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Abstract

Making a saccadic eye movement involves two decisions, the decision to initiate the saccade and the selection of the visual target of the
saccade. Here we provide a theoretical account for the time-courses of these two processes, whose instabilities are the basis of decision making.
We show how the cross-over from spatial averaging for fast saccades to selection for slow saccades arises from the balance between excitatory
and inhibitory processes. Initiating a saccade involves overcoming fixation, as can be observed in the countermanding paradigm, which we model
accounting both for the temporal evolution of the suppression probability and its dependence on fixation activity. The interaction between the
two forms of decision making is demonstrated by predicting how the cross-over from averaging to selection depends on the fixation stimulus in
gap-step-overlap paradigms. We discuss how the activation dynamics of our model may be mapped onto neuronal structures including the motor
map and the fixation cells in superior colliculus.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Primates perform many tens of thousands of saccades per
day, rapid eye movements to bring the saccadic goal onto
the fovea. Saccadic movements are thus an important and
ubiquitous prerequisite for the processing of visual information.
The saccadic system is one of the best studied systems
both at the neurophysiological and psychophysical level. For
both reasons, saccadic eye movements are often used as
a window into understanding the neural basis of sensori-
motor decision making. Making a saccade necessarily involves
decision making in two senses. First, among a set of potential
visual targets, one must be selected as the next end-point of
a saccade. Only in the laboratory is this process sometimes
trivialized by reducing the visual array to a single visual item.
In the real world, the visual array is rich and the decision
of selecting one visual target must be stabilized against the
influence of many distractors. Second, to initiate a saccade,
the decision must be made to release the system from its
previous state of fixation. Again, outside the laboratory this
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typically involves overcoming visual stimulation at the previous
fixation sites. These two aspects of saccadic decision making
have been referred to as the “when” and “where” processes
(Findlay & Walker, 1999; van Gisbergen, Gielen, Cox, Bruijns,
& Kleine Schaars, 1981).

Experimentally, the process of selection can be simplified
into the form of double target paradigms with either two targets
or one target and a distractor. Typically, if the targets are
metrically close to each other, the nervous system does not
select one of them but directs a saccade to an averaged spatial
position, weighted by factors such as contrast, eccentricity, and
probability and sometimes called the “center of gravity” of
the two targets. By contrast, for metrically distant targets the
nervous system always selects one of the two targets (Ottes,
van Gisbergen, & Eggermont, 1984).

What is the neuronal basis of this selection process?
One candidate is the superior colliculus, which provides
a topographic map of saccadic end-points. A single,
unambiguous target is represented by a relatively broad
distribution of neurons that are activated in a graded way
(for a review see Schall (2004b)). For two targets a bimodal
distribution of activation can be found in the superior colliculus
structures with – for sufficiently close targets – the center of
gravity of the activation in the middle between the two targets
(Basso and Wurtz (1998), review Schall (2004b)).

0893-6080/$ - see front matter c© 2006 Elsevier Ltd. All rights reserved.
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The first goal of this paper is to understand how saccadic
decision making depends on the metric structure of the
stimulus layout and subsequently how it relates to the
respective neural representation in superior colliculus and
related structures. Based on previous work by Kopecz and
Schöner (1995), Schöner, Kopecz, and Erlhagen (1997) and
analogous to work by Erlhagen and Schöner (2002) on arm
movement planning we propose that parameters of saccadic
movements are represented by dynamic fields, activation fields
defined over continuous spaces such as the location of visual
targets in retinal coordinates (see discussion of coordinate
frames in Kopecz and Schöner (1995). Within these fields,
input may induce localized distributions of activation, which
are stabilized by local-excitatory and longer-range inhibitory
interactions. We hypothesize that such localized peaks of
activation reflect decisions and show that the transition from
input-driven activation to localized peaks involves dynamic
instabilities (from a bistable to a monostable state). Similarly,
we hypothesize that the transition from averaging to selection
is a second dynamic instability (from a monostable to a bistable
state).

A signature of these instabilities are the time-courses of
decision making processes. The shift from an averaging to
a selection mode is driven not only by the metric distance
between targets but also by the time available for processing.
Experimental manipulations emphasizing accuracy rather than
speed shift the balance from averaging to selection within
the trial-to-trial variability (for monkey data, see Edelman
and Keller (1998)). For sufficiently large distances, however,
averaging cannot be observed even under speeded conditions
– saccades always to go to one or the other target, and
performance in the target–distractor paradigm may drop to
chance level.

Here we argue that taking into account the inherent temporal
dynamics of neural interaction provides an understanding of
the time-course of decision making, the shift from early
averaging to late inhibition. To show that, we extend an earlier
Dynamic Field model (Kopecz & Schöner, 1995) to take into
account the organization of neuronal activation into excitatory
layers and inhibitory interneurons. This makes that inhibitory
interaction becomes effective later than excitatory interaction.
The resulting evolution of the state of the selection process
matters, because movement plans are continuously fed into
movement generation mechanisms. This postulate stands in
contrast to classical information processing ideas of successive
stages of processing which only transmit information when
“done” with their computations (e.g. Miller (1988)), but is
consistent with neurophysiological evidence for a continuous
flow between stages (Bichot, Rao, & Schall, 2001; Miller,
Riehle, & Requin, 1992).

Given this dynamic form of movement planning, how does
the system transition into action? The decision to initiate
a saccade is never against a entirely neutral background.
Typically, a saccade is initiated through a transition from a
fixation state, in which the fixation stimulus is foveated. That
the visual structure supporting fixation behavior (the fixation
signal) matters has been shown both at the neural (Munoz

& Wurtz, 1993a, 1993b) and at the behavioral level (Ross
and Ross (1980), for an overview see Kopecz (1995)). The
competition between the fixation state and movement initiation
can be studied in gap-step-overlap paradigms in which the time
interval between the offset of the fixation stimulus and the
onset of the movement target is varied. Because this leads to
a variation of the latency of saccadic initiation – the later, the
more temporal overlap between fixation and target signal –
the time-course of movement planning can be probed in this
paradigm as well.

We model the interaction of fixation and saccadic planning
in a second Dynamic Field, the initiation field, which receives
input from the selection system as well as directly from the
sensory surface. The complete model is thus a two-level system,
each level consisting of an excitatory and an inhibitory layer
(Fig. 2). The decision to initiate a saccade occurs when the
previously stable “fixation” peak in the initiation level, becomes
unstable through competition with input from the selection
field. This generates a new peak at the planned saccadic
end-point. The saccadic movement that ensues, but is not
modelled here, reinstates the fixation peak. Because multiple
factors contribute to the instability that leads to movement
initiation, this account differs importantly from accounts in
which movement initiation is initiated when a threshold is
reached (e.g., Ratcliff and Rouder (1998), for critical discussion
see Schall (2004a)).

