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Abstract—Autonomous learning is the ability to form knowl-
edge representations solely through one’s own experience. To
autonomously learn, an agent must be able to perceive, act,
memorize, plan, and desire; it must be able to form intentional
states. We build on a neural process account of intentionality,
in which intentional states are stabilized by interactions within
populations of neurons that represent perceptual features and
movement parameters. Instabilities in such neural dynamics
induce sequences of intentional behavior. In this paper, we
examine the neural process organization required to decide and
control when learning takes place, to build the representations
that can hold learning data, and to organize the selection of
neural substrate to learn the novel patterns. We demonstrate
how a neural dynamic network may learn new beliefs about the
world from single experiences, may activate and use beliefs to
satisfy desires, and may deactivate beliefs when their predictions
do not match experience. We illustrate the ideas in a simple
toy scenario in which a simulated agent autonomously explores
an environment, directs action at objects, and forms beliefs
about simple contingencies in this environment. The agent utilizes
learned beliefs to satisfy its own fixed desires.

Index Terms—autonomous agent, fast learning, learning be-
liefs, neural dynamics, neural cognitive architecture

I. INTRODUCTION

The current renaissance of neurally inspired architectures
for perception and decision making is based on exploiting
rich data sets that enable the adjustment of large numbers
of parameters in a form of optimization often loosely called
”learning”. In autonomous learning, a system acquires such
data itself, by behaving and actively steering its perception.
Autonomous learning largely remains an open challenge for
neurally inspired systems.

Organisms learn autonomously during development and in
skill acquisition, both processes that require much time and en-
tail many instances of experience. Humans and other animals
may, however, also learn and generalize from single instances
of an experience. This happens, for instance, when beliefs are
formed about contingencies in the world. Imitation is effective
because a single demonstration may be sufficient to uncover
the underlying contingencies. In fact, belief formation can
be so fast as to be sometimes counter-productive, leading to
superstitious behavior (even in pigeons [1]). On the other hand,
this ability to efficiently form beliefs about the environment
provides enormous cognitive power [2].

Pervasively neural accounts of learning are far from approx-
imating this form of single-shot learning in an autonomous
manner. Fast learning has been demonstrated for object recog-
nition based on exploiting prior knowledge about the visual
appearance of objects [3], [4] or on built-in knowledge about
the transformations that enable generalization [5]. Early in
development, contingency learning may be a way how infants
break down the complexity of the world, which supports their
social skills [6]. Our framing of belief acquisition approxi-
mates such contingency learning.

A first reason, why neurally inspired systems fail to learn
autonomously is that they fail to perceive, think, and act
autonomously! The process structure to generate behavior
typically remains outside the neural metaphor so that neural
processes of learning cannot be brought to bear. Behavior
generated by fixed algorithms that are driven by sense data
does not necessarily provide meaningful experience that links
perception to goals and expectations. We propose that the
philosophical notion of intentionality, the capacity to generate
internal states that are about the world, helps to uncover
the requisite process structure. The philosopher John Searle
divides intentional states into two classes: The mind-to-world
direction of fit, which includes perceptual states representing
the world, and the world-to-mind direction of fit, which
includes motor intentions representing desired world states [7].

We have previously analyzed the neural process require-
ments for intentional states of both directions of fit [8] (see
[9] for a different take). Our analysis was based on Dynamic
Field Theory (DFT) [10], a set of mathematical concepts to
model the neural dynamics of networks of neural populations1.
In particular, we exploited the notion that intentional states
are stable patterns of neural activation that may transition
sequentially to other intentional states by inducing dynamic
instabilities through a neural representation of the condition
of satisfaction [11]. This mechanism gives neural dynamic ar-
chitectures the potential to autonomously generate behavioral
sequences (see [12] for a discussion of autonomy).

The scope of intentional states we attempt to capture
roughly aligns with the six psychological modes analyzed by
Searle: present states (perception, intention-in-action), time-
shifted states (memory, prior intention), and abstracted states
(belief, desire). Our previous analysis led to a neural process

Gregor Schoner
IEEE Transactions Cognitive and Developmental Systems (in press, 2020)



2

account for perception, memory, intention-in-action, and prior
intention. In this paper, we argue that a fast form of learning
captures the psychological mode of belief. For us, the for-
mation of belief resembles the formation of a memory, but
generalizes beyond the specific instance by being categorical
and propositional in nature. We are able to construct proposi-
tional content in a neural dynamic architecture by organizing
underlying processes at the level of concepts through the
condition of satisfaction [13].

To autonomously learn beliefs in a neural architecture we
must address also a second set of problems faced by neural
models of autonomous learning, providing the process infra-
structure that steers and organizes the autonomous learning
process itself. This entails the (a) detection of the events that
indicate that a learning episode must be initiated. That may
be achieved by generating intrinsic reward upon detection of
such events. Autonomous learning also entails (b) providing
neural representations of the current action of the agent, of
the previous, and of the new state of the environment that
together specify a contingency. It entails (c) process support
for the activation of beliefs based on perceived cues or goals.
And it entails (d) process support for detecting the novelty
of an observed contingency, and an associated process that
provides fresh neural substrate to learn a new belief. This,
in turn, requires that (e) neural substrate already committed
to the representation of previously learned beliefs must be
demarcated from neural substrate for learning.

