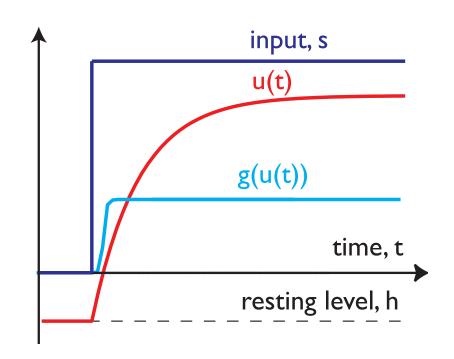


Dynamic Field Theory: higher cognition

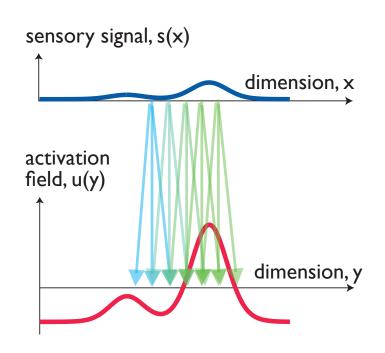
Gregor Schöner
Institute for Neural Computation (INI)
Ruhr-University Bochum, Germany
dynamicfieldtheory.org
gregor.schoener@rub.de

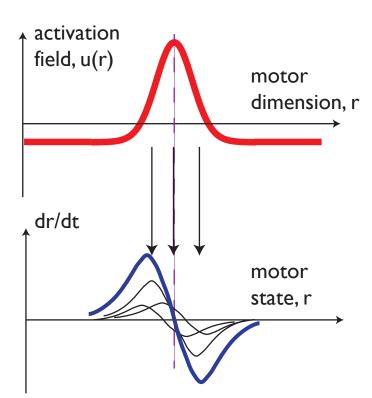
neural dynamics generate time courses of activation variables/fields that can be linked to time-varying sensory input

$$\tau \dot{u}(t) = -u(t) + h + s(t)$$

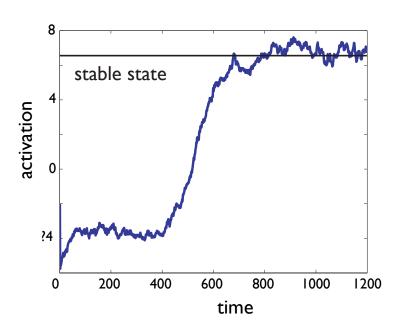


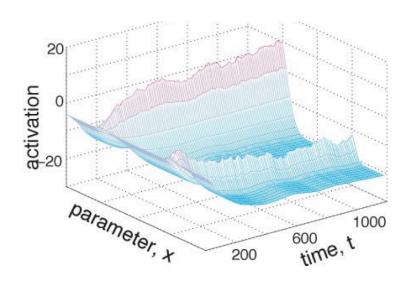
the contents of these sensorymotor representations is determined by the forward connectivity from the sensory surfaces / to the motor surfaces



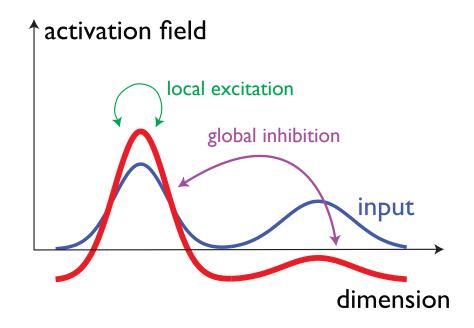


- sensory-motor cognition is not mere input-output mapping, but entails decisions
 - detection/initiation
 - selection
 - entry into working memory
 - categorization

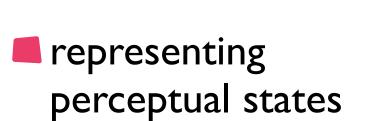




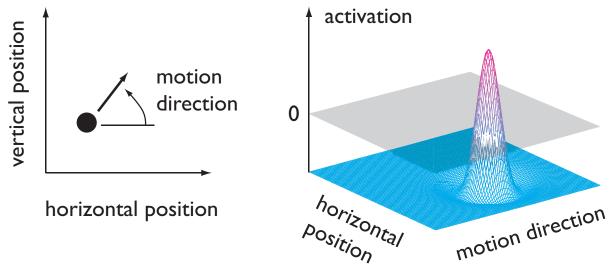
- decisions emerge from neural interaction within dynamic activation fields
- organized to make peaks stable states

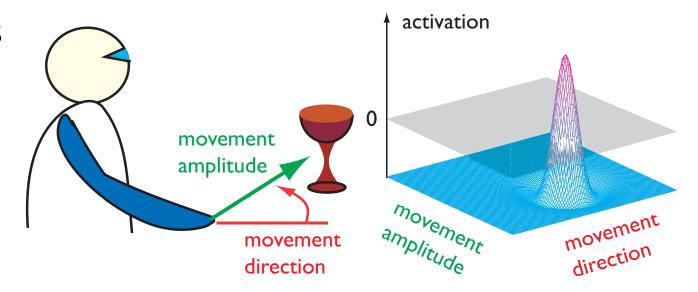


Peaks as units of representation



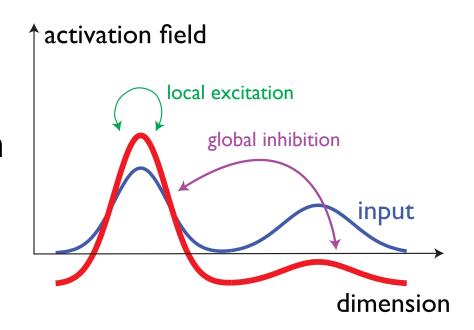
or motor states





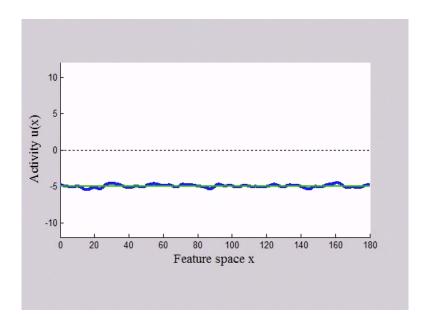
Peaks as units of representation

- => localist neural representation...
- <=> the uniform spatial organization of interaction to make stables states...
- only possible in lowdimensional feature spaces...
- ... more later

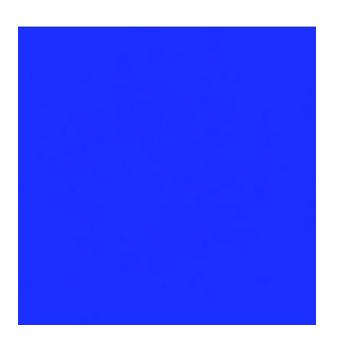


Dynamic fields of varying dimensionality

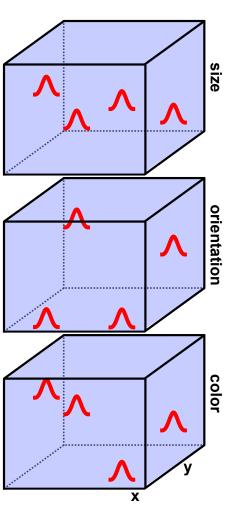
I-dimensional



2-dimensional

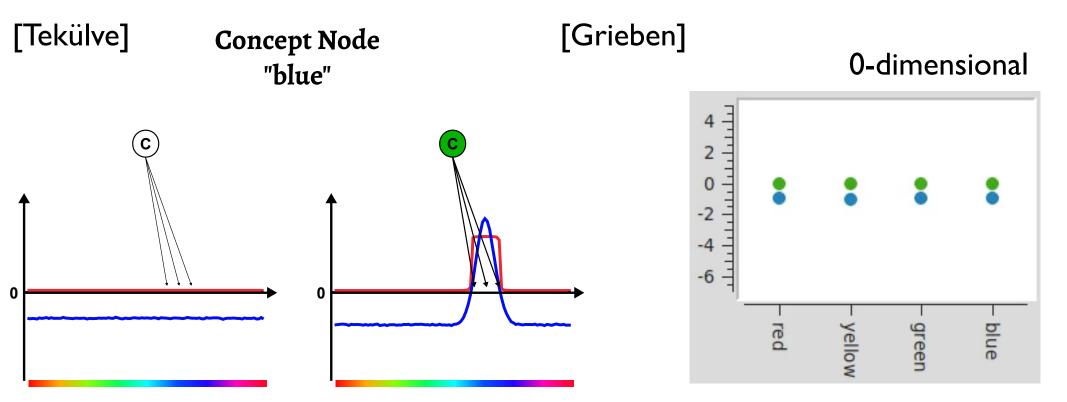


3-dimensional



Nodes...

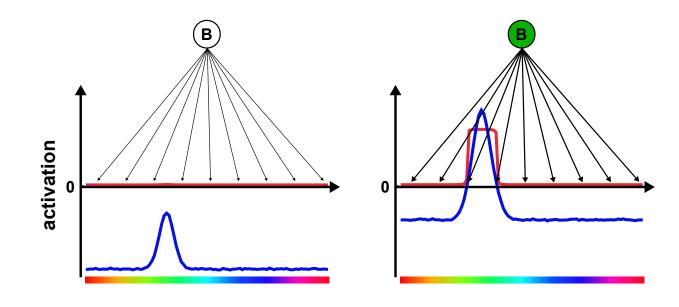
- represent discrete categories by virtue of their coupling to feature fields/feedforward NN
- typically embedded in populations of nodes that are inhibitorily coupled enabling selection among categories



Nodes...