Varying one such factor, the time at which the fixation signal
is extinguished, leads to an account for the gap-step-overlap
effect. Countermanding can be understood as the influence of
a second factor, the global level of activation in the selection
field. The instruction to suppress a previously planned saccade
is modelled as global inhibitory input to the selection system.
In the initiation level; this shifts the balance of competition
in favor of fixation. We show that whether or not a saccade
can be suppressed depends on the strength of fixation activity.
Because saccades with shorter than average latency are more
likely to overcome the renewed fixation signal, failed-to-inhibit
saccades are typically faster than regular saccades. On rare
occasions, however, failed-to-inhibit saccades may be much
slower than regular saccades. This comes from competition
between the saccade-related and fixation related activation.
Our model explains contradictory psychophysical evidence
for both slower and faster failed-to-inhibit saccades (Özyurt,
Colonius, & Arndt, 2003; Schall, 1995). We shall argue that the
decisions involved in countermanding, often invoked to support
threshold ideas, can be best understood in terms of dynamic
instabilities.

Finally, we shall combine our understanding of the role
of both metrics and time for saccadic decision making by
simulating the fusion–selection transition in gap-step-overlap
paradigms. We predict that the pattern of early fusion–late
selection will be observed when early saccades are generated
by a gap, late by an overlap fixation condition. If confirmed
experimentally, this prediction would provide evidence that
processes of selecting and of initiating saccades evolve in
parallel and dynamically.
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Fig. 1. Psychophysical set-up for double-target stimuli in direction (a) or
eccentricity paradigms (b). In direction paradigms, the visual targets (black
dots) lie on an imaginary line (vertical here), that is offset against the initial
fixation point (cross). The whole arrangement may also be rotated by ±90◦. We
denote the dimension separating different visual targets by x , and the dimension
separating the fixation position from the line of visual targets by y (see dashed
lines). In the eccentricity paradigm, fixation signal and visual targets all lie on
the same imaginary line (horizontal here). We denote the associated dimension
by x .

2. Model

Information about upcoming movements is represented by
distributions of population activation in cortical structures
such as the frontal eye fields and subcortical structures such
as the superior colliculus. When distributions of population
activation are characterized by a strong overlap between
information coded by neighboring neurons with similar tuning
curves information processing in such neural networks can
be described by continuous neural fields. This approximation
was first proposed based on the anatomy of cortical areas
by Amari (1972, 1977) and Wilson and Cowan (1973). The
link to population coding has been established more recently
(Bastian, Schöner, & Riehle, 2003; Erlhagen, Bastian, Jancke,
Riehle, & Schöner, 1999; Jancke et al., 1999). We follow the
mathematical formalization by Amari and Arbib (1977) and the
conceptual framework of Dynamic Field Theory by Erlhagen
and Schöner (2002), Kopecz and Schöner (1995) and Schöner
et al. (1997), which we briefly review now by describing how
the model of the selection system is constructed.

The first step is to define the metric dimensions that span
the space of possible eye movements. These are clearly the two
dimensions of visual space in retinal coordinates, representing
possible saccadic end-points. To simplify the modelling,

Fig. 2. The Dynamic Field Model of saccadic decision making consists of an
initiation level and a selection level. During the fixation period, a single peak
of activation in the initiation level at the foveal position reflects the active state
of fixation. (a) In the absence of a visual target, activation is negative at the
selection level, and the fixation peak remains stable. (b) At target onset, input
to the selection level generates a self-stabilized activation peak there, which
provides extra-foveal input to the initiation level, and competes with the fixation
peak and ultimately wins, inducing a movement-related peak in that level.

we exploit that typical paradigms probing saccadic decision
making sample this space in specific ways. Fig. 1 illustrates the
direction (top) and eccentricity (bottom) paradigms. In the first,
the initial fixation lies off an imaginary line, along which two
targets are presented. For selection, it is sufficient in this case
to model representations along the dimension, x , separating
different possible targets (vertical in the figure). For initiation,
it is sufficient to model representations that separate initial
fixation from the shared component of the two visual targets
along a perpendicular dimension, y (horizontal in the figure).
In eccentricity paradigms, initial fixation position and visual
targets are all lined up, so the same linear dimension, x , can be
used for both initiation and selection processes. To generalize
this account to two dimensions of selection and initiation
does not require any new mathematics, but is numerically
considerably more costly (Erlhagen & Schöner, 2002; Wilimzig
& Schöner, 2005).

An activation variable u(x) is assigned to each site along
this dimension. The level of activation u(x) represents the
degree to which this particular value is currently specified.
High levels of activation drive neuronal processes down-stream
from the activation field, low levels of activation do not.
When, for instance, no saccadic end-point is specified in the
absence of sensory information, the field is flat at negative
levels u(x) = constant < 0 (Fig. 2(a)). A localized peak of
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activation represents the planned saccadic end-point, specified
by the location of the peak in the field (Fig. 2(b)). The activation
field can therefore be viewed as a mean field description
of neuronal activity based on the space code principle of
neurophysiology, in which the location of neurons within a
network determines what the neuron represents and its firing
rate represents the extent to which the information is present
(Erlhagen et al. (1999), textbook treatment Dayan and Abbott
(2001)). In this picture, mapping activation patterns of the
model onto actual neural activities in the central nervous system
requires a normalization in which positive levels of activation
correspond to high levels of firing in populations of neurons
while negative levels of activation correspond to lower levels of
firing than the spontaneous firing rate.

The activation field evolves continuously in time as
described by a dynamical system:

τ u̇(x, t) = −u(x, t) + h + S(x, t) . . . . (1)

The rate of change, u̇(x, t) is proportional to −u(x, t). The
proportionality constant is the time scale, τ , of the relaxation
process with which the field moves toward stable states. This
models mechanisms for stability inherent in neuronal function
at the cellular level, which the population level inherits (see
discussion in Hock, Schöner, and Giese (2003) and Wilson
(1999)). The parameter, h, acts as the resting level of the field,
that is, the level to which the field relaxes without input or
interaction. Unspecific factors, such as go- or stop-signals may
be modelled by changing the level of this parameter (Erlhagen
& Schöner, 2002). Specific information, by contrast, takes the
form of localized inputs, S(x, t), which model visual stimuli,
Si (t), specifying saccadic target locations, xi , here in the form
of gaussians:

S(x, t) =

∑
i

Si (t) exp
{
−

(x − xi )
2

2σ 2

}
. (2)

Up to this point, the field is essentially a simple (if
spatially continuous) neural network responding to positive
input, S(x, t), by building up activation at matching locations.
Dynamic Field Theory postulates, by contrast, that neuronal
interactions within the field (maybe mediated by recurrent loops
through other structures), may dominate and effectively turn
on or off input sensitivity. In contrast to previous models of
saccadic programming (Kopecz & Schöner, 1995), we model
interaction as occurring in a two-layer structure (Amari &
Arbib, 1977). The first layer, u(x, t), is projected excitatorily
onto efferent structures and receives afferent localized input.
The second layer, v(t), projects inhibitorily onto the first layer,
from which it receives excitatory input. This layer thus mediates
inhibitory interaction within the excitatory layer (see Fig. 3).
Unlike the approximate one-layer model used earlier (and
introduced by Amari (1977)), this formulation is consistent
with the fact that neurons in the central nervous systems have
only one type of synaptic projections, either excitatory or
inhibitory (sometime referred to as Dale’s law, see Dayan and
Abbott (2001)).