We model the autonomous acquisition of beliefs including
the activation of existing beliefs to guide action, the rejection
of activated beliefs when their predictions are not confirmed,
and the formation of new beliefs. The account is framed within
a rudimentary toy scenario in which an agent is situated in a
simple environment containing solely paint buckets and can-
vases of different original colors. The robotic agent explores
the environment, moves toward objects and directs a robotic
arm to them to either pick-up paint from buckets or to dispense
paint onto canvases, while visually observing the resulting
canvas color. A network of neural dynamic fields is connected
to the agent’s sensory-motor surfaces and enables the agent
to visually detect and select objects, build scene memories,
generate sequences of actions to paint particular objects to
achieve a particular result color and ultimately to form and
activate beliefs about which paint applied to which canvas
generates which outcome.

II. DYNAMIC FIELD THEORY

Our goal is to provide a neural process account of belief
acquisition that is compatible with general principles of brain
function, but not necessarily anatomically specific and not at
the lowest level of neural reduction such as spiking neural
networks. Broadly, we postulate that neural processes are
characterized by graded patterns of activation that evolve
continuously in time, that may be coupled to sensory and
motor processes, and that have stability properties. This
amounts to identifying small populations of neurons bound
into networks as the preferred level of description that is
most closely reflective of actual behavior and cognition (see

[14] for review). We specifically avoid shortcuts, in which
neural processes are replaced or approximated by processes
of information processing, such as when algorithms simulate
a hypothesized neural function.

The mathematical formalization of these neural principles
is provided by Dynamic Field Theory (DFT) [10]. In DFT,
neural populations tuned to metric dimensions, x, are modeled
by activation fields, u(x, t), that evolve in time according to
the neural dynamics:

τ u̇(x, t) = −u(x, t)+h+s(x, t)+
∫
ω(x−x′)σ(u(x′, t))dx′.

The time-continuous evolution of neural activation, u(x), on
the time scale, τ , relaxes to the stable solution, h + s(x),
defined by the field’s resting level, h, and its localized in-
puts, s(x), if the current activation level, u(x), is below the
threshold (= 0) of the sigmoidal transfer function, σ(u). Field
locations with activation surpassing the threshold engage in
lateral interaction defined by the field’s kernel, ω(x − x′),
which is excitatory locally (for small |x− x′|), and inhibitory
over longer distances, x− x′. This leads to the emergence of
self-stabilized peaks of supra-threshold activation that are the
units of representation in DFT (illustrated in Figure 1). Supra-
threshold peaks arise as the sub-threshold state goes through
the detection instability.
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Fig. 1. A dynamic neural field spanned across a metric-dimension, x,
represents a metric value, x0, when a supra-threshold peak of activation peak
is localized there.

Depending on the strengths of excitatory and inhibitory
interaction, fields operate in different regimes. In the self-
stabilized regime, supra-threshold peaks are stabilized against
input noise. In the selective regime, lateral inhibition allows
only a single peak at any point in time. In the self-sustained
regime, peaks are retained after localized input is removed.
Peaks in multi-dimensional fields represent conjunctions of
feature dimensions. For instance, a peak in a two-dimensional
field defined over both color and position represents a partic-
ular color seen at a particular position. Dynamic neural nodes
are zero-dimensional fields that represent categorical states.

A field, utar, receives input from another field, usrc, if
that field’s output, σ(usrc), adds to the target field’s rate
of change, u̇tar, weighted with a homogeneous projection
kernel ωtar,src. The source output might need to be contracted
or expanded to match the target field’s dimensionality [15].
Typically, contractions entail integrating over the excess di-
mension, while expansions provide input that is constant along
the excess dimensions (e.g., ridges, tubes, or slices). Concept
nodes are connected reciprocally to fields through a pattern
of connectivity that encodes the feature representation of the
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concept. For instance, the concept node for “blue” is connected
to an appropriate range of hue values in a hue feature field
(see Figure 2).
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Fig. 2. Boost and Concept Nodes. A boost node (left column) affects the
entire resting level of field and may push present activation patterns above
threshold. A concept node (right column) excites a specific feature range
within a field.

A. Networks of fields form architectures

Networks of dynamic neural fields may connect to the
sensory-motor surfaces of an agent. It is through these connec-
tions that ultimately the dimensions emerge over which each
field is effectively defined. Behavior may emerge from such
networks as activation patterns transition between different
stable states, each represented by peaks of supra-threshold
activation. Boost nodes provide homogeneous input to a
target field. They may induce state transitions by altering
the dynamic regime of the target field. Most commonly, the
detection instability de-stabilizes the sub-threshold activation
pattern, leading to the formation of a localized supra-threshold
peak of activation. Boost nodes may effectively modulate
the flow of activation within an architecture by enabling
or disabling particular branches of the architecture to form
peaks. Boost nodes may thus act as gates or go-signals that
trigger an action by activating a sub-network (see Figure 2).
Pairs of fields, an excitatory intention field and an inhibitory
condition of satisfaction (CoS) field, control the initiation and
termination of actions or mental states [16] (see Figure 3). The
intention field represents the desired end state of a particular
action and activates a sub-network that ultimately realizes
the desired action. The intention field pre-activates the CoS-
field, in which a peak is formed when desired and perceived
state overlap sufficiently. A peak in the CoS-field inhibits the
intention field, destabilizing the peak there and deactivating the
associated sub-network, which terminates the action. The CoS-
field inhibits any precondition node that prevented competing
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Fig. 3. Two consecutive elements of an action sequence each represented
through a pair of intention and CoS field. “P” is a precondition node that
organizes the fixed sequentiality of the actions.

actions from becoming activated. This unlocks the next step
in a sequence.

