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Abstract

We present a neural dynamic model that perceptually grounds
nested noun phrases, i.e., noun phrases that contain further
(possibly also nested) noun phrases as parts. The model re-
ceives input from the visual array and a representation of a
noun phrase from language processing. It organizes a search
for the denoted object in the visual scene. The model is a
neural dynamic architecture of interacting neural populations
which has clear interfaces with perceptual processes. It solves
a set of theoretical challenges, including the problem of keep-
ing a nested structure in short-term memory in a way that
solves the problem of 2 and massive binding problem empha-
sized by Jackendoff (2002). The model organizes a search for
the objects that are referenced in that structure. We motivate
the model, demonstrate simulation results, and discuss how it
differs from related models.
Keywords: neural process model; grounding; noun phrases;
concepts; conceptual structure; dynamic field theory

Introduction
When hearing a complex linguistic expression, we understand
its meaning by virtue of understanding the meanings of the
individual words, often referred to as “concepts”, and com-
bining those concepts in accord with the syntactic arrange-
ment. What are the neural processes that bring this about?
We ask this question committed to the embodiment stance
that language understanding depends on perceptual and mo-
tor representations, and on the neural architecture that reflects
an evolutionary and developmental history in which behav-
ior is generated while the body is situated in an environ-
mental context (Lakoff & Johnson, 1999; Barsalou, 1999).
Yet we also aim to address the flexibility of the language
faculty that has been described as its “recursive nature”, its
“productivity” or its “creative aspect” (e.g., Chomsky, 1968;
Fodor & Pylyshyn, 1988; Jackendoff, 2002), i.e., the ability to
flexibly join atomic linguistic units into molecular linguistic
units, and to join molecular linguistic units into more com-
plex molecular linguistic units. This feature of language is
evident in our ability to understand nested noun phrases (Fig-
ure 1 a-c). It raises challenges for neural process accounts that
pertain to flexibly encoding items and relationships among
items in short-term memory (STM), and to organizing a se-
quential search in accord with that encoding.

We propose a neural process model that can search the
object referenced by a given nested noun phrase in the vi-
sual array. The account is based on Dynamic Field Theory
(DFT; Schöner, Spencer, & the DFT Research Group, 2015),

a framework for building neural process models using recur-
rent neural networks. The model solves a set of challenges.
First, such a model must account for how cognitive states
are linked to sensory inputs and potentially to motor outputs.
Second, it must be consistent with neural principles of com-
putation, avoiding algorithmic elements that are not neurally
realizable. Third, it must explain how a STM of the combi-
natorial structure of a phrase can be built and then read from
step by step. That STM must encode descriptions of the ob-
jects and their relationships, as described in the noun phrase.
Fourth, the model must organize a search for objects in the
visual input in accordance with that structure. According to
the grounded cognition stance (Barsalou, 2008), the neural
processes supporting that search must overlap with the neural
processes for perception. To the best of our knowledge, the
model we present solves for the first time all of these chal-
lenges at once.

Hypotheses
Conceptual structure
The conceptual structure of a linguistic expression is a cog-
nitive representation that characterizes the logical meaning of
the expression as a combination of (ungrounded/symbolically
characterized) concepts (Jackendoff, 2002). For nested noun
phrases, it must specify (among other things) which objects
there are, which concepts characterize them, and which rela-
tionships they bear to each other (Figure 1b).

Jackendoff hypothesizes that higher cognitive competences
like reasoning and planning are underwritten by conceptual
structure. This is given support by the fact that humans use
conceptual combinations in non-linguistic problem-solving
and goal-achievement (Barsalou, 2017). Grounding concep-
tual structures thus seems to be possible in non-verbal con-
ceptual thinking, not only when guided by a linguistic ex-
pression. Both the processes of grounding linguistic expres-
sions and of grounding non-linguistic conceptual structures
must be capable of handling dependencies such as the one
depicted in Figure 1b. We hypothesize that these processes
are shared across the two domains, based on a single neural
substrate. This is plausible if language input is first analyzed
for its latent conceptual structure, as commonly assumed.

A neural mechanism for representing conceptual structure
must address known challenges. Jackendoff’s “problem of
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2” is exemplified by the phrase “the small tree above the big
tree” in which the word “tree” occurs twice, once combined
with “small”, once combined with “big”. How may a neural
representation of conceptual structure encode that there are
two trees, one of them small, the other one big? Relatedly, in
the phrase “the lake above the tree above the house”, the word
“tree” is the object of the first preposition but is itself further
described by the second preposition. How may a neural rep-
resentation encode that there is a tree that is above the house,
and above which there is the lake? This exemplifies Jack-
endoff’s “massiveness of the binding problem”, as it requires
the ability to flexibly bind the representation of an object to
multiple other representations.