The spatial structure of interaction is described by local
excitation, global inhibition. This means that excitatory

Fig. 3. Interaction as mediated by the two-layer structure. Excitatory
interaction takes place within the excitatory layer. Positive activation there
drives the inhibitory layer, which in turn inhibits the excitatory layer.

interaction falls off with increasing distance between field sites:

wu(x − x ′) = ku exp
{
−

(x − x ′)2

2σ 2
u

}
(3)

while the inhibitory layer receives homogeneous input from
the excitatory layer, wv = constant. As a result of this
approximation, the inhibitory layer can be replaced by a single,
inhibitory interneuron.

Only sufficiently activated field sites contribute to interac-
tion. The sigmoidal threshold function

fi [r ] =
ai

1 + exp[−βir/ai ]
(4)

(i = u or v) makes the neuronal dynamics non-linear.
The dynamics of the selection system thus reads:

τu,selu̇sel(x, t) = −usel(x, t)

+

∫
wu(x − x ′) fu[usel(x ′, t)]dx ′

− fv[vsel(t)] + Star(x, t) + hu,sel

τv v̇sel(t) = −vsel(t) +

∫
wv fu[usel(x ′, t)]dx ′

+ hv,sel. (5)

This system receives only extra-foveal input, Star(x, t),
representing visual targets. In the absence of target information
the field is therefore in a stable state of negative activation at the
resting level (Fig. 2(a)). When a visual stimulus has induced a
localized peak, stabilized by interaction, the selection system
provides input to the initiation system (Fig. 2(b)). When go-
or stop-signals shift the resting level up or down, such self-
stabilized peaks may be enhanced or suppressed.

The dynamics of the initiation level is analogously
developed for a one-dimensional cut, y, through visual space
that separates the initial fixation location from the saccadic
targets. For the direction paradigm, this dimension is identical
to x , for the eccentricity paradigm it lies vertical to x (Fig. 1).
The dynamics of the initiation level reads:

τu,iniu̇ini(y, t) = −uini(y, t)

+

∫
wu(y − y′) fu[uini(y′, t)]dy′

− fv[vini(t)] + wini,sel fu[uini(y, t)]
+ Sfix(y, t) + hu,ini
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Fig. 4. Time course of activation in the initiation level. Positive activation is
depicted in grey scales as a function of retinal position and time. At time = 0
the target is switched on and the fixation input is switched off. Movement
initiation according to our criteria occurs at the time marked by the dashed
line.

τv,iniv̇ini(t) = −vini(t) +

∫
wini fu[uini(y′, t)]dy′

+ hv,ini. (6)

This field receives only foveal input, Sfix(y, t), while visual
structure at other locations does not directly generate input.
Instead, extra-foveal input is provided from the selection field.
In the presence of a fixation signal, there is typically a self-
stabilized peak at the origin representing a fixation state (both
panels of Fig. 2). When the selection field provides extra-foveal
input, competition between activation at the fovea and at the
specified location leads to the suppression of the fixation peak
and the generation of a peak at the specified saccadic end-
point (see Fig. 4). If we map positive levels of activation onto
elevated firing rates and negative levels of activation onto lower
than spontaneous firing rates, then this mechanism in the model
matches neurophysiological results, which show that saccade
initiation correlates with an increased discharge rate in saccade-
related neurons and at the same time with a decreased discharge
rate in fixation neurons (Dorris and Munoz (1998) and Dorris,
Pare, and Munoz (1997), see review by Schall (2004a)).

Stochastic variability is represented in the model through
fluctuations of the level of activation. These are caused by
stochastic inputs, modelled in the simplest form as independent
gaussian white noise at each field site (with zero mean
〈ξ(x, t)〉 = 0 and variance, q: 〈ξ(x, t)ξ(x ′, t ′)〉 = qδ(t −

t ′)δ(x − x ′). These approximate the influence of other
neuronal processes, unrelated to the task as well as intrinsic
neuronal variability. Spatially uncorrelated noise is the weakest
possible stochastic perturbation. To model variance in the
countermanding paradigm we introduce variability from trial-
to-trial in the strength of fixation inputs, which models random
variations of unspecific factors such as attention or pretrial
effects.

Finally, we need to specify how activation patterns in the
model drive saccadic eye movements. In earlier work, we
showed how a self-stabilized peak of saccade-related activation

may set a new stable state for the motor control system of the
eyes (Kopecz & Schöner, 1995). Although the details were not
realistic, the conceptual issue was that the transition from a
peak-less state to a state with a self-stabilized peak may induce
a related transition in the motor control system from a fixation
state to a movement state. In reality, the motor control system
has considerably more complex structure, including horizontal
and vertical burst generators which are transiently activated
(review, Lefèvre, Quaia, and Optican (1998), Robinson (1986)).
Here we seek a way to simplify the problem by replacing the
entire motor control system with a simple rule that determines
the time of initiation of a saccade as well as its metrics. Saccade
latency was determined as the time interval from stimulus
presentation to the moment in time when the activation within
the fixation peak

F(t) =

∫ σfix

−σfix

fu[uini(y′, t)]dy′ (7)

fell below a criterion level Fthresh. To this time we added 70 ms
to account for an estimated 40 ms afferent and 30 ms efferent
delay (e.g. Smit and van Gisbergen (1989)). The metrics of
the saccades were characterized by the center of gravity of the
activation distribution in the selection field:

xc =

∫
R′

x ′ fu[u(x ′)]dx ′

/ ∫
R′

fu[u(x ′)]dx ′. (8)

Thus, the read out of saccadic end-point is done within the
selection level while the fixation level solves the release of the
fixation activity and the building of a new activation peak at
the location of the target within the coordinates of the fixation
level. To decide whether movement cancellation was successful
in countermanding trials we observed whether a peak was
generated at the target site of the field by looking for positive
activation there.