Other than through the CoS mechanism, autonomous tran-
sitions between macro states may also be induced by neural
representations of a condition of dissatisfaction (CoD) which
detects failed actions or invalid perceptual states. Transitions
may also arise from transient sense-data, such as when a
surface color changes in the scene. Transient detectors consist
of a pair of excitatory and inhibitory fields, defined over the
same metric dimensions and sharing input, but differing in
their time scale with inhibition slower than excitation. A step
increase of input then first induces a peak of activation in the
excitatory field, which is later erased by the peak of activation
that arises somewhat more slowly in the inhibitory field
(Figure 4). The supra-threshold activation in the excitatory
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Fig. 4. Activation snapshots of a two-layer transient detector as it detects a
color change from blue to yellow. The color change occurs shortly before t1
and is detected through supra-threshold activation in the fast layer.

field signals the transient. More generally, pairs of excitatory
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and inhibitory activation fields provide the generic mechanism
for generating temporally structured activation patterns which
may be used, for example, to model a transient reward signals
or ballistic velocity profiles (see Chapter 3 in [10]).

III. SCENARIO AND MODEL

Camera
Image

Fig. 5. The simulated robot in its environment

We develop our ideas around a very simple, but carefully
chosen toy scenario, which is simulated in continuous time
(see Figure 5). A robot vehicle may move along a line only,
for simplicity. It has an arm that the robot can point at objects
(actually, with carefully timed trajectories). Two actions of
the end-effector, picking up and depositing paint, are modeled
merely as state changes of associated variables. These are the
motor systems, toward which intentions-in-action are directed.
Attentional selection in visual search has the same direction
of fit and is thus part of the set of intentions-in-action. A final
intention-in-action is spatial exploration, in which the vehicle
moves in a random direction along the one-dimensional world
line. (You may follow along with these different behaviors
by comparing with neural dynamic architecture schematically
illustrated in Figure 6.)

Only the vision sensor is modeled in detail, while we
assume that sensor readings are provided for the vehicle’s
position along the one spatial dimension, for the arm’s end-
effector position, and for the presence of paint in the arm’s
end-effector. Objects have two features, for which we postulate
visual feature detectors: They may be short (for canvasses)
and tall (for paint buckets). (It may have been more intuitive
to have short paint buckets and tall canvases, but somehow
we selected this mapping at some point.) Perceptual processes
represent the states of these sensory dimensions.

We have endowed the agent with a few multi-step behav-
iors, called prior intentions in Searle’s jargon, which include
collecting paint of a given color, applying paint to a canvas
of a given color, and moving toward an object of a given
feature value along either the color and/or height dimension.
These prior intentions make use of memory processes that ef-
fectively generate a scene representation, that is, a neural map
of locations at which objects with associated feature values
are positioned in the one-dimensional world, irrespective of
whether the objects are currently in view or not.

The desire of the agent is simply to see canvases of a
particular color, a very simple representation of a task or goal.

The agent may satisfy such a desire by directly searching and
finding objects of the desired color, or by painting a canvas
of a different surface color with an available kind of paint to
achieve the desired result color.

This is where beliefs come in. The agent learns contingen-
cies that are essentially arbitrary rules of coloring mixing, that
is, predictions of what kind of result color is obtained when a
coat of paint of a particular color is applied to a canvas of a
particular initial surface color. (The simulated world does not
follow real-world rules of color mixing.)

The scenario thus probes intentional states of both di-
rections of fit, world-to-mind and mind-to-world, containing
the six psychological modes analyzed by Searle: perception,
intention-in-action, prior intention, desire, perception, mem-
ory, and belief. We exemplify the autonomous formation of
beliefs from a single experience, their activation and use to
achieve goals, and their rejection (deactivation) when predic-
tions do not match outcomes.

A. Neural dynamic architecture

The neural dynamic implementation of intentionality in the
four basis level psychological modes of perception, memory,
intention-in-action, and prior intention was described pre-
viously [8]. Here we provide a brief sketch only to then
focus primarily on the neural dynamics of beliefs in the next
subsection.

Although Figure 6 sketches the overall architecture, many
details are hidden from view. We discuss here selected ele-
ments, but make the complete architecture together with all
parameter values available for download 1. The architecture is
one large integro-differential equation, built from the elements
of DFT and thus consistent with its principles. This constraint
is formalized by using cedar, a software framework that
provides a graphical programming interface to building and
numerically solving DFT architectures [17]. This functionality
makes it possible to individually parameterize each field in an
architecture to achieve one of the three operational regimes:
self-stabilized, sustained, or selective. Cedar is available as
an open-source, public licence project2. The simulation of the
robot, of its sensors, and the environment makes use of the
Webots [18] simulator, which was connected to cedar.

1) Perception: Estimates of body states are represented by
unique localized peaks of activation in fields defined over the
relevant metric dimensions. This includes the current Cartesian
position of the robot’s position along the one-dimensional
world and the robot arm’s end-effector position. Discrete states
are represented by dynamic neural nodes. This includes the
states of the paint tool and of the change detector.

Visual perception occurs in the camera frame (called retinal
frame in the figures). For the currently visible part of the visual
array, the horizontal retinal position, hue value, and height
feature of objects that differ from the background are provided
by sensory channels. These feed into two two-dimensional
neural fields defined over horizontal retinal space and the
respective feature dimension. Within these fields, a single peak

1https://www.ini.rub.de/the_institute/people/jan-tekulve/
2https://dynamicfieldtheory.org/software
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Fig. 6. Schematic overview over the neural dynamic architecture with the six psychological modes, perception, intention-in-action, memory, prior intention,
belief, and desire. Only a subset of the connections are shown. The belief network is blown up in more detail in Figure 7.The abbreviation “IiA” is used for
intention-in-action.

is activated at one location, modeling attentional selection.
There is a small architecture hidden here, that is capable of
sequentially exploring the visual array, of maintaining and
updating visual working memory, and of performing visual
search within the visual array based on a cued feature value.
This is a simplified version of a fuller architecture for visual
search and scene memory [19]. Transient detection occurs on
the space/color representation and enables the agent to detect
changes in color and location of objects in the visual array
and to direct spatial attention to the location of the change.

