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Road .
CAcER Neural dynamics

B Neuro-physics
B =—u+h+inputs ~integrate and fire...

B spiking mechanism replaced by the sigmoid threshold
function in population picture

Mattractor dynamics

B —u term is the source of the stability of neural states

M this dynamics as a low-pass filter of input



[from:Tresilian, 2012]

Neuro-physics

B membrane potential, u(?), evolves as a dynamical
system

tu(t) = — u(t) + h + iput(z)

B time scale, 7~ 10 ms
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Neuro-physics

M spikes when membrane potential exceeds

threshold.... and only spikes are transmitted to
downstream neurons
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Neuro-physics

B firing rate reflects level of input...
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Neural dynamics

B spiking mechanism replaced by a threshold function

B that captures the effective transmission of spikes in
populations

4 o(u)




Neural dynamics

M activation as a real number with threshold at zero,
abstracting from biophysical details ~ population
evel membrane potential

B low levels of activation: not transmitted to
downstream systems (including motor systems)

M high levels of activation: transmitted to
downstream systems




Neural dynamics

B dynamical system: the present (activation) state
predicts the future evolution of the state

B => given an initial level of activation, u(0), the time

course of activation, u(¢), for ¢t > 0O is uniquely

determined
A du/dt = f(u)

vector-field

—>->T<- <

() = —u(l®)+ h resting
level




Neural dynamics

B fixed point = constant solution (stationary state)

M stable fixed point = attractor: nearby solutions
converge to the fixed point

A du/dt = f(u)

vector-field

—>->T<- <

Tilg, = — Up, + h=0 resting \
= Ug, = resting level level




Neural dynamics

M attractors structure the
ensemble of solutions
> (from all initial conditions)
resting e — ﬂOW

Ievel_>
v
T A du/dt = f(u)

vector-field

—>->T<-«— >

resting \
i(t) = — u(t) + h level




Neuronal dynamics

M inputs are contributions to the
rate of change of activation

A du/dt

M positive: excitatory

M negative: inhibitory
Tu(t) = — u(t) + h + s(r)

B => input shifts the attractor

M => activation tracks this
shift due to stability

>

resting
level, h

input, s

u(t)

ﬂu(t))
// time, t
>

l resting level, h



Neuronal dynamics

B transmitted to down-stream neurons/motor
systems: o(u(?))

B [we use o(u) and g(u) interchangeably in some

papers/the DFT book]

: : : A input,
B => the “input-driven solution” 'S(F:;’ :

of the neural dynamics low-
pass filters time varying input /g(u o)

/ time, t
>

Tl/.t(t) = — l/l(t) + h + S(t) _/ resting level, h
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Connectionism: similar abstraction

. o inputs
B neurons sum input activations

and pass them through a \ i J
sigmoidal threshold function
B some connectionist models
neglect the low-pass filtering/
time delaying properties of

the neural membrane

, output
dynamics

output = g ( Z (inputs))




Road
catmap Neural field

M defined by pattern of forward connectivity
to sensory/motor surfaces

M as described by tuning curves/receptive fields

M analogous to forward NN ...

B neglect sampling by discrete neurons =>
neural fields

B notion of feature spaces that are
represented in neural fields



Neural dynamic networks

B in networks neural activation

Sq So1  S3
variables, the forward ¢ ¢ ¢
connectivity determines “what O R ?
a heuron stands for”

Ug) (us)

B = space code (or labelled line

code) &
Min rate code, the activation 9(us)

level “stands for” something, ...

e.g.a sensed intensity Y Aactvation

Mgeneric neural networks Y /
combine both codes \ 4 intensity

activation )




Neural fields

sensory signal, s(x)

T dimension, x

>

® forward connectivity
from the sensory surface activation
field, u(y)

extracts perceptual .
feature dimension

dimension, y




B forward connectivity
predicts/models tuning

Neural fields

curves

>

Spike rate

>

Feature dimension

sensory signal, s(x)

T tuning curve

dimension, X
>

activation

field, u(y)

é dimension, y
>




® forward connectivity thus

Neural fields

generates a map from
sensory surface to

feature d

M neglect t

imension

ne sampling by

individua

neurons =>

activation fields

sensory signal, s(x)

‘ ~~_ dimension, x

activation
field, u(y)

dimension, y

A~



Neural fields

M analogous notion for
forward connectivity to
motor surfaces...