- may have specific coupling structure that organizes fields within architectures and/or the order of instabilities
- => lecture 3

Boost Node



Higher dimensions

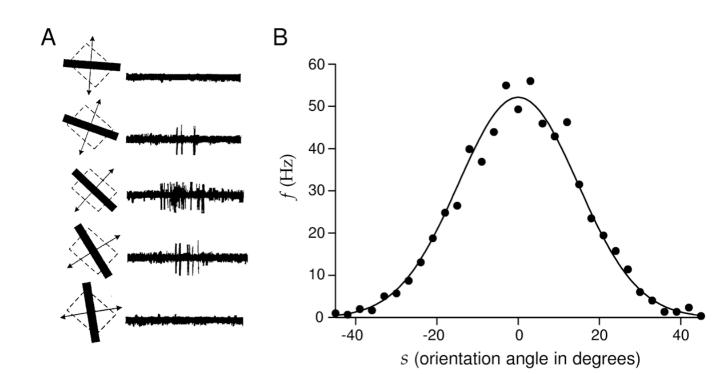
- representing different kinds of dimensions within a higher-dimensional field offers new (cognitive) functions
 - binding
 - search
 - coordinate transform

Feature dimensions

- beyond the spatial dimensions of sensory surfaces..
- visual features: local orientation, motion, texture, color, scale...
- auditory features: pitch, formants ...
- motor features: movement direction, force direction ...
- cognitive features: ordinal position ...

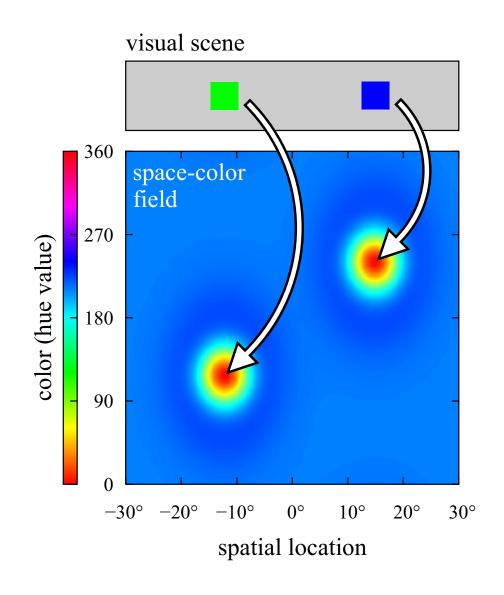
Combining different feature dimensions

- neurons tuned to multiple dimensions
 - e.g. receptive field + direction tuning
 - => combines visual space and orientation
- "anatomical" binding



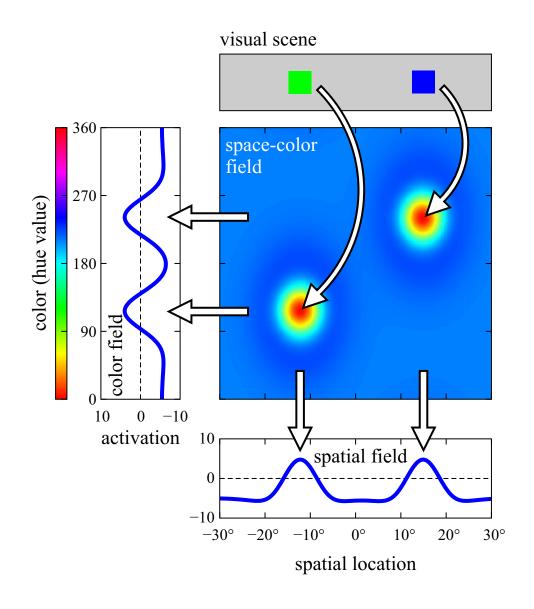
Combining different feature dimensions

example: a joint representation of color and visual space "binds" these two dimensions



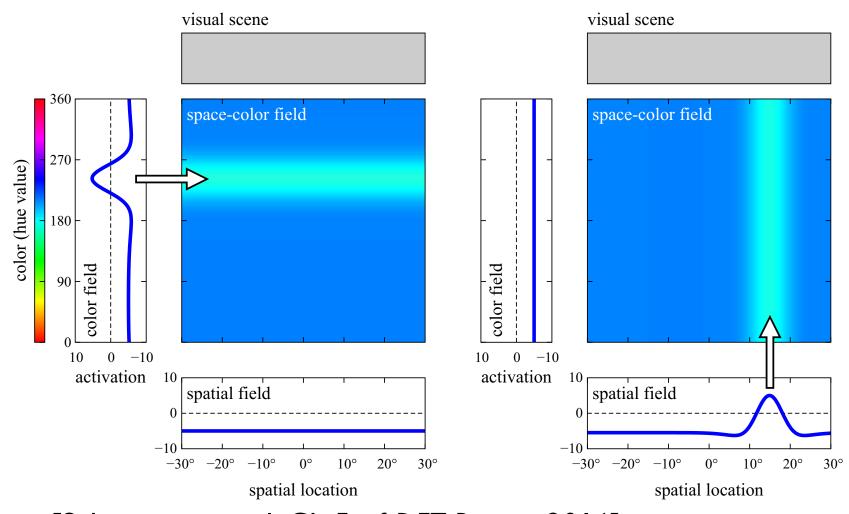
Extract bound features

- project to lowerdimensional fields
- by summing along the marginalized dimensions
- (or by taking the softmax)



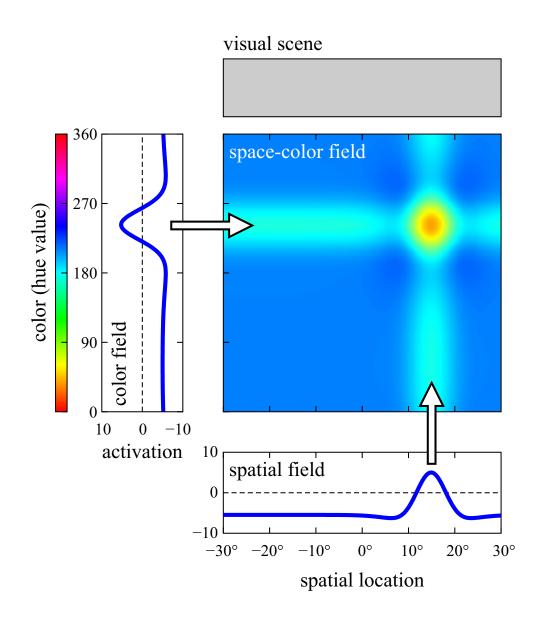
Assemble bound representations

project lower-dimension field onto higherdimensional field as "ridge input"



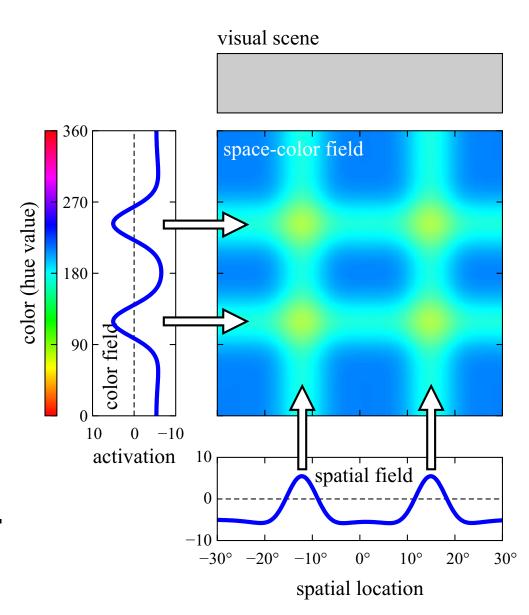
[Schneegans et al., Ch 5 of DFT Primer, 2016]

Assemble bound representations



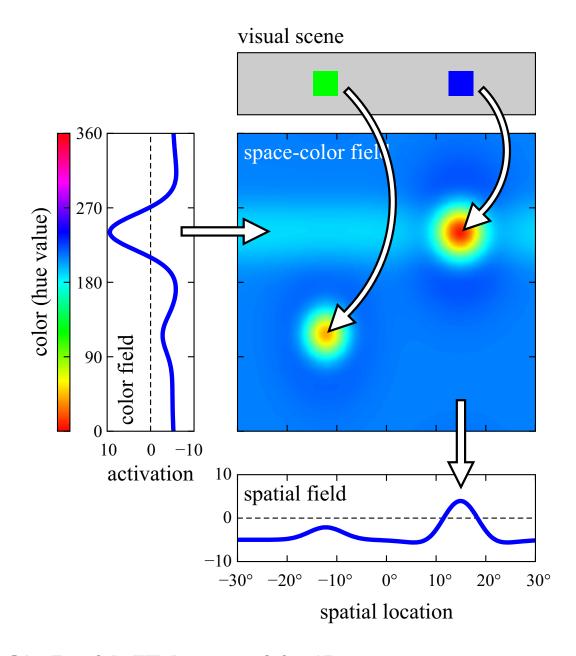
Assemble bound representations

- binding problem: multiple ridges along lower-dimensional space lead to a correspondence problem
- => assemble one bound object at a time...
- => sequentiality bottleneck!