2) Memory: Scene memory is based on the same features,
color and height, but now represented in a world rather
than a camera frame. The world frame is appropriate for
scene memory as it is invariant under displacement of the
agent. The coordinate transform [20] makes use of the current
estimate of the vehicle’s ego-position. Peaks are induced in the
transformed space/feature memory fields whenever an object
is attended to.

These peaks leave a memory trace, a localized increase of
the resting level of the field that facilitates peak generation
at the peak locations. The dynamic of the memory trace is a
simple learning mechanism that has been used to understand
inter-trial effects and the building of priors on time scales
faster than those associated with the classical Hebbian learning
rule [21] (for review, see [22]). The memory trace is subject
to interference so that building a memory trace at a new
location leads to the decay of memory traces elsewhere in the
field. Full, self-stabilized peaks of activation can be brought
up from the memory trace by globally boosting activation in
the field, effectively pushing activation through the detection
instability at locations at which a memory trace has been

laid down. In the model, memories of object locations and
their visual feature values are built as memory traces in the
space/feature memory fields. Cues to an object’s color or
height provide ridge input to these fields, localized along the
feature dimension but constant along space. The ridge input
induces peaks at locations at which memory traces have been
laid down, leading to recall of the memorized position and
feature value of a matching object.

3) Intentions-in-action: Each action of the robot is speci-
fied by a pair of intention and condition of satisfaction (CoS)
fields connected to relevant sub-networks. Reaching and driv-
ing to a position are realized by sub-networks simplified from
[23]. Their main component is a pair of coupled dynamic fields
that realize an active transient, which is turned into a velocity
command for either the joint angles of the arm or the wheels
of the vehicle. The simulated actions to collect and apply paint
manifest themselves through a change of the fill status of the
painting device. In addition to driving to a specified position,
the robot may also explore its environment by moving in one
of the two directions along the one-dimensional world line,
until a previously unattended object is detected. These last
three kinds of intentions-in-action are categorical in nature
and are thus represented by neural nodes.

Not all intentions-in-action are directly motoric in nature.
Visual search, for instance, is an intention-in-action in that it
has the direction of fit world-to-mind: the intention is satisfied
when the state of the agent’s nervous system, that is part
of the world, matches the intended contents (e.g., a peak
representing a red object has been activated in response to
visually searching a red object).
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4) Prior Intentions: Sequences of actions are organized
by neural fields that represent prior intentions (or composite
intentions-in-action). These fields project excitatorily onto the
intention-in-action-fields that are part of the sequence. Their
serial organization is organized by precondition neural nodes
as illustrated in Figure 3. The intention-in-action not inhibited
by any precondition node is the first to become activated,
starting the sequence.

Painting an object entails first collecting a particular paint
from a bucket, and then applying the paint to a canvas. Both
actions themselves consist of sequences of actions: To collect
paint, the agent must find and move to a tall object, point its
arm to the object, and pick up paint. To apply a coat of paint,
the agent must find and move to a small object, point its arm
to the object, and dispense the paint. Finding and moving to
an object is also a sequence of actions that entails recalling
the object’s location, driving to the location, and then visually
searching for the object within the visual array.

Prior intentions may entail alternative sequences of actions,
that emerge if a particular action terminates in failure. This
is mediated by activation of its condition of dissatisfaction
(CoD). For instance, activation of the CoD node of recall or
visual search destabilizes the precondition node of the explore
intention, allowing the explore behavior to become activated
and the robot to move to new locations in search of a matching
object.

What kinds of paint buckets and canvases are sought by
the agent is determined by the goal intentions and the belief
system.

B. Belief system

Beliefs are propositional in nature. In our terms, they are
combinations of concepts, represented by neural nodes that
project onto metric feature spaces such as space, color, or
height. These projects enable the sensory-motor grounding of
the concepts that beliefs tie together [13]. The formalization as
a combination of abstract concepts distinguishes beliefs from
individual memories. How are such sets of concepts formed
into beliefs and how may an individual belief become activated
based on grounded sensory-motor representation?

Figure 7 illustrates the neural-dynamic subsystem for be-
lief formation, activation, and rejection. This architecture
is partially inspired by Carpenter and Grossberg’s Adaptive
Resonance Theory (ART) [24]. Each belief associates color
concepts in three roles: color of the paint (coat), color of
the canvas before applying paint (canvas), and color of the
canvas after applying paint (result). A belief is represented
by a neural node. Forming a belief amounts to linking the
belief node to three color concept nodes in the three roles
by Hebbian learning. A belief is activated when the belief
node goes through the detection instability in response to a
subset of the color concept nodes, to which the belief node
is connected. A belief is rejected when the belief node falls
below the reverse detection instability, due to inhibitory input
from the CoD system. We explain the inner dynamics of the
belief system by stepping through Figure 7 from bottom to
top.

The belief learning sub-network couples into the neural-
dynamic architecture through three working memory fields,
urole(c), defined over color, c (hue), in three roles: role ∈
{coat, canvas, result}. Their dynamics

τ u̇role(c) =− urole(c) + hrole + wpaiσ(upai)

+

∫
ωrole(c− c′)σ(urole(c′))dc′

+
∑
color

wcolor(c)σ(u
role
color) + wgateσ(u

role
gate(c)).