® (actually involves
behavioral dynamics)

B (e.g, through neural oscillators
and peripheral reflex loops)

A activation
field, u(r)

motor
dimension, r

Adr/dt

>

A\ 4



Road .
S Neural dynamics: state

B neural activation that is not entirely
determined by input...but depends on the
activation state

M this originates from recurrent connectivity
(“interaction” or “coupling”) that is
organized to keep activation states stable

B detection instability
M selection/competition

B => dynamic regimes/instabilities



Neuronal dynamics with self-excitation

v

M single activation variable with self-
excitation

B (representing a small population with
excitatory coupling)

Tu(t) = —u(t) + h+ s(t) + ¢ o(u(r))



Neuronal dynamics A duldt

with self-excitation
\(‘ |
T u

resting level \

A du/dt

u
>
B => nonlinear dynamics! \\//\
resting
level, h

tu(t) = —u(t) + h+ s(t) + ¢ o(u(r))



Neuronal dynamics
with self-excitation

A du/dt

A input strength

®varying input

resting
level, h

Tu(t) = —u(t) + h+ s(t) + ¢ o(u(r))



Neuronal dynamics
with self-excitation

A
Efor some inputs: bistable
dynamics
time, t
®m“on” vs “off” state | >
_— u(t)<0

tu(t) = — u(t) + h + s(t) + ¢ o(u(r))



Neuronal dynamics
with self-excitation durde

stimulus
strength

A fixed point

unstable
stimulus
N strength
stable

Mincreasing input strength

=> detection instability N 4 dufdt
N input strength
\\/

resting
level, h

tu(t) = — u(t) + h + s(t) + ¢ o(u(r))




Neuronal dynamics
with self-excitation p o

stimulus
strength

Bmdecreasing input
strength => reverse
detection instability A input strength

resting
level, h

tu(t) = — u(t) + h + s(t) + ¢ o(u(r))

N

fixed point

A
stable
stimulus
strength
unstable
A du/dt




— hd °
— > SI I I lu Iatl On OXFORD SERIES IN DEVELOPMENTAL COOGNITIVE NEUROSCIENCE

M dynamicfieldtheory.org D ynam ic Thinkin g

A PRIMER ON DYNAMIC FIELD THEORY

Gregor Schoner, John P. Spencer, and the DFT Kesearch Group

OXTORD



http://dynamicfieldtheory.org

Neuronal dynamics
with self-excitation

Bthe detection and its
reverse == create
discrete events from
time-continuous changes

u(t)
A

reverse

detection P

instability -

l 4"'4&‘4‘
:/ time, t
A

detection
instability

tu(t) = — u(t) + h + s(t) + ¢ o(u(r))



Neuronal dynamics with competition

B two activation variables with ¢ ¢
reciprocal inhibitory connection

B (representing two small
populations with inhibitory
connections)

T (1) = — u(t) + h + 51(t) — cro(uy(2))
TUy(1) = — uy(1) + h + 5,(1) — ¢y10(u(2))



Neuronal dynamics with competition

B Coupling/interaction: the rate ¢ ¢
of change of one activation
variable depends on the level
of activation of the other
activation variable

coupling/interaction
T (1) = — u(t) + h + 51(t) — cro(uy(2))
TUy(1) = — uy(1) + h + 5,(1) — ¢y10(u(2))



Neuronal dynamics with competition

A du|/dt
h+s|
M assume u, > 0 => u, inhibits u, ! )
™N ul
M => attractor for u; < 0 s i-cra] Nrom iy
M => y, does not inhibit u, J duafe
1 "2
h+s,

Tty (1) = — u () + h + 51(2) — ¢1,0(uy(1))
TUy(1) = — uy(t) + h + 5,(t) — ¢r16(uy(2))