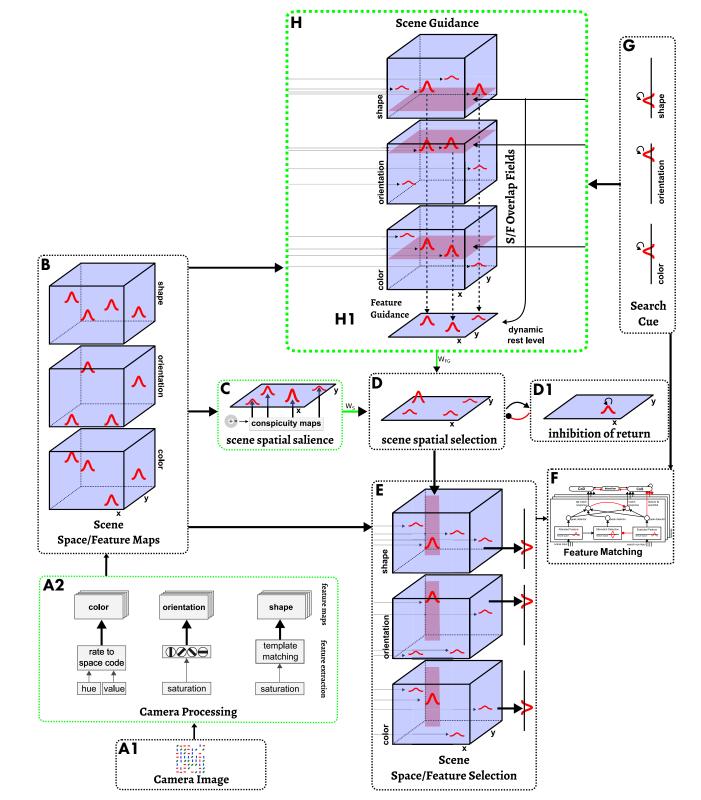


Search

- ridge input along one dimension extracts from bound representation matching objects
- other dimensions of those objects can then be extracted
- e.g. visual search



Visual search

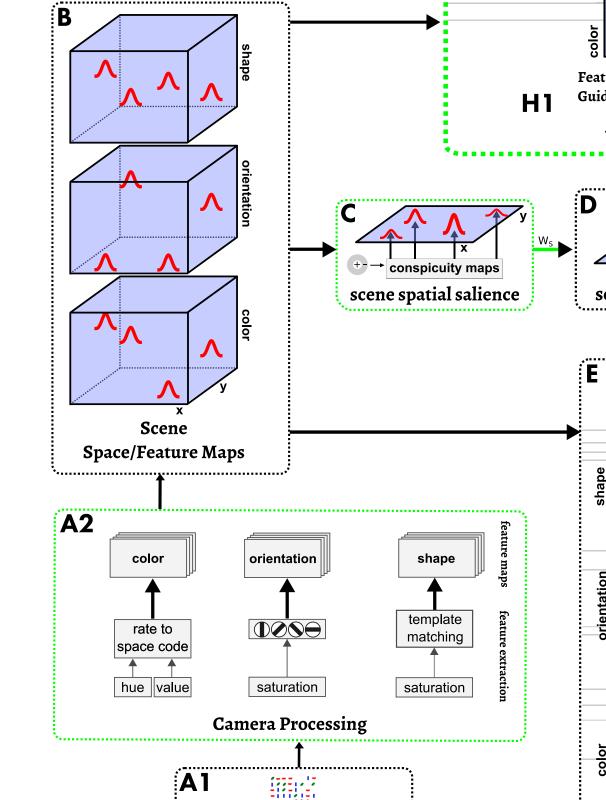


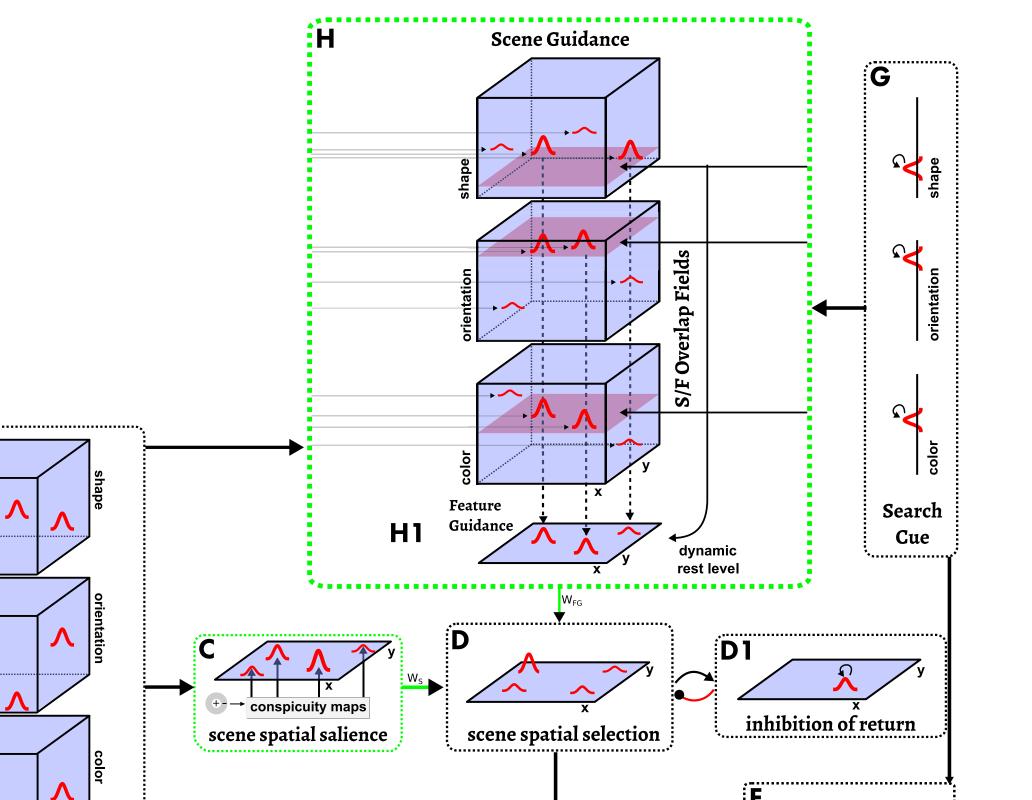
[Grieben et al. Attention, Perception & Psychophysics 2020; CogSci 2021]

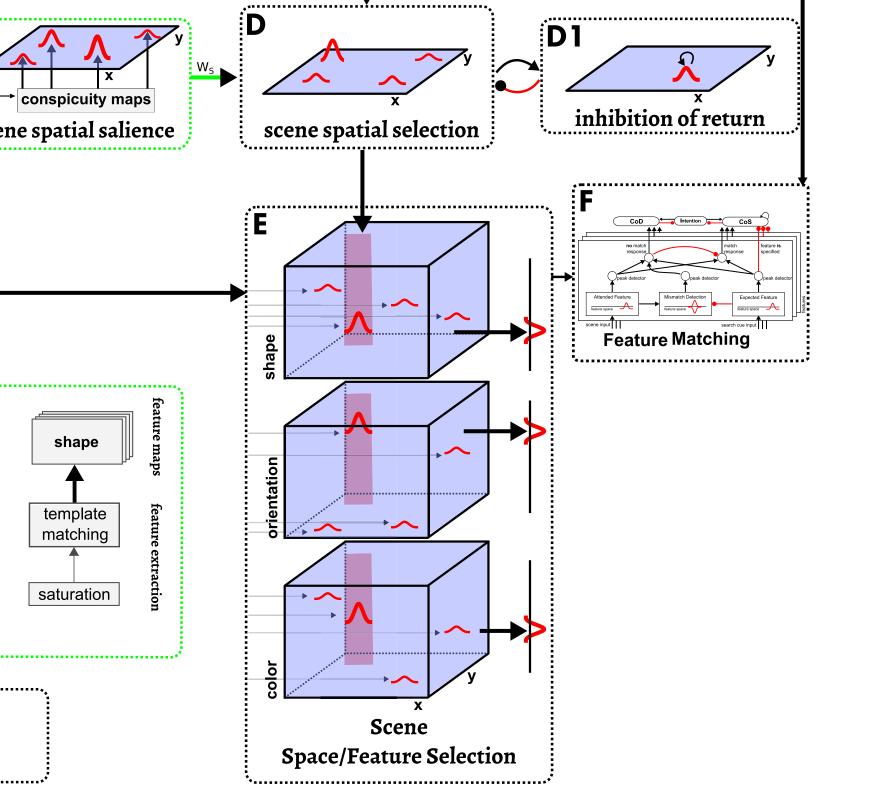
A2 feature maps color orientation shape feature extraction template rate to matching space code value saturation saturation hue **Camera Processing** A1

Camera Image

=> special lecture by Raul Grieben on Thursday

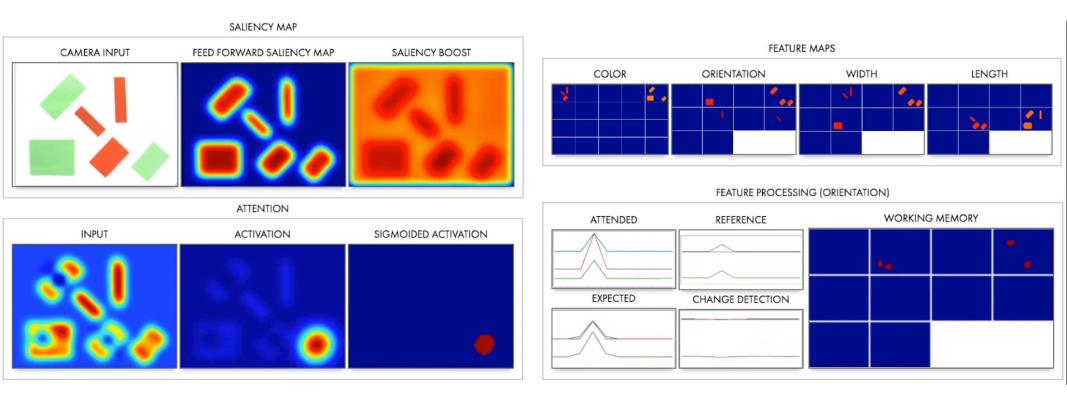






Visual search

=> special lecture by Raul Grieben on Thursday



[Grieben et al. Attention, Perception & Psychophysics 2020]