(1)

is globally controlled by the paint task node, upai, so that
peaks are only generated when that task node is active. The
interaction kernel, ωrole, is chosen to put the field into the
selective and self-sustaining dynamic regime. These fields are
connected to the color perception field each via a gating field,
ugate (not shown in Figure 7 but hinted at in Figure 6),
that is activated whenever pick-up, dispense, or color change
detection nodes are active. In each case, a single peak is
formed in the color role field that reflects the applied or
perceived colors.

The color concept nodes, urolecolor are reciprocally connected
to the respective color role fields through weight vectors,
wcolor, set up a priory to represent color categories for yellow,
green, orange, cyan, blue, purple, pink, and red:

τ u̇rolecolor =− urolecolor + hcon +
∑
i

lrolei,color σ(bi)

+ wrcl σ(urcl) +

∫
wcolor(c) σ(urole(c))dc.

(2)

These nodes are, in turn, reciprocally connected to the belief
nodes, bi, with plastic connection strengths, lrolei,color, whose dy-
namics we will discuss shortly. Incoming connection strengths
and resting level, hcon, are set-up such that a concept node
may be activated either through a peak in the role field,
urole, that matches the color encoded in wcolor or through
the combination of an activated associated belief, bi and the
activated recall boost, urcl discussed below.

Each belief is represented by a belief node, bi that is
connected to the concept nodes via (reciprocal) plastic connec-
tions, lrolei,color, initialized to zero. The belief nodes dynamics,

τ ḃi =− bi + hb + wbσ(bi) + wcomσ(ucom)− wcσ(ci)

− winh

∑
j 6=i

σ(bj)− wcodσ(ucod)

+
∑
role

∑
k

[
lrolei,k σ(u

role
k )− wincσ(u

role
k )

]
,

(3)

entails self-excitation of strength wb, inhibitory coupling to
all other belief nodes of strength winh, excitatory input from
the commit node of strength, wcom, inhibition from the cor-
responding commit state node of strength wc, and inhibition
from the condition of dissatisfaction node of strength wcod.
In addition to the excitatory plastic connections, lrolei,color, each
color concept node, urolek , contributes fixed inhibitory input to
each belief node with strength winc. That inhibition is stronger
than any unlearned connection, lrolei,color, but weaker than a
learned connection lrolei,color. This normalization mechanism
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make that when a color concept node is active, all belief
nodes that are not (yet) associated with that concept node are
inhibited, while all belief nodes already associated through
a learned connection, lrolei,color > winc, are excited. A single
inhibitory input is sufficient to prevent a belief node from
activating. Therefore, when n concept nodes are active, only
belief nodes that are associated with all n concepts may
become activated.

1) Forming a belief: Belief nodes become linked to color
concepts whenever a sequence of collecting and applying paint
results in a color change in the scene. Such color change
is detected by the agent’s change detector (see Figure 4),
which activates the color change node, ucha, and the gate that
propagates the perceived result color to the result role field.
This leads to the activation of the corresponding result color
concept node. Ultimately, one concept node for each role is
active, representing the color triple to be learned. If the triple
has previously been associated with a belief node, bi, that node
will be activated via the learned reciprocal connections (see
below). This leads to updating of the connectivity of that node
to the color concepts. That updating process is controlled by
the belief activated node, ubac, which is now pushed through
the detection instability, causing the generation of a transient
reward signal, r(t), based on the transient detector mechanism
illustrated in Figure 4. The reward-gated Hebbian learning rule

l̇rolei,k = −η r(t) σ(bi) (lrolei,k − σ(urolek )) (4)

has a learning rate, η, that is sufficient fast to learn a perceived
rule in a single presentation (one-shot learning) (see [22] for
a review of neural dynamic learning rules). The stability of
the learned state, lrolei,k = σ(urolek ), makes that the updating
discussed here leads only to minor change when the belief
had already been learned.

If the color triple has not previously been associated with
a belief node, no belief node will be active at the time of
the color change. A process of selecting a new belief node to
learn the new triple is initiated by activating the commit node,
ucom, and the inhibit committed node, uico, both driven by
the change detector, ucha. The commit node, ucom, boosts all
belief nodes. Lateral inhibition among belief nodes results in
the selection of a single belief node. Because committed belief
nodes are inhibited, only previously uncommitted belief nodes
may win the competition. This is the aspect of the architecture
that is inspired by ART.

The mechanism is implemented through commit state nodes,
ci, whose neural dynamics

τ ċi =− ci + hc + wbσ(bi) + wbstσ(uico) + li,cσ(upai) (5)

receives excitatory input from the matching belief node, bi,
and the inhibit committed node, uico, that evolves on a faster
timescale.

Which commit state node is activated is determined by
plastic projections, li,c, from the paint task node, upai, to each
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of the commit state nodes. These learn the commit pattern
through an analogous reward-modulated Hebbian rule,

l̇i,c = −η r(t) σ(upai) (li,c − σ(ci)). (6)

Eventually, one previously uncommited belief node is se-
lected and self-sustained. It activates its corresponding commit
state node and triggers the reward signal through ubac. The
selected belief node learns the active color concept triple
based on the Hebbian rule, Eq. 4, while its commit state node
becomes connected to the paint task node, upai, based on the
Hebbian rule, Eq. 6.