Neuronal dynamics with competition

Iassume> U, inhibits 1

B => attractor for u; < 0

B => y, does not inhibit u,

(1) = —u(t) + h+ 51(1)

TUy(1) = — uy(t) + h + 5,(t) — ¢r16(uy(2))

h+52

uj

u2



Neuronal dynamics with competition

M assume u, > 0 => u, inhibits 1,

B => attractor for

B => y, does not inhibit u,

T () = — uy () + h + s1(t) — c1,0(uy (1))
TUy(1) = — uy(t) + h + 5,(t) — ¢r16(uy(2))

uj

u2



Neuronal dynamics with competition

A du|/dt
h+s|
M assume u, > 0 => u, inhibits u, ! )
NG
M => attractor for u; < 0 s i-cra] Nrom iy
. L duy/d
B =>{, does not inhibit u, J 47
! "2
h+s,

Tty (1) = — u () + h + 51(2) — ¢1,0(uy(1))
TUy(1) = — uy(t) + h + 5,(1) & ¢p16(uy(2))



Neuronal dynamics with competition

A du|/dt
h+s|
By, >0andu; <0 ' X
™ e uj
B symmetry: u, < 0 and u; > 0 s icr] NGrom
B => competition/selection J et
! "2
h+s,

T () = — uy () + h + s1(t) — c1,0(uy (1))
T, (1) = — uy(t) + h + 5,(t) — cy0(u;(2))
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Neural dynamics of fields

>

activation field

B combine detection m'oca' excitation
with selection global inhibition

M => |ocal excitation/
global inhibition

dimension



Neural dynamics of fields

>

A activation field

w(Xx-x")
m local excitation
X-X' global inhibition
>

dimension

tu(x,t) = —ulx, )+ h+ s(x, t) + Ja’x’ w(x —x') o(u(x’))



Relationship to the dynamics of
discrete activation variables

ALII ALI2

mutual

_selt- 7 inhibition | self
excitation excitation
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Attractors and their instabilities

reverse
detection detection

instability instability

M input driven solution (sub-
threshold) l

M self-stabilized solution
(peak, supra-threshold)

M selection / selection
instability

® working memory /

memory instability
Noise is critical

M boost-driven detection near instabilities

instability



Dynamic regimes

B which attractors and instabilities arise as
input patterns are varied

M examples

B “perceptual regime”: mono-stable sub-threshold =>
bistable sub-threshold/peak => mono-table peak..

B “working memory regime” bistable sub-threshold/peak
=> mono-table peak.. without mono-stable sub-threshold

M single (“selective”) vs. multi-peak regime



Readmap  Case study: DFT account of
sensory-motor decision making

M assessed in reaction-time tasks

M information processing: how much information
is processed...

B DFT: contents of task matters... embodiment

B DFT: decisions evolve continuously in time and
metric space



Reaction time (RT) paradigm

Imperative
signal=
go signal
response
tlme

RT

M
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Hiclds law: RT increases with # choices
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Metric effect

M predict faster
response times for
metrically close
than for metrically
far choices

narrow
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Metric effect;

experiment
Copper
Wire
2 - Choice 3 - Choice
320 r
310
,E, 300
:
B 290
=
&
5
S 280
& Simulated Obszerved
270 L = 2-Choice [l 2-Choice
—3-Choice []3-Choice
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[McDowe”’Jeka’ Schbner] 6 20 40 o0 80 100 120 140 160 180 200
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preshaped activation field

maixmal activation

same metrics, different probability

different metrics, same probability

t 1

movement parameter

| probability

high

I' low
' probability

350 450 550

time

250

VL

movement parameter

- probability

high

. low
probability |

250 350 450 550
time

-4

A |

TTL

movement parameter

 high
 probability

I' low
probability

350 450 550

time

250

[from Erlhagen, Schéner: Psych. Rev. 2002]



rare

A frequent [are
frequent A/
wide narrow
Reaction Time P300 Amplitude Fz
7
2 6
S 5
E 4
] : 8 3] [ ]
>
B = 2
o
u € 1
| < 0
Wide Wide Narrow Narrow Wide Wide Narrow Narrow
Frequent Rare Frequent Rare Frequent Rare Frequent Rare
Target Target