3. Results

3.1. Overcoming fixation and countermanding

In the model, a saccade is initiated when extra-foveal
activation in the initiation level induced by input from the
selection level inhibits the fixation peak. How much time this
takes depends on the amount of foveal fixation activation, which
in turn, depends on the fixation stimulus. This can be illustrated
by simulating the gap-step-overlap paradigm (Fig. 5), in which
the fixation signal is extinguished either before (gap), at the
same time (step), or after (overlap) the visual target appears.
The mean latency of saccade initiation increases from gap
to step to overlap conditions, matching the experimentally
established effect (panel (b) of the figure) and reproducing
Kopecz’s (1995) earlier modelling results. While Kopecz did
not model variance, the stochastic inputs included in our model
enables us to generate histograms of latencies (panel (a) of
the figure) that can be compared to experimental assessments
of variability (Gezeck & Timmer, 1998). In the model, the
compact, sharp histograms in the gap and step condition
are in contrast with the broader, noisier histogram in the
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Fig. 5. Latencies for single target trials in the gap-step-overlap paradigm. (a)
Histogram obtained from the model under gap (black), step (light grey), and
overlap (dark grey) conditions. (b) Mean latencies predicted by the model (grey
bars) are compared to averages from experimental studies (black bars) (Becker,
1989; Kopecz, 1995).

overlap condition. This matches the typical patterns found in
experiment. Moreover, we were able to match the experimental
range within which latencies vary (from 140–160 ms for gap
saccades up to 300 ms for overlap saccades).

The countermanding paradigm (Hanes & Schall, 1995)
provides access to the fine structure of the initiation processes.
In this paradigm, typically a visual target is presented at the
same time at which the fixation stimulus is extinguished. In
a certain percentage of trials, the fixation stimulus reappears
after a variable time delay, the stop-signal delay (SSD). This
indicates to the participant that the saccade to the visual target
must be suppressed. In the model, this instruction is captured
by lowering the resting level, hsel, of the selection field, which
amounts to injecting global inhibition into the field. This may
prevent the generation of a self-stabilized peak in that field and
thus cancel the saccadic movement plan. Essentially, the field
may be pushed below the detection instability, at which the
target input becomes sufficient to induce a self-stabilized peak
(see Bicho, Mallet, and Schöner (2000) for a discussion of these
instabilities).

Whether or not the h-shift is sufficient for cancelling the
movement plan depends on the timing of the stop-signal and
on the amount of fixation activation. For small SSDs, the peak
in the selection field has not grown enough to self-stabilize and
the h-shift does succeed in cancelling the movement plan (see
Fig. 6, SSD of 30 ms). For larger SSDs, the peak is capable
of self-stabilizing, although at a lower level of activation (SSD
of 70 ms in the figure). In experiment, either outcome occurs
with some probability, which depends on the SSD. The stop
function, that is, the probability that a saccade is generated even
though a stop signal was presented, increases with increasing
SSD (Fig. 7, Hanes & Schall, 1995). This probability can
be estimated in the model by taking into account stochastic
perturbations, here in the amplitude of fixation input. The match
between model and experiment is excellent (Fig. 7).

Fig. 6. Modelling the stopping process in the countermanding paradigm. The
negative shift of the resting level suppresses activation in the selection field at
the location of the visual target when SSD is long (70 ms), but not when SSD
is short (30 ms). In either case, activation is lowered compared to trials without
stop-signal. Trials are aligned by the time the visual target is presented (grey
bar).

Fig. 7. Stop functions as observed experimentally (light and dark grey dots
represent data from two monkeys as published in Hanes and Schall (1995))
and as predicted from the DFT model (black dots and black line). To fit
the experimental results, the initial fixation strength and the strength of the
countermanding signal were adjusted.

The role of the level of activation in the fixation peak is
illustrated in Fig. 8. That level is varied in the simulations,
by changing the strength of the visual fixation signal. Each
column shows on top a simulation in which activation in the
fixation peak (solid line) was just large enough to cancel the
movement plan (dashed line) and on bottom a simulation in
which fixation activation was just too small to cancel the
movement plan. The cross-over between these regimes occurs
at lower levels of fixation activation for small SSD (left column)
than for large SSD (right column). To our knowledge, there
is no direct experimental test of this account. One way such
a test could be generated is by manipulating the attentional
load. Because attention increases the activity of task-relevant
neurons (Reynolds & Chelazzi, 2004; Treue, 2003), increasing
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Fig. 8. The amount of fixation related activity (solid lines) determines whether a saccade can (top row, higher level of fixation related activity) or cannot (bottom
row, lower level of fixation related activity) be inhibited at a given stop-signal delay (SSD) (short = 50 ms left column; long = 100 ms right column; see grey marker
on time axis). The dashed lines is peak activation at the location of the planned movement target, the solid line is peak activation in the fixation peak. Different levels
of fixation related activity were obtained by drawing the fixation strength, sfix, from a distribution (gaussian, mean = 70, SD = 40) of which four examples were
selected here for illustration.

the intention to the fixation site (e.g., by imposing a secondary
task there) would lead to higher stopping probability.

The time courses of activation in Fig. 8 may be directly
compared to neuronal data, again based on mapping high
levels of activation to high firing rates, low levels of
activation to lower than spontaneous firing rates. Note how in
successful stop-trials (top), fixation activity first falls, but then
recovers, while movement related activation first rises and then
falls again. In failure trials (bottom), by contrast, activation
representing movement plans continues to grow (with a little
hiccup when the stop-signal hits), while fixation activity
falls, then grows briefly, then falls again. Neurophysiological
studies have indeed shown that when saccades are successfully
cancelled, movement related neurons show an initial increase
followed by a rapid decrease in firing rate. Fixation neurons
may decrease their firing rate initially, then generate a rapid
increase of firing rate. This was observed both for neurons in
the frontal eye field (FEF) (Hanes, Patterson, & Schall, 1998)
as well as in superior colliculus (Pare and Hanes (2003), for a
review see Schall (2004a)).

Another signature of the competition between fixation
activity and movement-related activity can be obtained when
examining latencies in failed stop trials. There are two factors
at play here. First, failure to inhibit a saccade is more likely for
saccades that would have been faster than average had a stop
signal not been given. In the model, such shorter latencies may
arise due to weaker than average fixation signals, which puts

the saccade promoting activation at a competitive advantage.
Because the stop signal thus cuts off the slower part of the
latency histogram, such failed-to-inhibit saccades have shorter
latency than regular saccades. With increasing SSD, less of the
histogram is cut off and the mean latency of the failed-to-inhibit
saccades approaches that of regular saccades as illustrated
in Fig. 9. For small SSDs, failed-to-inhibit saccades are rare
because the saccade-related activation has not yet had time to
build. This frequency increases with increasing SSD.

The second factor is that the renewed input to the fixation
system provided by the stop-signal strengthens the fixation-
related activation in the competition with the saccade-related
activation. This tends to slow down the initiation of a saccade,
leading to longer latency of failed-to-inhibit saccades. Only at
very short SSDs does this inhibition have a noticeable effect on
latency, because only then do go-signal and countermanding-
signal effectively compete. At such short SSDs, on the other
hand, failures to inhibit a saccade are very rare. In the model,
a few such instances arise from variability in countermanding
strength as shown in Fig. 10.