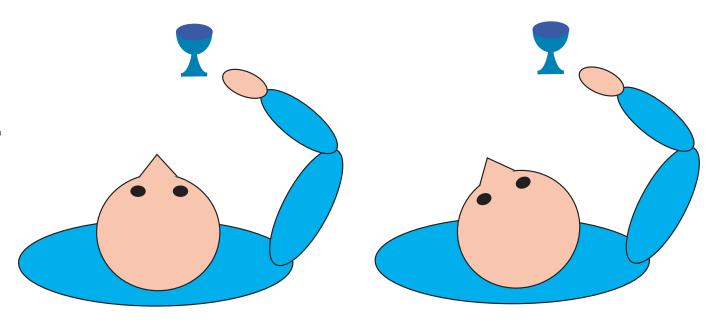
Higher dimensions

- representing different kinds of dimensions within a higher-dimensional field offers new (cognitive) functions
 - binding
 - search
- coordinate transform

Coordinate transforms

- are fundamental element to sensory-motor cognition
- [but critical also to mental operations!]

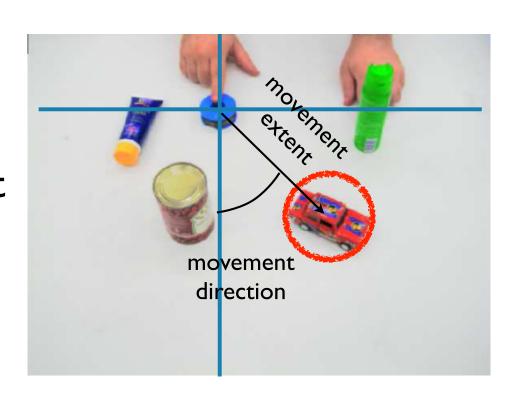
reaching is guided by bodycentered, not by retinal visual representation



Coordinate transforms

- are fundamental element to sensory-motor cognition
- [but critical also to mental operations!]

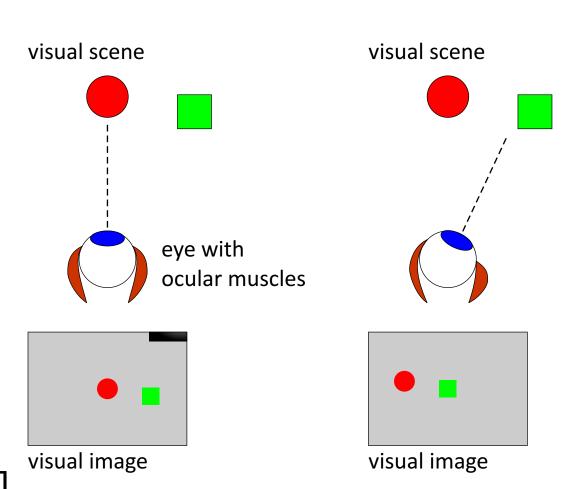
example: movement parameters are extracted by representing movement target in coordinates centered in the initial position of the hand



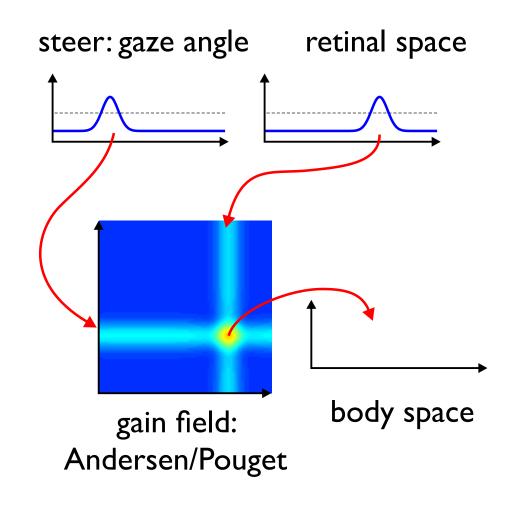
Coordinate transforms

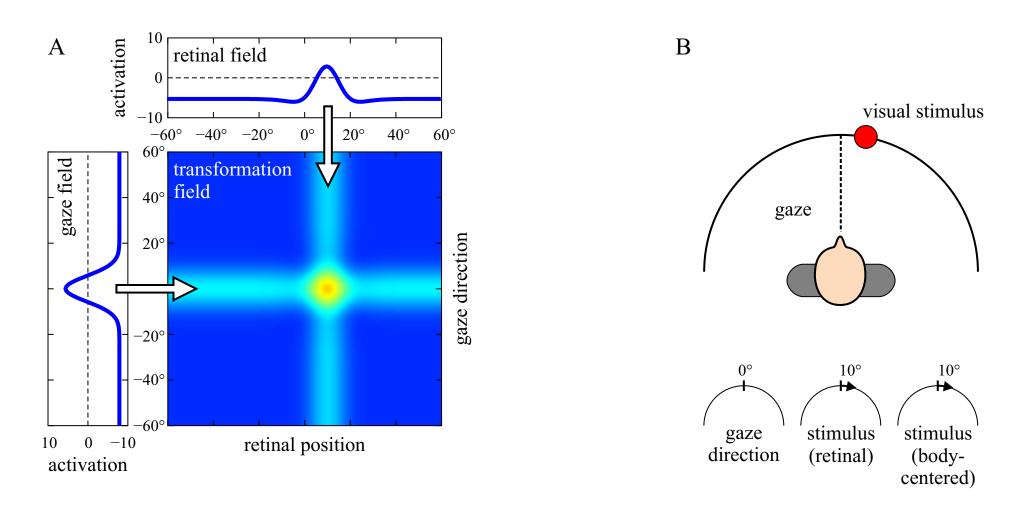
- are fundamental element to sensory-motor cognition
- [but critical also to mental operations!]

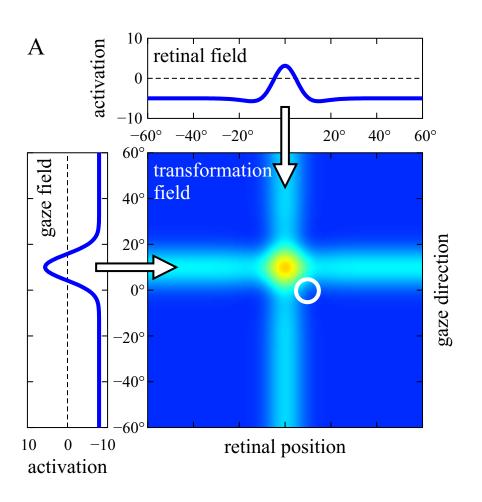
worked example: from retinal to head-centered/ body-centered frame

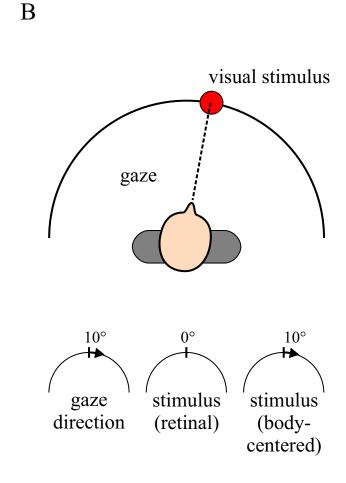


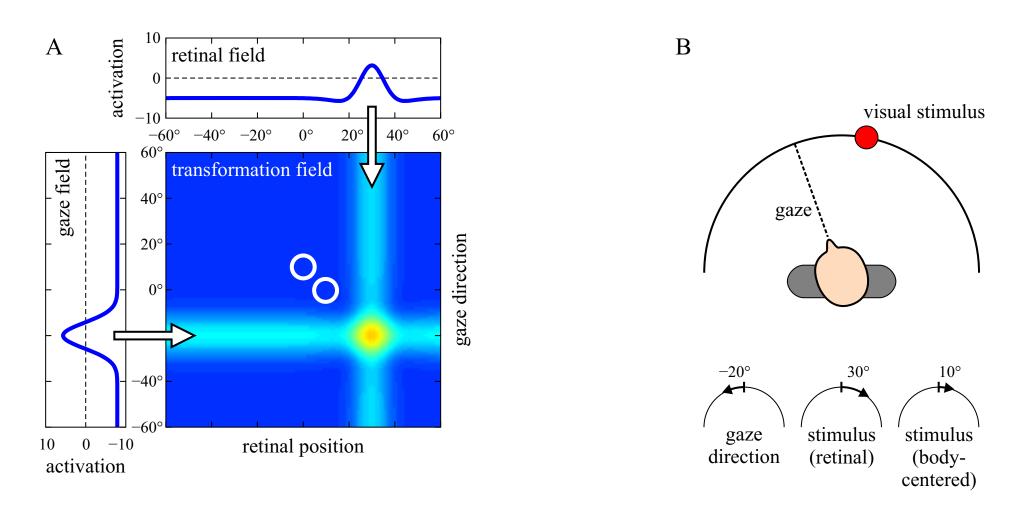
- transformation depends on the gaze angle = steering dimension
- need a bound neural representation of
 - retinal space
 - gaze angle
- obtained from ridge/slice input to bind these
- project to body space