[from McDowell, Jeka, Schéner, Hatfield, 2002]



Continuous evolution of
sensory-motor decisions

® timed movement initiation paradigm

imperative stimulus

\ 4

>

111 X
T time

move on 4th to tone

‘(- imposed SR interval

[Ghez and colleagues, 1988 to 1990’s]
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Number of trials

theoretical account for Henig et al. Experimental results of Henig et al
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0 0 20t 120 | SR
interval
200} 1 200} { short
n
100} {100} ~ .SR S 60
interval 2
X
° ° 3 40r medium
5 20 SR
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Peak Force (N)

[Erlhagen, Schoner: Psychological Review 109, 545-572 (2002)]



Metric
effect

Edirectly observe

the preshaped
field ...

®and infer the
width of preshape
peaks

[Ghez et al 1997]
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Neural observation of field

B center-out sensori-

motor selection task O O
a0 O ©
B varying prior / o O \
information o0 O o o
O —b0 0 0— +O 0-@:
B macaque O © O O
3 2
\ . /
cO O ©
O @
- | | | I
Start trial 500ms PS 1000 ms RS MVT
movement « PP - “ RT —

direction

Bastian, Riehle, Schoner, 2003



Tuning of neurons in Ml to
movement direction

Complete Information

Y o AL H G 1
T’_&"-{’-f-%{*ﬂﬁg— TR

+

- -
E

lili023-1

R AR st srn
PS RS ‘\
hand lands on target

hand lifts off start button



Distribution of Population
Activation (DPA) <=> neural field

Distribution of population activation =
2 tuning curve * current firing rate

neurons

activation
activation
o

= W
o s
\\\\‘“‘\\‘“‘“\\\\"’ R
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» 3 B St GRS
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. L 4 6 e - 500
0O 60 120 180 240 300 360 / ’770,, 4 PS response
movement direction complete O,/}'eoem@/yi \ i rﬁ)al
; |
movement direction precue ilO/? precue 9

required in this trial

B nhote: neurons are not
localized within DPA! [Bastian, Riehle, Schéner, 2003]



DPA

M note: neurons are not localized within DPA!

® [notion of projection cortical neurons really
are sensitive to many dimensions

B motor: arm configuration, force direction

B visual: many feature dimensions such as spatial frequency,
orientation, direction...

B => DPA is a projection from that high-
dimensional space onto a single dimension]



DPA pre-shaped
by pre-cue
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Decision making
in D PA Go signal

(o
Oo eo dorsal
Color cue OOO pre-motor
cortex

o
Memory

Spatial cues

®
(o

0

Cog Activity

with respect to

[Cisek, Kalaska 2005] baseline



R0admeP Case study: embodiment

® neural dynamic fields can be linked to time-
varying sensory inputs and can control
motor systems in closed loop



Driving fields from sensory signals

® robot that orients
toward sound sources

microphones

\

Robot ™~ Microphones

[from Bicho, Mallet, Schéner, Int J Rob Res,2000]

& " . 2 l,‘. ' \
direction} IR detectors



Sensory surface

® each microphone samples heading direction

A

 sensitivity cone of each microphone

heading
direction

>



Sensory input

® each microphone

provides input to + activation
the field = field heading
K direction
Ioud.n.es.s g
sensitivity cone
1 input from sensory surface
heading
direction

two sound sources



Detection instability as
intensity of sound source increases

input

4 .

oo N

source % 0

activation
field

\\\\\\\\\ QN

= N
SR
St

R

L
otlNona

source 3 0

[from Bicho, Mallet, Schoner: Int. J. Rob. Res., 2000]

IR detectors



arget selection in the presence of
two sources
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Robust estimation in the
presence of outliers




Tracking moving sound source




Working
memory

B g
source o= 9 ‘\

activation

‘ \ ._:.:.__:{l
source % o ’(\

on
v
A h (resting level)
-0.05 |- ' .
0.1
-0.15
0.2
-0.25
x 5 10 t15 20 25 35 0 e
input on input off memory has decayed

[from Bicho, Mallet, Schoner: Int | Rob Res 19:424(2000)]



How to generate the behavior!?