These simulations thus provide an explanation of contradic-
tory results in the literature. Hanes and Schall (1995) had re-
ported evidence for faster than regular failed-to-inhibit saccades
(see also Curtis, Cole, Rao, and D’Esposito (2005)), whose la-
tencies increased with increasing SSD to normal. At very small
SSD (25 ms), a small number of very slow errors were reported,
however. Such rare, slow errors were also reported by Özyurt
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Fig. 9. Histograms of saccade latencies obtained from simulations when no
stop signal is given (top) compared to latencies of failed-to-inhibit saccades at
stop signal delay 75, 100, and 125 ms. The frequency of failed-to-inhibit sac-
cades increases with increasing SSD as does the mean latency, which matches
at SSD = 125 ms the mean latency of regular saccades. Noise in the initial
activation level of the fixation peak was sufficient to generate these events.

et al. (2003), who concluded that the race model was violated
in these instances.

3.2. Selection

We now move beyond the single target case and examine
how selection of one target in double target or distractor
paradigms is accounted for by neuronal interaction.

In their simpler model, Kopecz and Schöner (1995) showed
how a transition occurs from an fusion to a selection solution.
Metrically close visual targets lead to overlapping inputs to
the selection field. Local excitatory interaction may then fuse
these two inputs and generate a single, self-stabilized peak
at the averaged location of the two targets (top panel of
Fig. 11). When visual targets are moved further apart from
each other, the bimodal input to the selection field leads to
a bistable state in which a peak may arise localized either
over one target or over the other (bottom panel of Fig. 11).
When the targets are lined up symmetrically to the initial
fixation point in the direction paradigm (Fig. 1), then selection
is based on stochastic fluctuations in the input or potentially
from differences in initial activation from previous trials.
Any asymmetry, in which one target is closer to the initial
fixation point, is brighter, more probable etc., leads to different

Fig. 10. Chance events induced by stochastic levels of the strength of the
countermanding command give rise to rare events, in which saccades fail to be
inhibited at very short SSDs of 25, 50 and 75 ms. Histograms of the associated
saccade latencies are compared to those obtained in the absence of a stop signal.
Latencies of these rare events are longer than regular latencies. This difference
decreases with increasing SSD, disappearing at approximately 75 ms.

input strengths of the two targets and thus biases selection as
observed in experiment. Similarly, in the eccentricity paradigm,
the target closer to the initial fixation position is typically
selected, which may be understood in the model based on
inhomogeneous input strengths, broader and stronger for targets
closer to the fovea.

The transition from monostable to bistable activation
patterns with metric distance between targets is a dynamical
instability, the fusion–selection instability (discussed in Bicho
et al. (2000)). Averaging is not due to limited resolution of the
neural map of saccadic end-points: In separate, single target
trials, the two locations can be perfectly realized even for
metrically close targets (Fig. 12).

Kopecz and Schöner (1995) did not model or analyze
latencies. Fig. 13 shows histograms of latencies derived from
our present model. Variability again is induced by stochastic
inputs to the field. Note how latencies for single-target and
averaging saccades are equally short (actually even slightly
shorter for averaging saccades), while latencies for selection
saccades are longer. This slowing down for selection is due
to the inhibitory interaction between the two potential peaks
in the bistable mode, which holds up the building of a
movement-related peak. The slight acceleration of averaging
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Fig. 11. The mechanism for the transition from averaging to selection with
increasing metric distance of targets is illustrated by plotting the inputs to
the selection field (black) and the resultant stable activation patterns (light
and dark grey). For metrically close targets, excitatory interaction leads to
fusion, a monostable peak centered over the averaged target location (top). For
metrically distant targets, two stable patterns are possible. In each case, a peak
is positioned over one target only.

saccades comes from short-distance excitatory interaction
of course.

Experimentally, it is well known that averaging saccades
tend to be fast, equally or more so than saccades to single
targets (Chou, Sommer, & Schiller, 1999; Ottes et al., 1984;
Ottes, van Gisbergen, & Eggermont, 1985). Presenting a second
target leads to an increase in reaction time (Walker, Deubel,
Schneider, & Findlay, 1997; Walker, Kentridge, & Findlay,
1995). This is true for a wide range of conditions, even when
the second target is irrelevant and irrespective of whether
the required direction of the saccade is known beforehand
(overview by Findlay and Gilchrist (2003)).

Can we turn around this logic and ask, if fast saccades tend
to do averaging while slow saccades tend to do selection? To
answer this question we examine the time course of activation
in the selection level when presented with two visual targets.
Three phases can be distinguished. In a first phase, lasting only
a few dozen milliseconds for realistic parameter values, sensory
input drives up activation at the locations corresponding to the
two visual targets. Second, as activation reaches positive levels,
excitatory interaction begins to act. Finally, the inhibitory
layer begins to be sufficiently activated to mediate inhibitory
interaction effects.

Which phase is functionally most relevant depends on the
metric distance between targets. For metrically close targets, an
initially broad, input-driven activation pattern is sharpened and
fused by excitatory interaction which leads to the merging of
the two inputs to an averaging response (right panel of Fig. 14),
largely unaffected by inhibitory interaction. For metrically
distant targets, an initially bimodal, input-driven pattern is
decisively reshaped by inhibition, which selects one of the two
sites, leading to a single peak positioned over one of the two
targets (left panel of Fig. 14).

Fig. 12. Histograms of saccadic end-points of responses toward single and
double target stimuli as derived from the DFT model. While for metrically
distant targets saccades select one of the two target locations (bottom), for
metrically close targets saccades are directed toward the center between the two
targets (middle). This is not due to resolution problems or related artifacts as
accuracy is sufficiently high if the targets are presented individually at either of
the two locations used in the averaging condition (top). (Black arrows indicate
target locations (middle and bottom); grey bars indicate target location in 50%
of the trials for the single target condition; for visualization we use different
scales for the ordinate).

The most interesting case arises at the cross-over between
these two limit cases (Fig. 15). At that critical distance between
the two targets, the earliest activation patterns (from 10 and
25 ms in the left panel of the figure) are input-driven and
bimodal. During an intermediate time interval (80 ms in the
figure), the now dominant excitatory interaction leads to fusion
of the two peaks. Inhibition takes even longer to take effect,
shifting the fused peak to one of the two target locations and
thus bringing about selection (right panel, selection completed
by about 190 ms, dashed line).

The answer is therefore a “yes”: in the cross-over region
between averaging and selection, time should matter. If there
is some way the motor response can be triggered earlier then
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Fig. 13. Histograms of latencies for single target and double target stimuli as
generated from the DFT model together with experimental mean values (grey
vertical lines) reported for two participants by Ottes et al. (1985). Selection
saccades are slower than averaging and than single target saccades. Averaging
is similarly fast (even slightly faster) than single target saccades. Note how the
means for the two participants are more discrepant in the selection than in the
other conditions, which is consistent with the broader distribution generated by
the model in that case.