Time structure of compositional search
Perceptually grounding a noun phrase entails a search for
objects in the visual array that are characterized by certain
concepts and by certain relations to other objects, as speci-
fied in the conceptual structure. The time structure of this
search is subject to a number of constraints which suggest
that humans take the conceptual structure into account when
they order the search process. Experimental studies demon-
strate that objects in the visual array are sometimes attended
in the order in which they are mentioned, but not necessarily
so (Cooper, 1974; Tanenhaus, Spivey-Knowlton, Eberhard,
& Sedivy, 1995; Altmann & Kamide, 1999; Burigo & Knoe-
ferle, 2015). A reordering may occur. Some orders are more
likely than others, although the criteria for choosing an or-
der are not well understood. Some orders may lead to more
efficient search than others, and such efficiency considera-
tions may plausibly affect the ordering. In the example of
Figure 1a, a possible efficient search strategy would select a
candidate object only once the objects to which it is related
have been found and memorized (e.g., find the lake and the
house first, then find a tree that is below the lake and above the
house, then find another tree to the right of that tree). Such in-
fluence of conceptual structure on search would make it plau-
sible that conceptual structure is explicitly represented in the
brain and affects the organization of the search.

Short-term memory of conceptual structure
To control the search process, the conceptual structure must
be represented as a STM that is stable on the time scale over
which multiple candidate selections and relation evaluations
take place. Otherwise, a syntactic re-analysis of the phono-
logical loop would have to occur every time a new object is
attended, which would predict, implausibly, that the time be-
tween two successive attentional selections scales with the
length of the noun phrase. Stability of STM can be achieved
through recurrent self-excitatory and other-inhibitory neural
interactions (Grossberg et al., 1978).

Search processes may start before the phrase has been
completely encoded in STM. Humans start searching refer-
ents even after hearing only the first few words of a phrase
(Tanenhaus et al., 1995) while simultaneously building a syn-
tactic interpretation that they gradually refine as more words

are processed (Frazier & Rayner, 1982; Ferreira & Hender-
son, 1991; Meng & Bader, 2000). Thus, the STM of concep-
tual structure must enable simultaneous reading and writing.

Dynamic Field Theory
Our model is built from dynamic neural fields (Amari, 1977;
Schöner et al., 2015), each of which models the activation
of a population of neurons at time t as an activation func-
tion u(x, t) defined over a feature dimension x. In the present
model, x is a discrete dimension, and u evolves according to

τu̇(x, t) =−u(x, t)+h+ s(x, t)

+ cexc ·σ(u(x, t))−∑x′ ̸=x cinh ·σ(u(x′, t)).

τ is the time scale, h the negative resting level, s the input.
σ is a sigmoidal transfer function. The second line formal-
izes self-excitation of a field location with strength cexc and
pairwise inhibition between field locations with strength cinh.

Initially, the activation is at resting level h. When small
input is supplied, the activation tracks an attractor at h +
s(x, t) < 0. When sufficiently large input is supplied at some
location, that attractor becomes unstable and the field forms
a peak of positive activation there. Depending on the strength
of self-excitation and pairwise inhibition, the field may ei-
ther allow only for a single peak (in which case different field
locations with sufficient input compete for selection) or for
the co-existence of multipe peaks. Moreover, sufficient self-
excitation may make fields self-sustained, so that peaks re-
main when the inducing input disappears – a model of STM.

Peaks are the units of representation of DFT, since they
yield a non-zero output σ(u(x, t)) which can be passed on to
other fields as input s. This allows to build architectures.

Model
Our model is depicted in Figure 1 d,e. In the following, we
describe each of its components.

Short-term memory of conceptual structure
Objects A solution to Jackendoff’s challenges requires a
unique binding agent for each object. To encode that a given
object is characterized by a given set of concepts (e.g., big,
red, and house), the binding agent of that object needs to be
bound to those concepts. To encode that multiple different
objects are characterized by a given concept (e.g., if there are
multiple trees), the different binding agents of those objects
need to be independently bound to the concept.

We propose that the required binding agent is realized as an
object index that is assigned to each object upon processing
its linguistic description. For the example in Figure 1a, the
indices would be assigned as follows: “the tree(1) right of the
tree(2) (which is) below the lake(3) and above the house(4)”.