2) Belief Activation: The learned reciprocal connections
between concept and belief nodes enable the activation of
beliefs that partially match the current state of the color
concept nodes. A critical feature for this is inhibitory feedback
to belief nodes from the color concept nodes (the last term in
Equation 3). For example, if input from a desire node activates
a particular result color concept node, uresultk0

(so that the sys-
tem is now looking for beliefs that enable the generation of that
result color), then all belief nodes receive inhibition through
winc. Belief nodes that have previously learned connections to
that result color concept, lresulti,k0

6= 0, are excited, in contrast.
Among these candidate beliefs, lateral inhibition promotes the
selection of one belief. The homogeneous boost, urcl, to color
role concepts enables activation of matching coat or canvas
color concepts nodes, which in turn induce working memory
peaks in the color role fields. These are projected down to the
lower levels of intentionality controlling the search for paint
buckets or canvases according to the activated belief. If a belief
already receives input from a color role field (e.g., a matching
canvas or paint color is in memory), that belief has the best
chance of winning the competition.

3) Belief Rejection: Beliefs may not cover all cases. Some
result colors may, for instance, arise from multiple combina-
tions. Or the same combination could lead to different results,
perhaps because of an undetected change in the environment.
The system never truly forgets a belief but is able to reject an
initially selected belief that does not work and to then learn a
new belief that captures the newly observed contingency.

In the toy scenario, let us say the system has learned a color
mixing rule associating coat color, a, canvas color, b, and result
color, c. Desiring color, c, the system has activated this belief
and acted on it. But as it performs the action, it now observes
the result color, d, instead.

While executing the paint sequence, the color role fields
have peaks at locations a, b, and c in the respective fields
based on the active belief. Once a color change is detected, the
observed new result color, d, induces a new peak of activation
in the result color field at location d, which replaces the peak
at c based on lateral inhibition within that field. This change of
activation pattern in the result color field is detected through a
transient detector that activates the CoD node, ucod (illustrated
on the bottom right of Figure 7). This inhibits all beliefs
via wcod, leading to the destabilization of the active belief.
If the new pattern was not previously learned, a new, yet
uncommitted belief node will become activated, the reward
signal will be generated and the new pattern will be learned
as a new belief.

C. Desires

In the present toy scenario, desires are imposed from the
outside by setting a single peak into a field that represents
a desired result color. This desire field provides input to
the result color field of the belief system (see Figure 6).
Satisfaction of the desire is signaled by a CoS field that
matches the desired color with the currently perceived color.
Inhibition from the CoS representation terminates the desire
and allows for a new desire to form. Ideas from behavioral
economics could be used to expand this system to multiple
competing desires. One example of this would be the PSI
architecture [25], which incorporates five different groups of
needs competing with each other.

IV. RESULTS

Our goal here is to demonstrate that the system is, in
fact, capable of autonomously acting in its little toy world
toward the fulfillment of desires, using beliefs, learning beliefs
as needed, and rejecting beliefs when they fail to predict
outcomes. The architecture is just one big dynamical system,
which is numerically simulated in the simulated toy scenario.
A critical element of these demonstrations is, therefore, that
all sequences of actions, mental acts, and learning episodes
emerge from the time-continuous, graded state dynamics
through dynamic instabilities. We illustrate now key moments
in a simulation run of the neural dynamics that high-light
conceptually meaningful features of the system. The first
demonstration illustrates how the roles of the elements of a
belief come about. Then we look at the formation of a belief,
the activation of a belief, and the rejection of a belief whose
prediction fails.

A. How the roles are perceptually grounded

In our toy scenario, beliefs are about colors in three different
roles, the color of paint, the color of a canvas, and the color
that results when the paint is applied to the canvas. These three
types of color concepts are not typically perceived at the same
time. So unlike the typical neural network training algorithms,
in which sensory stimuli are given from the outside as learning
examples, autonomous learning of beliefs entails building
internal memory representations of color in the corresponding
roles as a learning episode unfolds through a sequence of
physical and mental acts.

Figure 8 shows time courses of selected nodes and fields as
the agent loads paint into its paint tool and thus perceptually
grounds the color role, coat. At the time point, t0, the agent is
situated in front of a blue canvas cube. The cube’s location has
been selected by the Attentional Selection field in the retinal
frame, its blue color is represented by a peak in the Attended
Color field. This peak causes a sub-threshold activation bump
in the Pick-Up Gate field but isn’t loaded into that field,
because no paint pick-up is happening (in fact, for a canvas
object picking up paint is not a possible action). The Coat
Color field is at resting level. The composite intention-in-
action Collect is active and the supra-threshold state of the
Recall CoS node signals that a bucket position has already
been successfully retrieved from memory. This has activated



9

A
tt

e
n

d
e
d

C
o

lo
r

P
ic

k
-U

p
t

G
a
te

C
o

a
t

C
o

lo
r

C
a
m

e
ra

Im
a
g

e
C

o
S

N
o

d
e
s

In
te

n
ti

o
in

N
o

d
e
s

A
tt

e
n

ti
o

n
a
l

S
e
le

c
ti

o
n

retinal space retinal space retinal space retinal space

timet0 t1 t2 t3

0

0

0

0

0

0

Recall

Drive Reach

Vis. Search Pick-Up

Fig. 8. Activation time course of selected dynamic nodes and fields displaying
the retention of the collected color during a painting episode. The first two
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show activation snapshots of four different fields at the same points in time.

the intention-in-action Drive, which causes the agent to move
towards the recalled position.

The next snapshot at t1 shows the agent after it drove to
face the purple paint bucket (tall object). A successful visual
search caused the attentional selection of the bucket location
and the representation of its color in the Attended Color field.
Activation in the Pick-Up gate remains below threshold as the
agent initiates a reach towards the bucket, which is signaled
by the active Reach intention node.

At time t2, the reach has terminated and the Pick-Up
intention node has been activated. This boosts the resting level
in the Pick-Up Gate field causing a detection instability. The
resulting supra-threshold peak near the color pink provides
input to the Coat Color field. The Pick-Up intention node is
inhibited by its CoS node once the simulated painting device
has been filled with paint.