Fig. 14. Time courses of activation in the selection field for wide (left) and
narrow (right) spacing of two visual targets (arrows). The activation level is
coded by grey scale, darker indicates higher activation. Dashed lines mark time
of movement onset according to criteria.

averaging should be favored. If motor responses are held up
longer, selection should be favored.

One way the latency of saccades can be manipulated
is through the speed–accuracy trade-off. If participants are
encouraged to respond as quickly as possible with less regard

Fig. 15. Time courses of activation in the selection field for the critical spacing
of two visual targets (arrows), at which cross-over from averaging to selection
occurs. On the left, the activation profiles are shown as snap-shots during the
first 80 ms after stimulus presentation (stimulus as a dashed line). On the
right, activation is shown with a grey scale on the larger time scale, on which
inhibition intervenes.

Fig. 16. Speed–accuracy trade off induced by varying fixation strength. In the
double target paradigm (top) saccadic end-points (small crosses) shift from a
broad distribution around the center between the two targets for low levels of
fixation input, leading to short latencies, toward the selection of one of the two
targets for stronger levels of fixation input leading to larger latencies. In the
target–distractor paradigm (bottom), early saccades average, later saccades land
at the correct target.

to precision, short latencies ensue. If accuracy is emphasized,
latencies are longer and their distribution is broader (Ottes et al.,
1985). The speed–accuracy trade-off can be mimicked in the
model by strengthening fixation activation when accuracy is
emphasized, as this shifts the balance between fixation and
saccade initiation to later times, when the selection field has
had more time to elaborate the metrics of the saccade. When
fixation input is strengthened, the shift from averaging to
selection with increasing latency can be directly observed in
the model (Fig. 16). For a double target paradigm one of the
two targets is selected for sufficiently large latencies, leading
to a bimodal distribution. The target–distractor paradigm
is modelled by turning one of the targets off after 100
ms (mimicking the effect of other neural processes that
discriminate the target from the distractor based on other
features like color). In this case, the longer latency saccades
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Fig. 17. Combination of the gap-step-overlap paradigm with a double target
paradigm. For metrically close targets, saccades always are in the averaging
mode (top row). For metrically distant targets, saccades are always in the
selection mode (bottom row). For a critical metric distance the model predicts a
shift from averaging in the gap condition to selection in the overlap condition.

go to the correct target, reducing the metric bias toward the
distractor.

These results of the model closely match the speed–accuracy
trade-offs observed in human participants by Ottes et al. (1985).
Moreover, based only on the spontaneous variability of saccadic
latency in behavioral studies with monkeys, Edelman and
Keller (1998) have reported a very similar pattern of early
averaging, late selection.

3.3. The interaction between selection and initiation

Another way how the time course of selection may be
observed, is by varying latency through the fixation conditions.
This can be done in the gap-step-overlap paradigm. The model
predicts that for a double target paradigm near the cross-over
distance between averaging and selection, the fixation condition
determines which of the two will be observed (Fig. 17).
Saccades speeded by the gap condition will tend to go to
the averaged target location. Saccades delayed by the overlap
condition will tend to select one of the target locations.

Note that this prediction is based on the assumption that
the initiation and selection system evolve continuously and
in parallel, and that their coupling is effective throughout
that evolution. Thus, the extent to which the selection level
elaborates saccadic plan depends also on the extent to which
the initiation level resists the initiation of a new saccade. To
our knowledge, this connection between fixation conditions
and selection has not been probed empirically. Experimental
confirmation of our prediction would provide support not only
for this particular model, but also for the continuous and parallel
processing of the two decisions involved in initiating a saccade,
when and where.

4. Discussion

4.1. Relationship of the model to neurophysiology

Superior colliculus (SC) is the brain structure whose link
to saccadic planning and saccade initiation has been most

extensively documented. In fact, it is one of the brain areas best
linked to function (e.g. Sparks and Groh (1995)). Even so, the
functional interpretation of SC has more recently come under
some reevaluation, in which SC is being looked at as a motor
map of saccadic goals more so than of the movements necessary
to reach these goals (review Krauzlis, Liston, and Carello
(2004)). Evidence comes from catch-up saccades (Keller,
Gandhi, & Weir, 2000), memory-guided saccades (Stanford &
Sparks, 1994) and from the fact that SC activity is related to
gaze movement, that is, combined eye–head movement, while
the detailed activation patterns of head or eye muscles depend
on conditions (Freedman & Sparks, 1997).

This is, of course, exactly the coding we have assumed in the
model. Both the selection and the initiation field code represent
the saccadic end-point. Sensory information is interpreted in
terms of the saccadic end-point it specifies and localized peaks
of activation are interpreted in terms of which saccadic end-
point is planned. What both dynamic activation fields represent
matches, therefore, what SC may represent.

A more specific mapping emerges from the observation that
SC projects to so-called “omnipause” neurons known to be the
final gatekeepers for saccades (Buttner-Ennever, Horn, Henn,
& Cohen, 1999). SC thus contributes to making the decision
to initiate a saccade. Specifically, certain neurons in rostral SC
representing the central visual field are active during fixation
(Munoz & Wurtz, 1993). Their activity decreases after the
offset of a fixation stimulus (Dorris & Munoz, 1995; Dorris
et al., 1997). Within a conceptual framework in which SC was
hypothesized to support independent motor plans for fixation
and for saccade generation, which compete via short-range
excitation and long-range inhibition (Munoz & Fecteau, 2002),
these neurons were considered “fixation neurons”. As Krauzlis
et al. (2004) point out, the label per se may be misleading as
these neurons do not seem to code for the independent motor
plan of fixation but may represent locations on or about the
fovea. This view is supported by the fact that these neurons
are also active during pursuit and for small saccades (Krauzlis,
Basso, & Wurtz, 1997, 2000).

This interpretation suggests that our initiation level may
describe this role of SC in deciding the initiation of a saccade.
The peak at the fovea is, in effect, fixation activation which
competes with activation at extra-foveal sites. The outcome of
that competition determines whether a saccade is initiated or
not. The fixation peak may be self-stabilized in the model, so
may persist even when the fixation stimulus is removed. This is
consistent with the neurophysiological fact that activity within
the rostral SC is dependent on visual input, but persists in
the absence of stimulation (Krauzlis, 2001). Moreover, in the
“gap” condition, activity in the rostral SC may decrease for
some neurons during the gap (Dorris & Munoz, 1995; Krauzlis,
2003), consistent with what happens in the model as input to
the self-stabilized fixation peak is removed.