The STM that specifies which concepts characterize an ob-
ject with a given index is modeled by the object/concept field.
It is defined over the discrete object index dimension and the
discrete concept dimension. A peak at location (O,C) reflects
that the object with index O is characterized by concept C.
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Figure 1: (a) Syntactic structure of an exemplary nested noun phrase. (b) Conceptual structure for that example. (c) Visual
input in which the referent of the example phrase can be found. (d) The model for representing conceptual structure. (e) The
model for generating a search instruction sequence. (f) Link to a model of compositional search (Sabinasz et al., 2020).

Relationships A solution to Jackendoff’s challenges also
requires a binding agent that is unique to each relationship.
To encode that a given object occurs in multiple different
relationships (e.g., “the tree below the lake and above the
house”), the binding agent of the object needs to be inde-
pendently bound to the different binding agents of the rela-
tionships. This binding also has to specify in which relational
role the object occurs. In the present paper, we limit ourselves
to spatial relationships like left of, right of, above, and below
with two relational roles – target and reference. For example,
in the phrase “the tree below the lake”, the tree is the target
and the lake is the reference.

The binding agent for relationships is realized in the form
of a relationship index assigned to each relationship upon pro-
cessing its linguistic description. For our example, the indices
would be assigned as follows: “the tree right of (1) the tree
(which is) below (2) the lake and above (3) the house”.

The STM that allows binding objects to relationships and
roles is modeled by two fields, the target/relationship field
and the reference/relationship field. They are both defined

over the object index dimension and the relationship index
dimension. A peak at some location (O,R) carries the infor-
mation that the object with index O is, respectively, the target
or reference of the relation with index R. As an example, con-
sider the activation snapshots in Figure 1d. They encode the
relationships of Figure 1b.

Every relationship is additionally characterized by a rela-
tional concept. This is modeled by the relationship/concept
field, which is defined over the discrete relational concept di-
mension and the relationship index. A peak in that field at
some location (C,R) reflects that the relationship with index
R is characterized by the relational concept C.

The described fields are filled by a language pre-processing
system that performs the index assignments using two neu-
ral mechanisms of index nodes that get activated in sequence
(Sandamirskaya & Schöner, 2010), with a novel mechanism
that allows to also go backwards in the sequence, which is
necessary to refer back to a previous object when encounter-
ing a new prepositional phrase. In the present paper, we do
not describe the details of this mechanism.
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Search instruction sequence generator

The search instruction sequence generator guides the com-
positional search system such as to find the configuration of
objects described in the conceptual structure.

Target production The model contains a target production
field defined over the object index dimension. A peak in that
field at some location O reflects a decision to find the target
object with index O next. The field is self-sustained, so that
a peak remains until it is actively inhibited. Furthermore, the
locations mutually inhibit each other, so that only one of them
can be active at a time. The objects stored in the conceptual
structure therefore compete for selection as the object that is
to be searched next. This is necessary because the composi-
tional search system can only find one object at a time.

Each object should only be searched once. For this pur-
pose, the model contains a target production inhibition-of-
return (IoR) field, which receives input from the target pro-
duction field and is self-sustained. It inhibits the target pro-
duction field, preventing a previously searched-for object to
win the next competition.

When the target production field forms a peak for a certain
object index, a search should be triggered which takes into
account all of the concepts specified for that object index in
the object/concept field. To achieve this, the model contains
an object/concept production field. That field receives sub-
threshold input from the object/concept field. Additionally, it
receives subthreshold input from the target production field
along the shared object index dimension. The field forms
peaks wherever these two inputs overlap. Thus, a peak at
some location (O,C) carries the information that the selected
target object O is characterized by the concept C.

Further, the model contains a concept production field de-
fined over the discrete concept dimension. That field re-
ceives input from the object/concept production field, which
is summed along the object index dimension. In effect, it
forms a peak at a concept whenever the object/concept pro-
duction field contains a peak at that concept, which can serve
as input to the search system.

When the search system has successfully found the object,
it can temporarily inhibit the target production field, thereby
deleting the peak. After inhibition is released, the target in-
dices compete for activation again, leading to a new decision
about which target object to find next.

Relationship production Analogously to the target pro-
duction field, the model contains a relationship production
field defined over the relationship index dimension. A peak in
that field signals that the respective relationship is to be pro-
cessed by the compositional search system next. As before,
the field is self-sustained, mutual inhibition leads to competi-
tion, an IoR field prevents a relationship from being selected
more than once, and the search system can delete the peak
after processing the relationship.