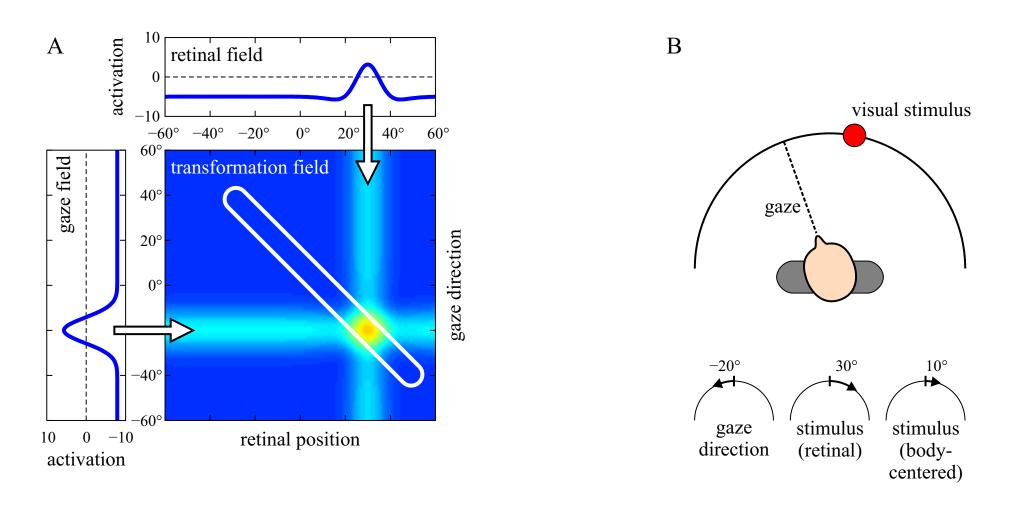


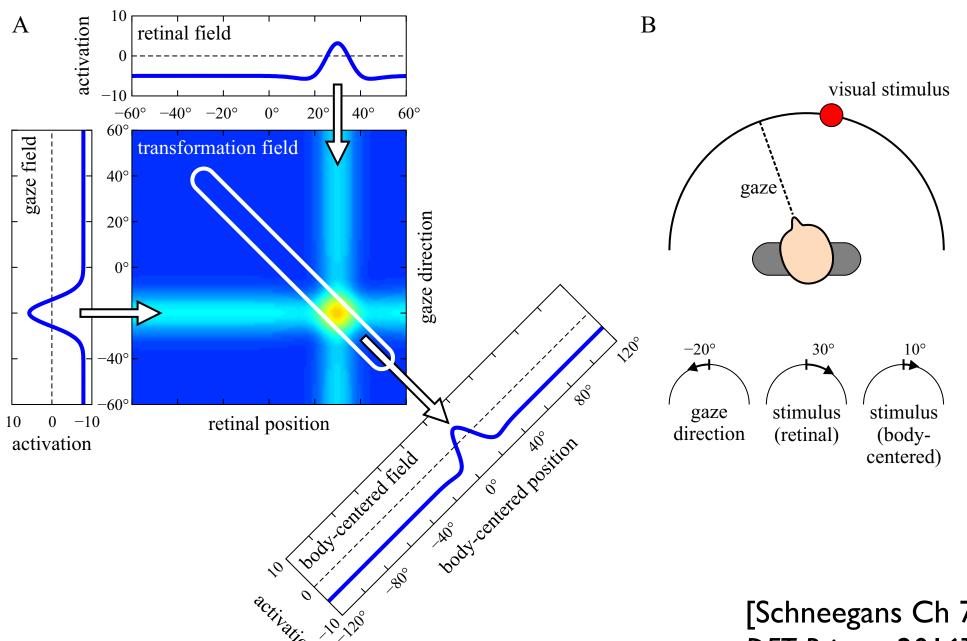




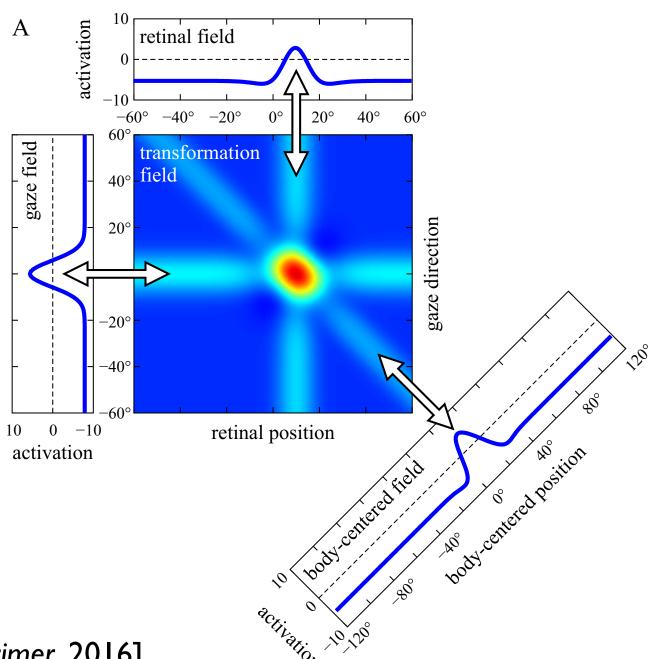




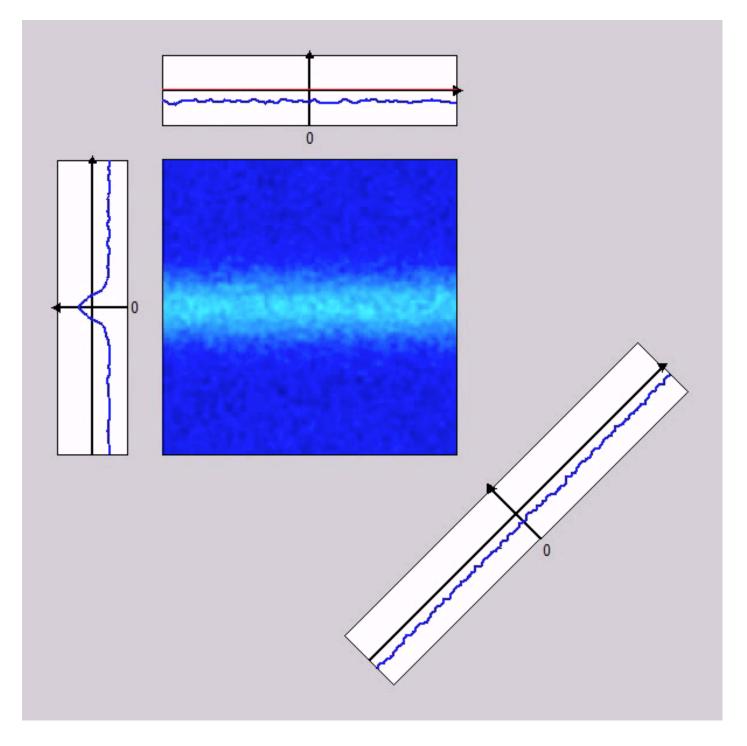




- bi-directional coupling
- => predict retinal coordinates

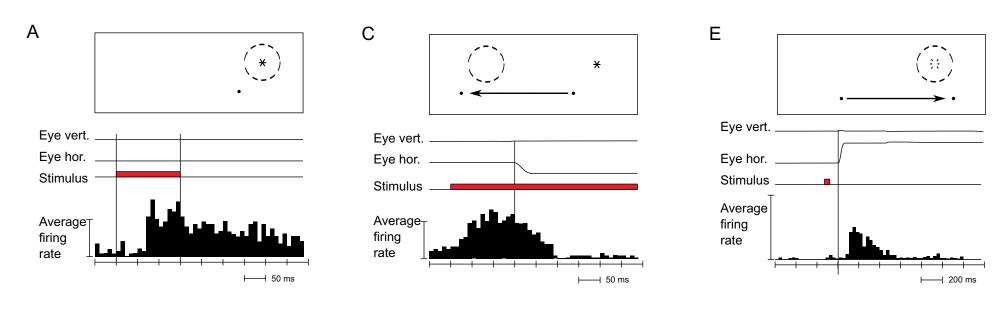


Spatial remapping during saccades

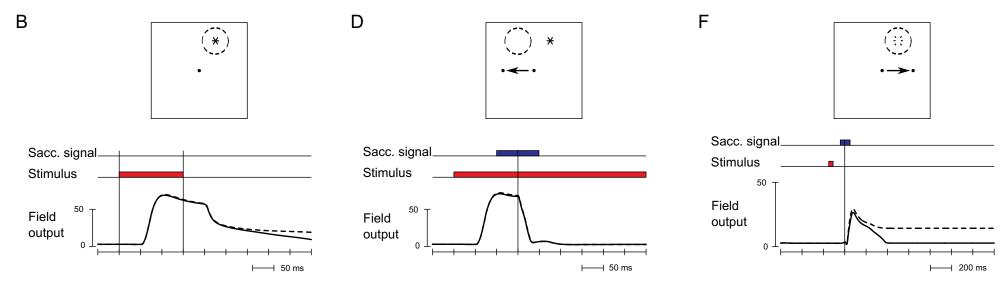


Accounts for predictive updating

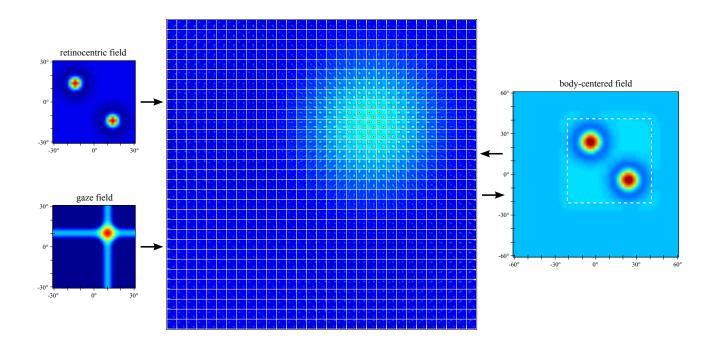
[neural data: Duhamel, Colby, Goldberg, 1992, LIP]