If this mapping is right, then why do we need a second level,
the “selection” level? There were basic reasons that pushed
us to separate functionally the decision to initiate a saccade
and the decision which saccadic target to select. First, it was
quite difficult to balance the various forms of competition
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so that the initiation of a saccade would occur even when
many targets competed for selection. Fundamentally, the rules
of competition are different for the two kinds of decisions.
Second, the time scales of the selection and the initiation
processes turned out to be quite different. To account for the
temporal evolution of selection, we were led to postulate a fast
neuronal dynamics. This is because the process of selecting
through competition from two or more field sites that receive
similar amounts of inputs, slows down the evolution of activity
considerably. By contrast, the competition between the fixation
peak and the movement-related activity involved in the decision
to initiate a saccade is rigged: fixation is routinely overcome
and movement wins. This imposes the reverse constraint:
the decision making is too fast, so that to obtain the strong
modulation of latency generated by gap-step-overlap conditions
we needed to postulate a relatively slower dynamics at the
initiation level.

There are hints in the neurophysiology of SC at such differ-
ent time scales. Munoz and Wurtz (1995) characterized burst
as different from build-up neurons. The activity of buildup neu-
rons increases gradually in the preparation of a saccade, peak-
ing in activation just before movement onset. Burst cells, by
contrast, begin to fire just prior to movement onset (for a review
see Findlay and Gilchrist (2003) and Schall (1995)). Could
there be two subsystems in SC, effectively interacting with dif-
ferent strengths and different time scales, one supporting the
competition for selection (the burst cells?), the other support-
ing the competition for initiation (the build-up cells?)?

One hint that the model is consistent with the neurophys-
iology of SC is recent experimental evidence linking selec-
tion to inhibitory mechanisms. Li and Basso (2005) recorded
from neurons in SC while monkeys performed in an overlap
paradigm with two saccadic targets which in each case fell into
the receptive field of a recorded neuron. In the double-target
condition, both targets were visible, and the go-signal specified
one of the two targets. In the single-target condition, only one
target was visible at a time. Li and Basso found that during the
holding period, activation of neurons was reduced in the double
target compared to the single target condition, compatible with
the idea of mutual competition between populations represent-
ing the two possible targets. Once the go-signal had specified
a target, activation levels were identical to single stimulus con-
ditions. The model captures this pattern of neuronal results in
detail. Fig. 18 shows time courses of activation at the selection
level for two locations in the field, one coding for the saccadic
end-point corresponding to one target, the other for the end-
point corresponding to the other target. In single stimulus con-
ditions activation rises first when the target is presented, and
then further when the go-signal is given (black line). For the
double target condition, activation at the two sites rises, but to
a lower level, when the targets are presented (grey lines). Once
the go-signal is given, the specified target is selected. Its activa-
tion level rises to the same level as for the single-target condi-
tion. The activation level at the non-specified location decays.

Two other structures contributing to saccadic eye move-
ments may be related to the model. The parietal area LIP and the
frontal eye fields (FEF) in the pre-motor frontal cortex are the

Fig. 18. An account of Li and Basso’s (2005) neuronal data in SC. On the
left, the time course of activation in the selection field at two field locations
representing two visual targets is shown. When a single target is presented
(black line), activation rises as the target is presented (t = 0) and again
as the go-signal is given. When two targets are presented (grey lines), both
locations coding for the two targets are activated first to identical, but lower
levels compared to the single-target condition. The go-signal leads to selection
of one target, and the corresponding activation rises to the same level as in the
single-target condition. Activation at the other location decays. The right panel
illustrates the spatio-temporal structure of the field in this condition through a
grey-scale plot.

two cortical areas most directly linked to saccade generation,
for instance, in the sense that microstimulation in either of these
areas may lead to overt saccades. LIP has been implicated in
generating some of the relevant coordinate transforms involved
in generating saccadic eye movements, while also providing
signatures of sustained activation, supporting memory for sac-
cadic targets, not unlike the self-stabilized peaks in the field do.
We have side-stepped issues of coordinate transforms in this
model. It is possible that some of the functionality of LIP con-
tributes to the dynamics postulated in our model. LIP neurons
have also been shown to be affected by expected rewards asso-
ciated with saccadic eye movements (review Glimcher (2003)).
The FEF are thought to contribute to control and modulation
of eye movements related to processes such as attention. These
neural populations might be the source of the kind of modula-
tory influences we have postulated to understand countermand-
ing. In comparison to SC, the FEF have been looked at as a
subsidiary structure (Hanes & Wurtz, 2001), although the com-
bined loss of FEF and superior colliculus impedes an animal to
make saccades (Schiller, True, & Conway, 1980).

4.2. Comparison with other models

Our model builds on earlier work by Kopecz (1995);
Kopecz and Schöner (1995) and Schöner et al. (1997). Kopecz
and Schöner (1995) modelled the transition from fusion to
selection, but did not address latencies nor modelled the
time course of selection. Kopecz (1995) laid the basis for
our treatment of the saccadic initiation, accounting for the
gap-step-overlap effect for latency. His treatment did not
include variability nor the metric of the planned saccade. In
that model, selection and initiation were not yet integrated.
Countermanding was addressed in neither model. Trappenberg,
Dorris, Munoz, and Klein (2001) also built on the dynamic field
framework and covered some of the same ground we do here,
including an account for the gap-step-overlap effect similar to
Kopecz (1995) and a study of how the presence of distractor
slows down latencies depending also on the metric distance
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between target and distractor. In addition, they discussed the
role of target probability, the potential for express saccades
and the role of exogenous factors to account for anti-saccades.
Curiously, they operated the dynamic field model in the input-
driven regime. As a result, they did not account for selection in
the proper sense, that is, when the response is not specified by
input. This requires multi-stability and cannot be understood
in the input-driven regime. They also did not model the time
course of selection nor countermanding.

Another class of models, that is close in spirit to ours, comes
from the Grossberg lab (e.g. Grossberg, Roberts, Aguilar, and
Bullock (1997)). These models share the dynamical outlook,
taking time scales and integration seriously, and are based on
similar neuronal principles. The cited model accounts for the
gap effect, but does not address selection and its time course.
What this and earlier models from that group does, however,
is account for the coordinate transforms required as multiple
sensory sources are integrated to control saccades. We have
neglected this entire aspect, assuming sensory inputs, plans,
and motor systems onto which these plans project are all
aligned. Because our concepts are fundamentally compatible,
accounts for these transforms as in Grossberg et al. (1997) or
also Optican (2005) or Xing and Anderson (2000) could be
integrated into our framework at the expense of considerably
increased model complexity.