This destabilizes the peak in the Pick-Up Gate, but the
coat color representation is retained through its strong lateral
excitation. This can be seen at time t3 when the agent engages

in applying the stored paint onto the blue canvas. The agent
thus builds step by step the neural representation of the
different color roles that provide the interface to perceptually
grounding a belief.

B. Learning a new belief

Figure 9 depicts an activation time course of the belief sub-
network later, during final portion of the painting sequence
started in Figure 8. At time, t0, purple paint has already been
collected, reflected in a working memory peak in the Coat
Color field. This has lead to the activation of a previously
learned belief, B1 (for coat: purple, canvas: purple, result:
yellow) that matched the coat color. The corresponding commit
node, C1, has thus also been activated. The active belief
does not guide the following painting sequence, because the
inactivity of the recall boost node, urcl, prevents the active
belief from forming peaks in the remaining role fields.

At time t1, the agent begins dispensing paint onto the blue
cube. This intention-in-action opens the gate to the Canvas
Color field, which builds a peak at the attended color blue
of the attended canvas cube. The mismatch between the
blue canvas color representation and the canvas color purple
predicted by the belief, B1, causes its deactivation, which in
turn deactivates the commit node, C1, and lowers the activation
level of the belief activated node, ubac.

At time t2, the cube changes its color from blue to yellow.
The color change node, ucha, is activated through transient
detection, and boosts three nodes: inhibit committed, uico,
commit, ucom, and belief activated ubac. The observed result
color forms a peak in the Result Color field, which excites
beliefs that matching including B1. No belief matches all
three color roles, however. Activation of uico excites the
commit nodes of all previously learned beliefs, and lowers
the activation levels of the associated belief nodes.

Once the slower ucom passes the detection threshold at time
t3, all beliefs receive a boost. This pushes the neural node of
the previously uncommitted belief, B4, through the detection
instability. ubac is activated and generates a transient reward
signal that up-modulates the learning rule for weights linked
to B4. This leads to one-shot learning of reciprocal weights
of the links to that belief node. The weights of both B1 and
B4 after t3 are depicted in Figure 10. B4 has now acquired
the new color mixing rule, while B1 remains unchanged.

C. Activating a belief

Learned connections are utilized in activating a belief that
matches a role cue. In Figure 11, a peak in the Result Color
field at yellow has been induced from the agent’s desire
system. This leads to an increase in activation for all beliefs
that match the yellow result color (B1 and B4) and a decrease
for all non-matching beliefs. By chance, belief B1 passes
the activation threshold first, leading to inhibition of all other
belief nodes. In combination with the active recall node, urcl,
belief node B1 activates its associated concept nodes. As
a result, peaks in the neurally connected Coat and Canvas
Color fields are built, which now guide the subsequent painting
action.



10

B
e
li
e
f

 N
o

d
e
s

C
o

m
m

it
N

o
d

e
s

time

G
lo

b
a
l

N
o

d
e
s

C
o

a
t

C
o

lo
rt

C
a
n

v
a
s

C
o

lo
r

R
e
s
u

lt
C

o
lo

r

B1
B2
B3

B5
B4

Com
Ico

R
Bac

C1
C2
C3

C5
C4

t0 t1 t2 t3

C
a
m

e
ra

Im
a
g

e

Fig. 9. Activation time course of selected nodes during the formation of a
new belief. The first row displays activation of uico, ucom, and ubac, while
the second and third rows display the activation of five selected belief nodes,
bi, and their commit state nodes, ci. The bottom half of the figure shows
activation snapshots of the role fields at three different points in time.

D. Deactivating a belief whose prediction is not confirmed

In the simulation of Figure 12, the belief, B2, that predicts a
blue result color, has been previously activated and now guides
a painting action. In the simulated world, the combination of
coat and canvas colors used in B2 were now set to lead to the
result color cyan instead.

At time t0, the agent is engaging in the dispense color
action while the predicted result, blue, is represented in the
Result Color field. At time t1, the canvas color changes cyan,
instead. This observed color is projected into the Result Color
field, where it erects a new peak at cyan, deleting the peak at
blue. The color change in the result color field is detected by
the CoD transient detector, which, in turn, inhibits all beliefs
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Fig. 10. Connection strengths, lrolei,k to and from B1 and B4 are illustrated
at a time after the learning episode of Figure 9.
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Fig. 11. Recall of a belief with a yellow result color. The learned connections
are the same as shown in Figure 10

for a brief period, counteracting the excitatory boost from the
commit node, ucom.

Once inhibition from the CoD decays at time t2, the
activation boost from ucom is sufficiently strong to activate
the previously uncommitted belief, B5, which then becomes
associated with the new color mixing rule by Hebbian learn-
ing.

V. DISCUSSION

We have presented a network of neural dynamic fields that
endows a robotic agent with the capability to form, activate,
and reject beliefs in a simulated task environment. During
belief learning, activated concept nodes become associated
with a neural-dynamic belief node through a reward-modulated
Hebbian learning rule. Activating beliefs is achieved by a neu-
ral match operation that is similar to the resonance principle of
ART [26], combining the learned reciprocal connections with
homogeneous global inhibition. Because the learned associa-
tions reside at the level of concepts, they form propositions and
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generalize the learned contingencies to the extent that the color
concepts are invariant under small metric changes of sensory
or environmental conditions. The rejection of a candidate
belief occurs autonomously through the neural representation
of a condition of dissatisfaction (CoD). That representation is
triggered when a mismatch between perceived and predicted
sensory representations of concepts is detected. The CoD
inhibits the candidate belief and thus frees from inhibition
the neural support for the learning of a new, alternative belief.
The old belief is not forgotten, however.