[model: Schneegans, Schöner Biological Cybernetics 2012]



Scaling



Binding

- "anatomical" binding does not scale
- binding through space
- localist vs. distributed representations
- learning

Scaling feature dimensions

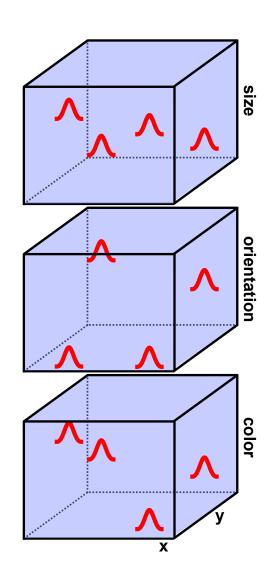
=>

- 2 spatial dimensions
- depth
- orientation
- color
- texture
- movement direction
- size
- etc...

- e.g. 8 dimensions
- 100 neurons per dimension
- $10^{2*8} = 10^{16}!$
- more than there are in the entire brain!
- => only small sets of feature dimensions can be bound "anatomically"

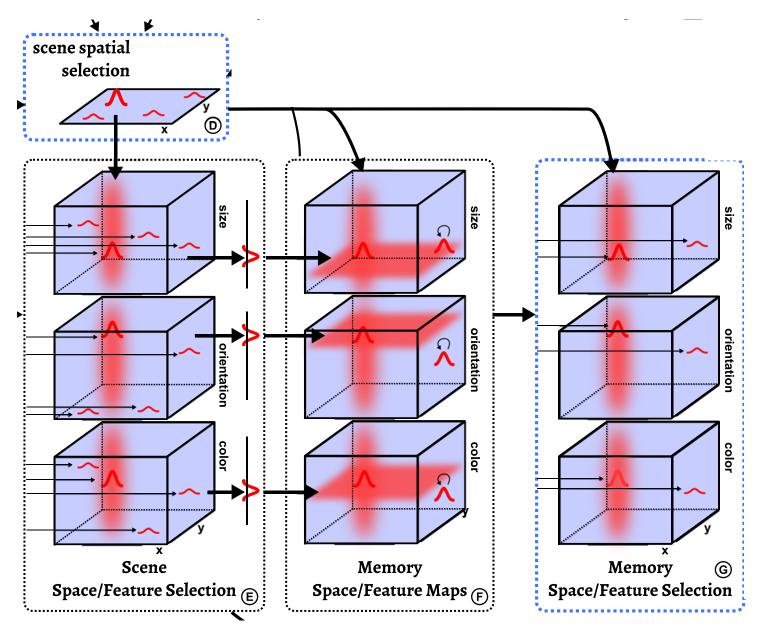
Binding through space

- many 3 to 4 dimensional feature fields
- all of which share the one dimension: visual space (~all neurons have receptive fields)
- bind through space à la Feature Integration Theory (Treisman)

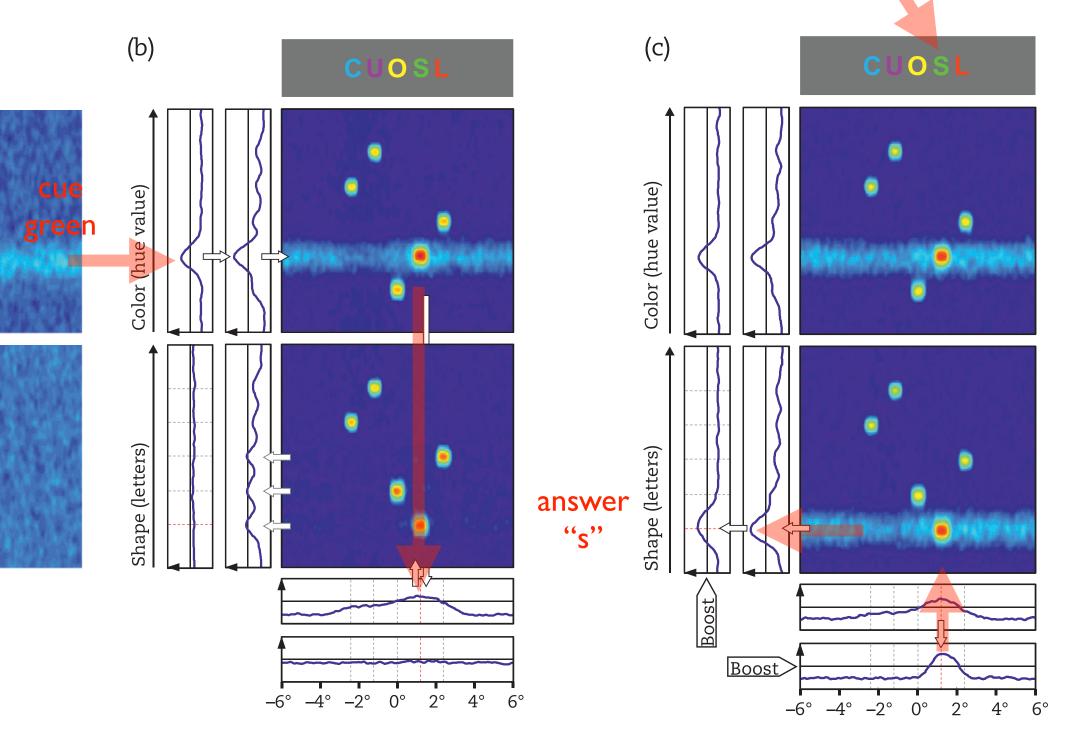


[Grieben et al. Attention, Perception & Psychophysics 2020]

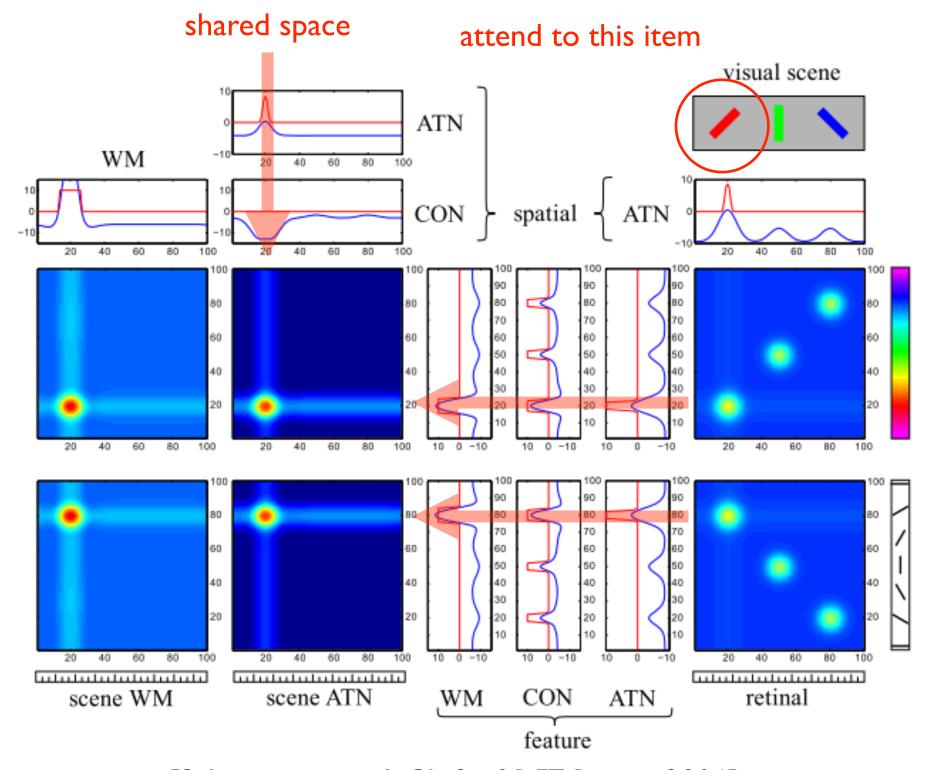
Binding through space



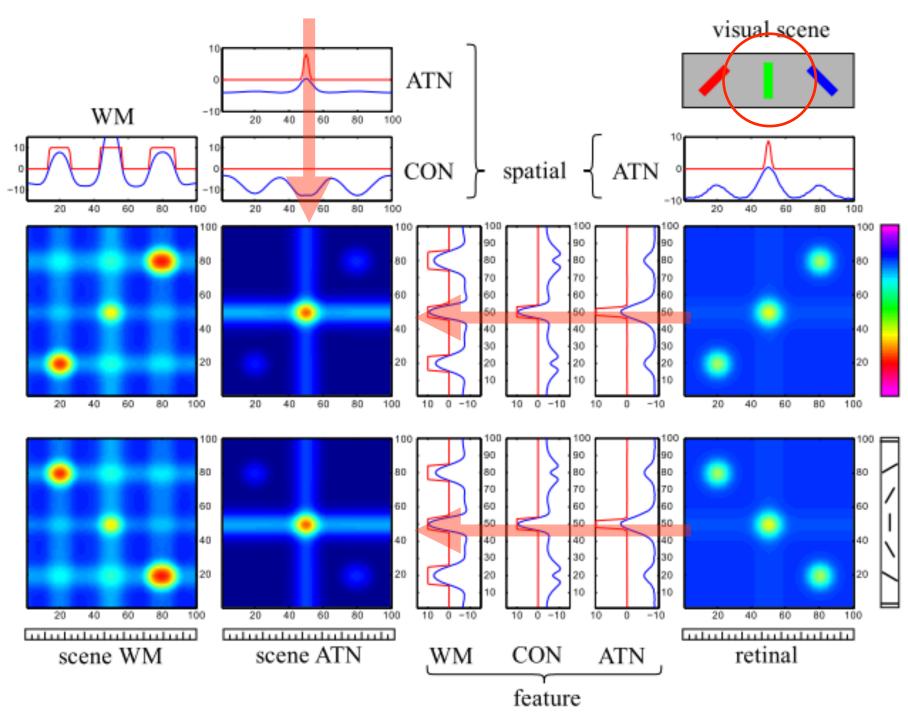
[Grieben et al. Attention, Perception & Psychophysics 2020]