Another aspect that we neglected is the process of motor
control of the actual saccadic movement. There is a large
modelling literature on this, from the classical Robinson (1975)
to recent work (e.g., Glasauer (2003); Lefèvre et al. (1998);
Optican and Quaia (2002)). The transition from a fixation
peak to an extra-foveal saccade related peak of activation is
a transition to a new stable state. This makes it possible, in
principle, to bring about the required switch in the motor
control system in a stable and robust manner (Kopecz &
Schöner, 1995). Neglecting the motor control side is thus an
acceptable approximation as long as we stop comparing our
model to data once a saccade is being initiated. Integrating this
next level would be particularly interesting in view of recent
work (Port & Wurtz, 2003) that analyzes saccadic trajectories
in the presence of distractors. As shown by Walton, Sparks,
and Gandhi (2005), these trajectories can be understood as
arising from weighted multi-modal activity in SC, not unlike
that obtained in our models, if SC is considered upstream from
the local feedback loop (see also Arai and Keller (2005)), for
an account that allows for SC being part of a feedback loop).

A related issue is how the dynamic field model generalizes
to two dimensions. This is not a problem at the level
of the fields themselves, which can be formulated in two
dimensions while maintaining the same dynamic properties
without problem (see Erlhagen and Schöner (2002)). At
issue is only, how the two-dimensional coordinates of a
saccadic end-point represented in such two-dimensional fields
may be transferred to the motor system consisting of burst
generators for horizontal and vertical components of a saccade.
The typical assumption, that each collicular location projects
onto burst generators proportionally to its horizontal or
vertical component is consistent with the neuroanatomy of

the corresponding neuronal connections (Moschovakis et al.,
1998). The projection onto burst generators does not, therefore,
present an obstacle to generalization to two dimensions either.

At a more conceptual level, our approach is consistent
with the distinction between a “where” and “when” system,
first proposed by van Gisbergen et al. (1981) and used by
Findlay and Walker (1999) to propose a model in which
there are two separate systems for response initiation and
for determining the metrics of the response, paralleling the
distinction we make here between selection and initiation. More
recent physiological work leaves open the perspective, however,
that the two systems may form a continuum rather than two
discrete systems (Krauzlis et al., 2000).

A very different class of models comes from a tradition
in mathematical psychology. These are sequential sampling
models of reaction time that can be separated into two
categories, accumulator/counter models and diffusion/random
walk models (for overviews, see, e.g., Ratcliff and Smith (2004)
and Smith and Ratcliff (2004)). The LATER model (Carpenter
& Reddi, 2000) has been used to account for saccadic latencies.
Recently some attempts have been made to link these kinds of
models to neural data Ratcliff, Cherian, and Segraves (2003)
and Smith and Ratcliff (2004) and to the concepts of neuronal
dynamics (Usher & McClelland, 2001).

The limitations of models that postulate, somewhat
abstractly, that evidence is accumulated sequentially, can be
illustrated for the countermanding paradigm. Race models
(Logan and Cowan, 1984) provide a theoretical account for
countermanding by postulating that two independent processes
for the GO- and the STOP-process accumulate evidence. Both
the assumption of independence and the mapping onto different
neurons is not obvious from a neurophysiological point of
view (Schall, 2004a). Specifically, on GO-trials saccade-related
neurons increase their activation while at the same time, fixation
neurons decrease their activation (Dorris & Munoz, 1998;
Dorris et al., 1997). The reverse is true for successful stop
trials (Hanes et al., 1998; Pare & Hanes, 2003), with some
evidence for mutual inhibition (Munoz and Istvan (1999);
Quaia, Lefevre, and Optican (1999), review by Schall (2004a)).
Finally, race models predict that saccadic latencies are faster
for failed stop trials than for regular saccades. This is because
on faster trials, evidence for the GO processes has an advance,
leading to a higher probability of these trials leading to failure
to stop. The dynamic field model has provided an alternative
account for this observation (Hanes & Schall, 1995), while at
the same time explaining rare but reproducible events at short
stop signal delay (Hanes & Schall, 1995; Özyurt et al., 2003),
in which latencies are longer than regular latencies. This is due
to enhanced competition from the strengthened fixation system.

More generally, given that the mechanisms transforming
stimulus-related activity into movements is not yet fully
understood (Krauzlis et al., 2004), this class of models is
based on the concept of a threshold mechanism by which an
internal signal, which increases in time during saccadic latency,
triggers action when a threshold is reached. The increase of that
internal signal may either be linear in time (Carpenter & Reddi,
2000), or be governed by diffusion or counting processes as
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in the sequential sampling models reviewed above. Different
scenarios exist for how the threshold is defined, ranging from
thresholds for the absolute level of activation to criterion
differences between activity representing different options (see
critical discussion in Krauzlis et al. (2004), and Schall (2004a)).
Note that in spite of the simplification used in this article
for reporting latencies, at a conceptual level the Dynamic
Field Model brings about movement initiation by a different
mechanism, that is, by a transition from one to a new stable
state. This may effectively drive similar shifts from a postural
to a movement state at the level of motor control (Kopecz &
Schöner, 1995).
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Appendix. Parameter values

To model the double target paradigm we used τu,sel = 10,
τu,ini = 50 and τv = 5 as time constants. For sigmoidal
functions we used βu = 0.6, βv = 0.04, au = 1 and av = 150.
The difference between the sigmoidal function of u and v

respectively is based on the neurophysiologically realized firing
rates in the cortex (McCormick, Connors, Lighthall, & Prince,
1985). For kernels we chose wu = 8.4, σu = 0.25 mm and
wv = 4.5 with the coupling between selection and initiation
level wsel,ini = 200. Target input strength was defined by
Star = 15 and σsel = 0.125 mm, fixation input by Sfix = 50
and σfix = 0.5 mm. Resting levels of respective fields were
hu,sel = −10, hv,sel = −100, hu,ini = −20, hv,ini = −100.
Strength of gaussian white noise was depicted by σn,sel = 5
and σn,ini = 300. To determine latencies we used Fthresh = 1.
For the countermanding paradigm we used parameter values:
τu,sel = 10, τu,ini = 35, τv = 5, βu = 0.6, βv = 0.04,
au = 1, av = 150, wu = 8.4, σu = 0.25 mm, wsel,ini = 35,
Star = 10, mean of initial fixation signal sfix = 70, mean of
countermanding signal scount = 50, hu,sel = −10, hv,sel =

−100, hu,ini = −5, hv,ini = −50, hshift = −5, σn,sel = 5,
Fthresh = 10. In the countermanding simulations movements
are initiated (cancellation fails) if M(t) exceeds Fthresh.

The fields were simulated by numerical integration. The
spatially discretized network can be interpreted as a discrete
neural network (for simulations we used 1 mm = 40 neurons).
For temporal integration we used the stochastic Euler procedure
in which

τ u̇(x, t) = G(u, x, t) + ση(x, t) (.1)

is approximated by

τun+1
i = δtGi (u

n
j , tn) +

√
δtσηi (t

n), (.2)

for small time step δt = 1 < τ . The results were obtained
using MATLAB running on workstations under Unix and on
PCs under NT.
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