A relationship should only become active if it contains
the target object that is currently searched for in its target

role. This is achieved by means of the target/relationship
production field. It receives subthreshold input from the tar-
get/relationship field, as well as from the target production
field along the shared object index dimension. It forms peaks
where these two inputs overlap. Thus, if object O has been
selected in the target production field, the target/relationship
production field forms a peak at all locations (O,R) for all
relationships R that contain O in their target role. The rela-
tionship production field receives input from that field, which
is summed along the object index dimension. In effect, the
competition is biased strongly towards relationships that con-
tain the currently active target object in their target role.

Searching for a target that is characterized by a relation-
ship to a reference object requires reading out the refer-
ence object index and the relational concept specified in the
conceptual structure. The former is achieved by the refer-
ence/relationship production field, which receives subthresh-
old input from the reference/relationship field, as well as from
the relationship production field along the shared relationship
index dimension. When these inputs overlap, the field forms
a peak. A peak at location (O,R) carries the information that
the selected relationship R has object O as its reference ob-
ject. Additionally, there is a reference production field de-
fined over the object index dimension. That field receives
input from the reference/relationship production field, which
is summed along the object index dimension. Effectively, the
reference production field forms a peak on object O when the
reference/relationship production field contains a peak at O.

The reading-out of the relational concept is achieved in
a completely analogous fashion by the relationship/concept
production field and a relational concept production field de-
fined over the discrete relational concept dimension.

Competitive advantages Recall that the order in which ob-
jects are searched can in principle be arbitrary, but certain
more efficient orders are more likely to be employed. A parsi-
monious way to account for this is by assuming that the order
emerges due to dynamic interactions that bias the competition
in the target production field and relationship production field
to favor the selection of some objects or relationships over
others. In the present incarnation of the model, a negative bias
is provided to each object index in the target production field,
which is proportional to the number of relationships with un-
saturated reference objects that the respective object occurs
in as a target. This is achieved by the spreading of subthresh-
old activation. The details of this mechanism are beyond the
scope of the present paper. In effect, targets whose reference
objects have already been found are preferentially selected.

Compositional search

The production fields for concept, reference, and relational
concept project to a model of compositional search (an im-
proved version of Sabinasz et al., 2020), which enables, e.g.,
to search for “a tree below 3 and above 4”. A target candi-
date is identified based on a matching first relation (e.g., “a
tree below 3”), and then it is checked whether the additional
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relations also match (e.g., “above 4”). If all relations match,
the target is stored in a mental map field which is defined over
space and discrete index (Figure 2, bottom row). This enables
referring back to the object’s location in future searches.

Results
To test the model’s behavior, we simulated it using the DFT
software framework cedar. Figure 2 shows activation snap-
shots of relevant fields as it grounds the phrase from Fig-
ure 1a. This example involves two trees and therefore probes
the model’s ability to solve the problem of 2. Further, the
second tree is the reference object of the first relationship and
the target object of the other two relationships, probing the
model’s ability to flexibly bind object descriptions to multi-
ple different relationships.

Selecting a house: At time t1, the target production field
has high subthreshold activation at indices 3 and 4, since these
objects do not occur as a target in any relationships with un-
saturated reference objects. By t2, object index 4 has won
the competition and has been selected for search. This has
resulted in subthreshold slice input to column 4 of the ob-
ject/concept production field, which has lead to the formation
of a peak at location (4,house). In turn, the concept produc-
tion field has formed a peak for house. This has triggered the
compositional search system to visually search for houses1,
which has resulted in a selection of the location of a house in
the target candidate field. That location is committed to index
4 in the mental map field.

Selecting a lake: At t3, the target production field is biased
away from object index 4 by the IoR field, resulting in a se-
lection of object index 3 by time t4. By the same mechanisms
as before, a lake is selected in the target candidate field and
stored at index 3 in the mental map field.

Selecting a tree below the lake: At t5, the target produc-
tion field has higher activation at index 2 than at the other
remaining index 1, since it doesn’t occur as a target in any re-
lationship with an unsaturated reference object. By t6, it has
won the competition. By the same mechanisms as before, the
tree concept becomes active in the concept production field.

Meanwhile, relationship 2 has won the competition in the
relationship production field, since it is one of the relation-
ships that contain the selected target object 2 in their target
role (providing one source of bias), and since its reference ob-
ject has been found shortly before (providing another source
of bias). In effect, the reference production field has selected
object 3 as the reference object due to the coupling through
the reference/relationship production field, and the relational
concept production field has selected below due to the cou-
pling through the relationship/concept production field.