® “reading out” the
peak location to
specify heading!?

A . .
activation

field

specified value

dimension

>

peak position



Challenges

B |) any actual motor behavior involves
dynamics.. stability!

M 2) in organism, motor behavior ultimately
involves muscles, which receive descending
activation that is graded (rate code)... and
temporally structured (timing)



Challenges

B |) any actual motor behavior involves
dynamics.. stability!

M 2) in organism, motor behavior ultimately
involves muscles, which receive descending
activation that is graded (rate code)... and
temporally structured (timing)



Generating behavior entails dynamics

B behavioral dynamics of a vehicle

B with an attractor at desired heading

A do/dt

heading
direction ¢ ',"

attractor

vehicle



Human locomotion described by
dynamics of heading direction

B humans walking in virtual reality
under the influence of targets and
obstacles

12

6
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1% 45 o0 4 90 % 2 4 6 8 10
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[Warren, Fajen et al, 2003]
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Heading direction

® Neural evidence for head-orientation cells...
that function as heading direction
representation

B Neural attractor dynamics (neural field) for
heading direction

180

270

[McNaughton et al., Nature reviews neuroscience 2006]



Neural dynamics of path integration

a b Moving eastward No motion
@ 0 0O0Ceoce o000

@ OO0 O @0 e
@ OO0 O @O0 e
@ OO OC e 0o e
@ O ® 0

@ O @ ® 00O
® O @ ® 00
®@ © O ® 00

® 0000000 0 O
® 0000000 0 O

[McNaughton et al., Nature reviews neuroscience 2006]



From field to behavioral dynamics

M standard idea: (1)~
probability density

N specified value
activation

field

B but: normalization! . .
dimension

B => problem when there
is no peak: divide by

peak position

zero!
A activation no value specified
field
¢ _ Jd¢ ¢ 6(u(¢’ t)) dimension
0 T ——




Erect an attractor rather than “read out”

specified value A . no value specified
activation

field

dimension dimension

1 activation
field

L dx/dt L dx/dt




h = — jd¢’0(u(¢,, ) (§b - ¢peak)

__ qub’ (= ¢ ou(d’, D)

specified value N no value specified
activation

field

dimension dimension

T activation
field

. dx/dt y dx/dt







Challenges

B |) any actual motor behavior involves
dynamics.. stability!

M 2) in organism, motor behavior ultimately
involves muscles, which receive descending
activation that is graded (rate code)... and
temporally structured (timing)



Neural timers in MC

timing signal speed of hand

estimate from

neural populatlon . -*“
I_L

|||||||||

[Moran, Schwartz, | Neurophys 1999]



Neural oscillator
model of timing

B standard excitatory-
inhibitory neural
population dynamics =>
oscillations/active
transients

® field of such oscillators
for different peak
velocities/ amplitudes

[Zibner, Tekulve, Schoner, ICDL 2015;
Schoner, Tekulve, Zibner, 201 9]]
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J-S Jokeit
dissertation
2022]

ocalized input triggers transients/
oscillations in such fields
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descending activation: DoF problem

end-effector

T
G0 0

[Martin, Scholz, Schoner. Neural Computation (2009]
[Martin, Reimann, Schoner Biological Cybernetics 2019]

arm in space



Muscles: dynamical system with
an attractor at a postural state

Descending Activation u

Length and Velocity
Feedback

Movement Time



Conclusion

B sensory-motor cognition from neural
dynamic fields that are coupled to sensory
surfaces and act on the motor surfaces
(through behavioral dynamics)

M instabilities make decisions

B detection
B selection

M working memory



Road
cadmap Outlook

M how do we go from sensory-motor
cognition to “real” cognition!?