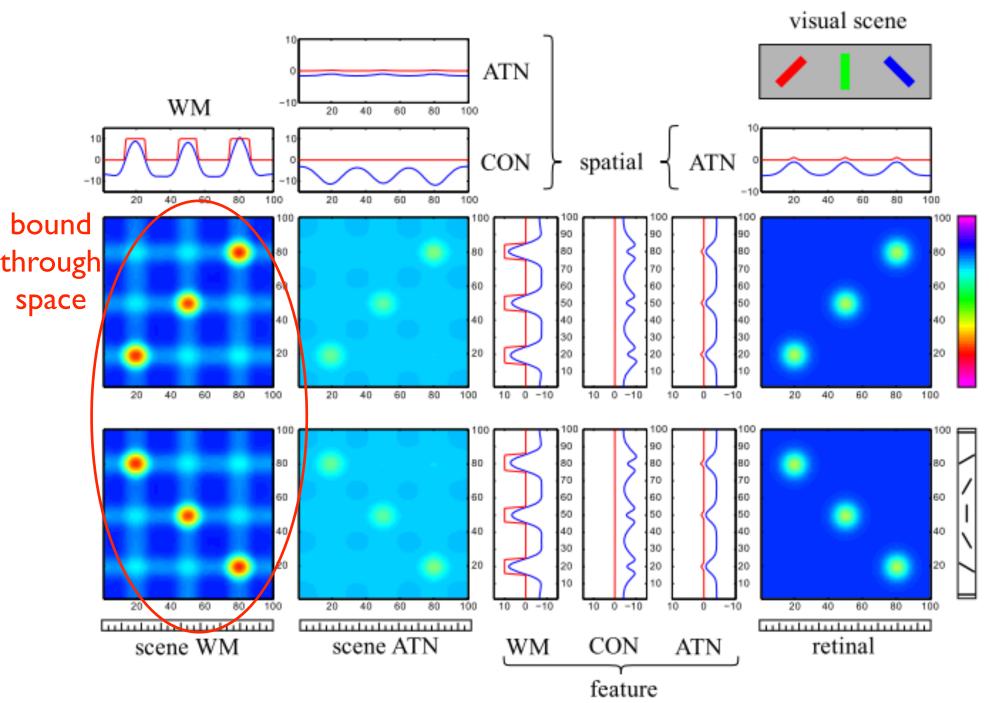
[Schneegans et al., Ch 5 of DFT Primer, 2016]



[Schneegans et al., Ch 8 of DFT Primer, 2016]



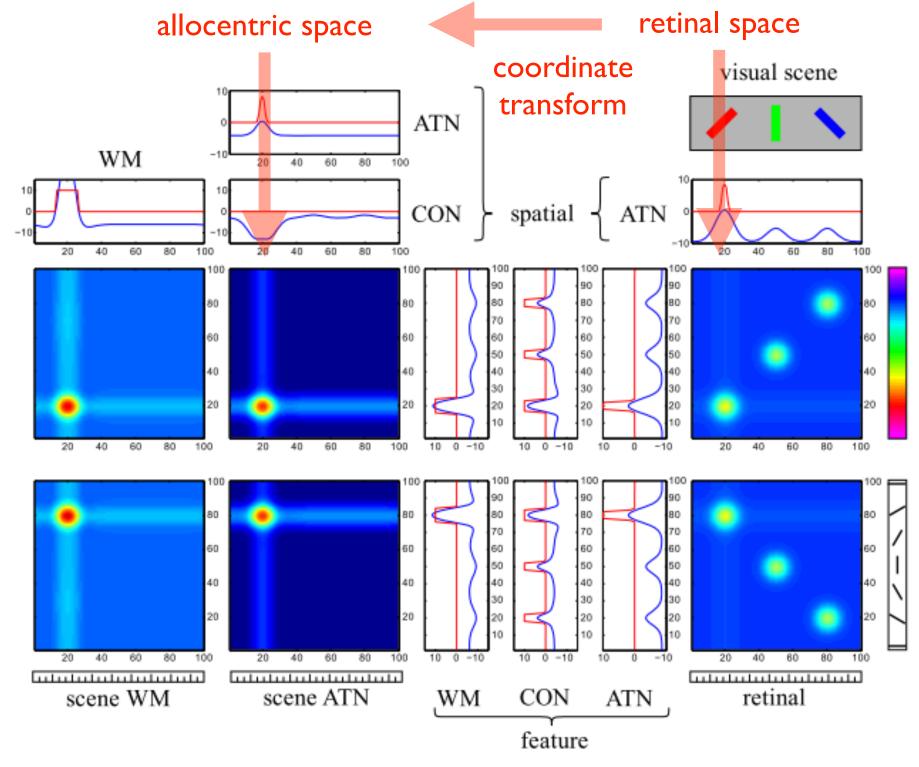
[Schneegans et al., Ch 5 of DFT Primer, 2016]



[Schneegans et al., Ch 5 of DFT Primer, 2016]

Binding through space => sequential bottleneck

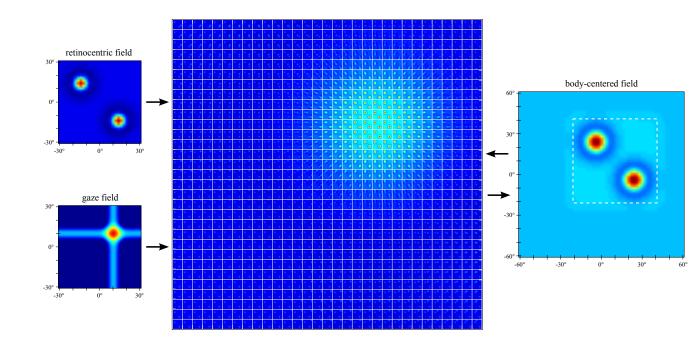
- binding through space must occur one time at a time.... to avoid binding problem
- => the sequential processing bottleneck may originate from this



[Schneegans et al., Ch 8 of DFT Primer, 2016]

Coordinate transforms and binding through space

- coordinate transforms: 2 by 2 spatial dimensions
- perform the coordinate transform in space only!
- no need to transport the feature values, which can be filled in by binding through space

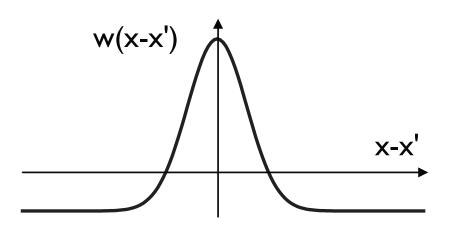


Generalization to other binding agents

- than space...
- a binding agent must be a shared neural dimension...
- can be discrete/categorical in nature
- e.g. can be an ordinal dimension, an "index", a "label"
- => special lecture by Daniel Sabinasz on grounded cognition

Localist vs. distributed

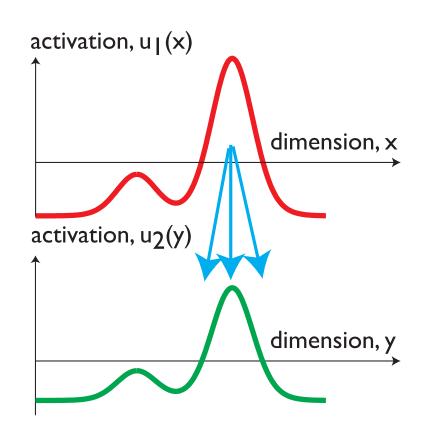
- scaling problem in localist representations
- required to create attractors with homogenous interaction



- distributed representations scale better, but: how to create attractors?
- Hopfield networks have attractors for distributed representations, but these (and the synaptic weights) are specific to each memorized pattern
- but Hopfield networks lack flexibility... => lecture 3

Hebbian learning

- Hebbian learning of projections
 - among fields
 - forward from sensory input to fields
- interaction leads to localized rather than distributed representations (SOM)