Thus, the compositional search system has been triggered
to search for a tree that is below reference object 3 (the lake),
whose position can be read from the mental map. By t6, such

1This is enabled using a field defined over two-dimensional space
and a discrete object category dimension, which is fed by the feature
maps of a 2-layer CNN with hand-crafted weights (Sabinasz, 2019).

an object has been selected in the target candidate field.
Checking if that tree is also above the house: At t7, rela-

tionship 3 is selected in the relationship production field. By
the same mechanisms as before, this leads to selection of 4 in
the reference production field and above in the relational con-
cept production field, which in turn leads the compositional
search system to check whether the target candidate is above
object 4 from the mental map.

Since all the relationships matched, the target candidate is
committed to index 2 in the mental map field at t8.

From t9 to t10, analogous mechanisms as before lead the
model to find object 1 (the tree to the right of 2).

As noted before, during online language comprehension,
objects are often attended in the order in which they are men-
tioned. Our model does not do this for this example because
the STM of conceptual structure is already filled before the
search is started, which enables the search from bottom to
top. If the STM were filled in the order in which objects
are mentioned, while the search is already going on, then our
model would also attend objects in the order of mention.

Discussion
We have presented a neural dynamic process model that can
perceptually ground a nested noun phrase in the visual array,
to which it is dynamically coupled through the sensory sur-
face. While not explicitly mapped onto areas on the brain,
the model is consistent with the neural principles formalized
in DFT that characterize neural populations by strong inter-
nal interaction and enable their coupling into neural dynamic
architectures. The model contains a STM of conceptual struc-
ture that can represent the structure of relational dependency
between objects. The STM can be filled by the language
system while simultaneously providing input to a neural pro-
cess that generates a sequence of searches that together suc-
cessfully and efficiently find the described object. Thus, the
model solves the challenges identified in the introduction.

The search order emerges from local interactions that bias
competitive selection (e.g., in favor of objects whose refer-
ence objects have already been found). Effectively, the con-
ceptual structure tree can thus affect the order (e.g., by lead-
ing to an emergent processing from the leaves to the root)
without requiring algorithmic tree traversal methods.

A number of algorithmic models that resolve noun phrases
or conceptual structures in perceptual representations have
been proposed. Some make use of pointers and recursive
function calls to implement the tree traversal of conceptual
structures (e.g., Brown, Buntschuh, & Wilpon, 1992; Nagao
& Rekimoto, 1995; Gorniak & Roy, 2004). It is not obvious
how such methods would be realized by neural processes.

Van der Velde and De Kamps (2006) propose a neural
model addressing Jackendoff’s challenges at the level of syn-
tactic phrase structure. That model uses neural assemblies
to represent noun phrases (implicitly representing object de-
scriptions), and prepositional phrases (implicitly represent-
ing relationship descriptions), together with a mechanism that

851



4 4 4
3

4
3

4
3

4
3

4
2

3

4
2

3

4
2

3

Figure 2: Activation snapshots of the architecture while it generates a search instruction sequence for the example phrase from
Figure 1a. Field activations are shown as color-coded snapshots at discrete moments in time (t1, . . . ,t10).

flexibly binds assemblies. This emphasizes syntactic rather
than conceptual structure. The neural mechanisms employed
differ from ours. For instance, in the present model, interac-
tions within populations stabilize STM against decay, which
we find to be important to solve the task. This leads to a limit
on the number of objects and relationships that can be held
in the STM of conceptual structure (Johnson, Simmering, &
Buss, 2014), much smaller than the number of objects that
can, in principle, be mentioned in a given sentence or noun
phrase. For example, even though humans are able to find the
referent of a chain like “the lion next to the zebra on the mat
next to the house at the lake”, we contend that not all object
and relationships are held in the STM of conceptual structure
at the same time. When the number of mentioned objects
(or relationships) exceeds a limit, newly mentioned objects

(or relationships) replace old ones in the STM of conceptual
structure. This prevents the kind of combinatorial explosions
discussed by Stewart and Eliasmith (2012).

Vector-symbolic architectures (VSAs) offer an alternative
neurally inspired framework which addresses Jackendoff’s
challenges for STM representations of conceptual structure
(Smolensky, 1990; Gayler, 2003). An implementation in
spiking neural networks (Stewart & Eliasmith, 2012) has
been hypothesized to enable coupling to perceptual and mo-
tor processes (Eliasmith, 2013). The extent to which these
accounts are compatible with the neural principles postulated
in DFT needs further study, however.

Our ongoing research explores how the architecture may
scale to large vocabularies and more complex grammatical
structures.
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