...

B cognition is embedded in
the specific embodied
cognitive architectures
that emerged in
evolution/development




How is higher cognition reached!?

B attentional selection,
coordinate transformation,
sequentla‘l‘proc§55|ng X -
emulates “function calls “right"

“above”

Reference

Q00O

“below”

to the left of = f(target, reference) Object-centered

B ... not as flexible as symbol manipulation and
costly in processing structure ...

B but all concepts are grounded by their very
nature...



Localist vs. distributed

B DFT hypothesis: all autonomous cognition
happens in localist representations which are

necessarily low-dimensional

B they don’t have to be easy to grasp
and observe

>

activation field

local excitation
B they could be latent representations m

global inhibition

B high-dimensional distributed
representations subserve primarily
classification, which is embedded in

the neural dynamics of competing dimension
nodes




DFT vs VSA

B Vector-symbolic architectures (VSA) are a
theoretical alternative

M in the original version (Smolensky): role-filler
binding... compatible with DFT

B in the Gayler/Kanerva/Plate version: high-
dimensional vectors as symbols that afford binding,
and function calling ... not neurally feasible:
autonomy

B requires that the symbol grounding problem is
solved at encoding/decoding



DFT vs VSA

B Eliasmith’s Neural Engineering Framework (NEF)
as a possible neural implementation of VSA

B vectors represented by (small) populations of spiking neural
networks

B NEF is “model neutral”... essentially a method
to “numerically” implement any neural model

B But: to preserve the original vectors, connectivity
in VSA/NEF (SPAUN) architectures is very
special => non-local dependence of
connectivities on each other...



Outlook/challenges

B sequences of relational concepts that interrelate,
exchange arguments, have hierarchical structure

B “the box to the right of the bottle that stands under the lamp”

M sequences of actions that are directed at goals,
and have hierarchical structure

B “open the box to get the screwdriver with which you remove
the screw to take of the cover of the toaster...”

M goals and their dynamics, motivation...

B emotions...