The neural-dynamic belief system is embedded in a larger
network of neural dynamic fields that controls a robotic agent.
That network generates stable representations of intentional
states of four elementary psychological modes (perception,
memory, intention-in-action, and prior intention). Transitions
between intentional states occur through instabilities induced
by the neural CoS or CoD representations. It is from such
transitions between different intentional states that the agent’s
behavior emerges. The stable representation of actions and per-
ceptions support working memory that provides an interface
to the belief network. Thus, learning is based on a set of sense
data that are not typically available at the same time but are
assembled into a working memory of the contingency. The
processes that support using beliefs for action in the world
and learning beliefs are both insensitive to variations in the
duration of a behavioral or learning episode. This makes the
autonomous generation of behavior and autonomous learning
robust and enables, in principle, the scaling of the neural
dynamics to real sensory-motor systems.

Prior work in neural modeling supports the plausibility of
the postulated neural infrastructure that enables autonomous
belief learning from single experiences. For instance, a model
of cortical and basal-ganglionic processes for learning serially
ordered behaviors has a similar prior structure [27]. Schrodt
and Butz [28] have explored rule learning in a scenario similar
to ours and argue for its neural plausibility. The neurally
inspired architecture DAC (for Distributed Adaptive Control)
[29] contains a contextual system in which the transition of
action sequences from short-term into long-term memory is
based on reward mediated learning similar to the mechanism
proposed here.

We believe that the problem of autonomously learning
beliefs, rules, or contingencies from experience is best framed
as the problem of how the underlying architectures of neural
processes are structured rather than as a problem of finding
special learning rules. This position is similar to that taken
in research on (now classical) cognitive architectures such as
ACT-R [30] or SOAR [31]. Although broadly aligned with
the brain’s neural architecture, these frameworks are based
on notions of information processing. Mental acts, called
productions, are governed by rules. Our belief learning may be
compared to the learning of new production rules. In cognitive
architectures, such learning is not neurally grounded and does
not, therefore, face the same issues of the neural control of
learning [32]. This is true even for the cognitive architecture
LIDA [33] that is more closely aligned with neural processing.
LIDA has a strong emphasis on perceptual grounding and
continuously updates the architecture’s attentional system and
long-term memory. That cycle has been modeled within the
framework of Dynamic Field Theory to demonstrate the neural
plausibility of its functionality.

The neural control of learning is achieved in the model at
two levels. First, there is a categorical decision if the current
experience warrants the acquisition of a new belief. This may
happen through the Condition-of-Dissatisfaction (CoD), which
detects a mismatch between the active belief and perception.
A new belief then represents a propositional concept, in a
critical step that provides for instant generalization of the
proposition (within the capacity for generalization of the
component concepts).

At the second level, the neural connectivity that instantiates
a new belief is changed through reward modulated Hebbian
learning. Reward activates learning only when an appropriate
neural representation of a contingency has been detected. The
reward is intrinsic in the sense that it is generated based by the
system’s own processing structure and characterizes successful
matching of the representations that together form a belief
(initial state, tool, outcome). This form of reward may be
best compared to the notion of curiosity in other models of
autonomous learning [34].

It is a different question if the beliefs acquired in this
form should, in addition, be weighted in some way to express
their degree of validity. This is what Bayesian notions of
belief entail, and this has played a role in single-shot or few-
shot learning in deep neural networks [3]. In the context of
the present model, such weighting may be a way to steer
the activation of a belief when trying to achieve a goal.
More probable beliefs given larger weight would be activated
more easily. Such possible extensions of the model would
support our hypothesis, that beliefs are not forgotten or deleted
when they have been rejected. Such beliefs would instead be
assigned lower weight. The model provides slots for such a
possible extension through its belief recognition mechanism,
but it may be necessary to first scale up the scenario to give
meaning to such an extension.

The toy scenario used in this paper is definitely minimalistic.
An agent explores different color mixing combinations, ac-
quires beliefs about color mixing rules, activates these beliefs
to achieve desired resulting colors, and rejects beliefs if the
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resulting color does not match prediction. This scenario was
chosen for its conceptual clarity. But the color concepts are
trivial, their power of generalization is unimpressive, and the
possible actions are simple. Quantitative evaluation of the
learning process is not worthwhile at this stage.

There are obvious issues of scaling, such as increasing the
perceptual and motor repertoire. Those are not particularly
challenging. More subtle is the extension of the conceptual
reach of beliefs. For instance, if the concepts from which
propositions are built, were relations, more powerful beliefs
could be formed, both in their level of abstraction and their
capacity to generalize. For instance, relations like “larger than”
or “near” would enable discovering regularities in the world.
Action relations like “moving to” or “colliding with” would
unlock contingencies that may be directly linked to possible
actions of the agent to achieve goals. In other work, we have
demonstrated that such relations can be perceptually grounded
in neural dynamic architectures based on DFT [13], so we are
confident that this form of scaling is possible.

A further, conceptually important form of scaling would
be to address more complex desires, perhaps even abstract
ones like the desire to learn new things about the world
[34]. Different desires may conflict with each other and
thus require rational decision making based on an agent’s
beliefs. Such higher-level processes of decision making have
been theoretically analyzed by Bratman and colleagues [35],
for instance, by incorporating conflicting plans and potential
opportunities into an agent’s deliberation process. It is quite
conceivable, that such processes could be expressed in the
neural dynamic framework presented here by endowing the
level of desire with a richer processing structure, coupling it
bi-directionally to the rest of the architecture. Beliefs that link
outcomes to actions on targets could, of instance, then form a
first step towards neurally based means-end reasoning.
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