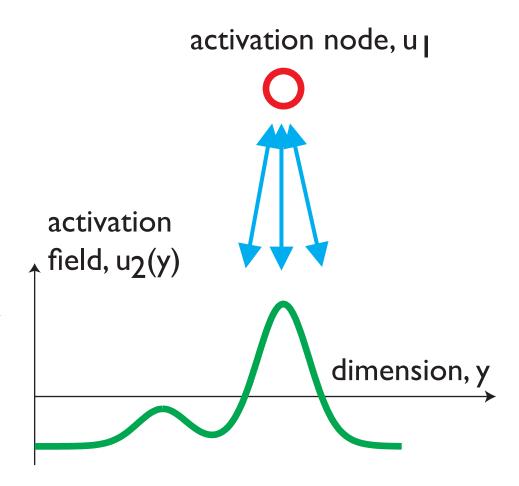


$$\tau \dot{W}(x,y,t) = \epsilon(t) \Big(-W(x,y,t) + f(u_1(x,t)) \times f(u_2(y,t)) \Big)$$

[Sandamirskaya, Frontiers Neurosci 2014]

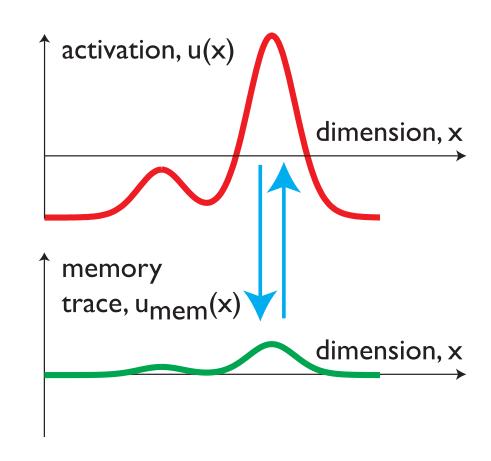
Hebbian learning

- learning reciprocal connections between zerodimensional nodes and fields
- => grounded concepts
- analogous to the output layer of DNN
- => ensembles of such nodes coupled inhibitorily from the basis for conceptual thinking...



The memory trace

- facilitatory trace of patterns of activation
- in excitatory field: leads to sensitization
- in inhibitory field: leads to habituation

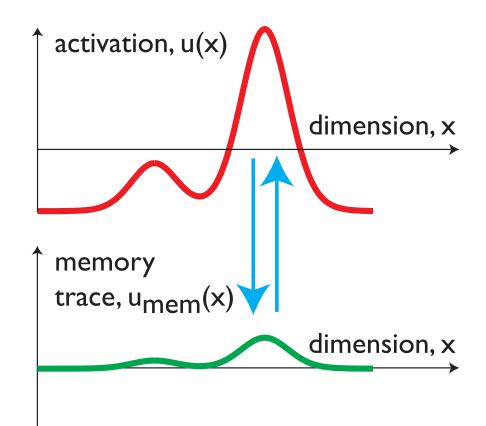


The memory trace

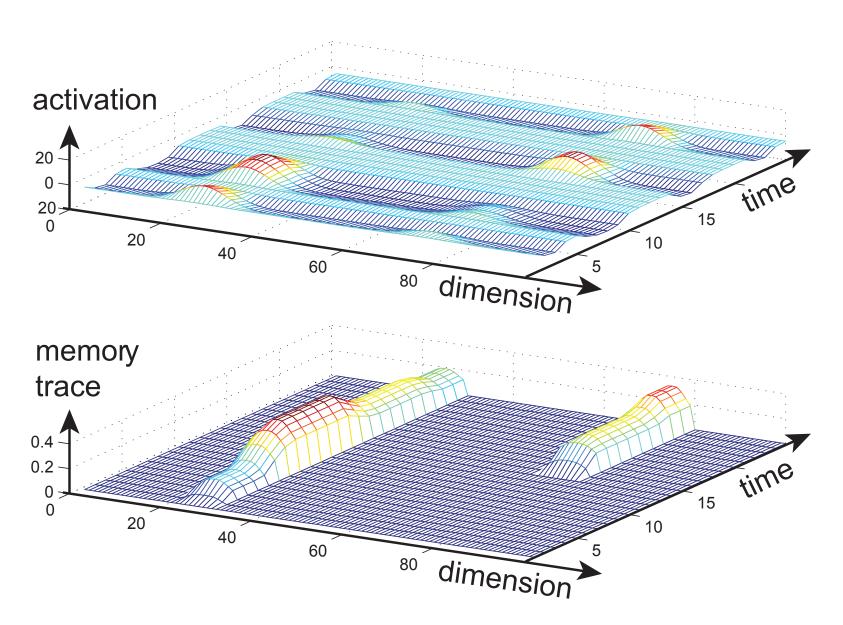
$$\tau \dot{u}(x,t) = -u(x,t) + h + s(x,t) + \int dx' w(x-x') \ \sigma(u(x',t)) + u_{\text{mem}}$$

$$\tau_{\text{mem}}\dot{u}_{\text{mem}}(x,t) = -u_{\text{mem}}(x,t) + \sigma(u(x,t))$$

$$\tau_{\text{mem}} \dot{u}_{\text{mem}}(x,t) = 0 \quad \text{if } \int dx' \sigma(u(x',t)) \approx 0$$

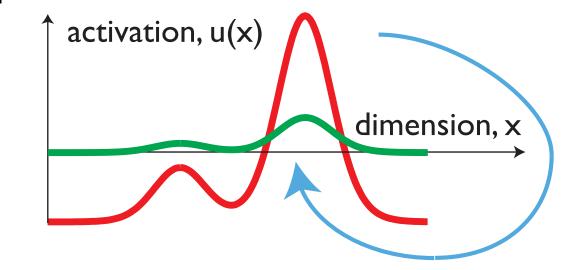


=> the memory trace reflects the history of detection decisions



Memory trace ~ first-order Hebbian learning

- increases local resting level at activated locations
- the bias input in NN
- boost-driven detection instability amplifies small bias => important role in DFT



The memory trace is functionally different from conventional Hebbian learning

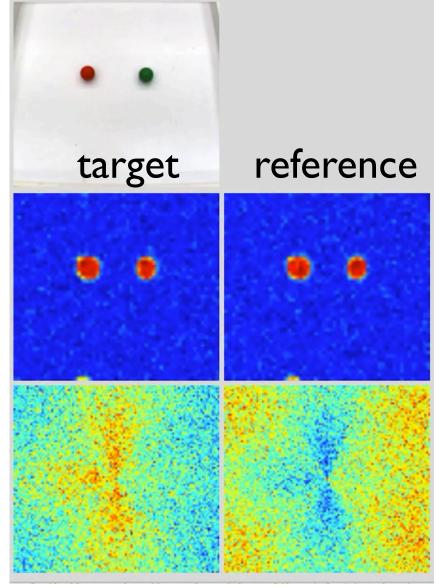
- the memory trace enables the re-activation of a past pattern of activation even when the input that caused the past pattern of activation is absent
- this is the basis for free and cued recall in DFT
- (compare live simulation in lecture 1)
- => Guest lecture Spencer

Higher cognition

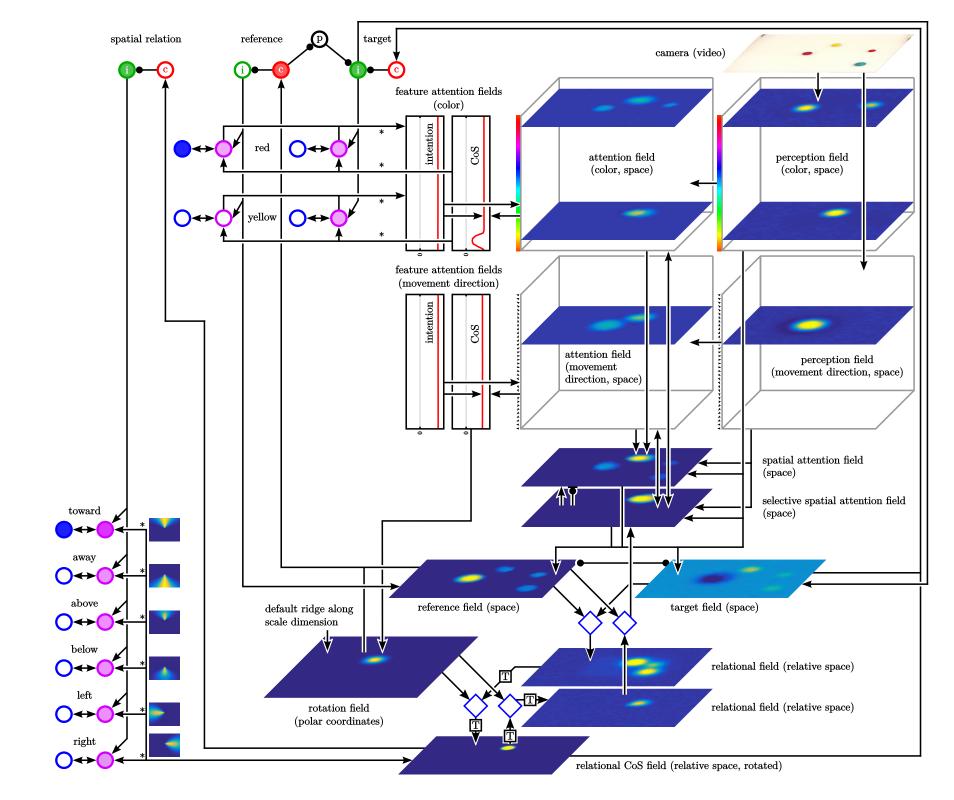
- perceptual grounding of relational concepts
- generating descriptions
- mental mapping

Concepts, relational thinking

talking about objects: bringing the target object into the attentional foreground "red to the left of green"

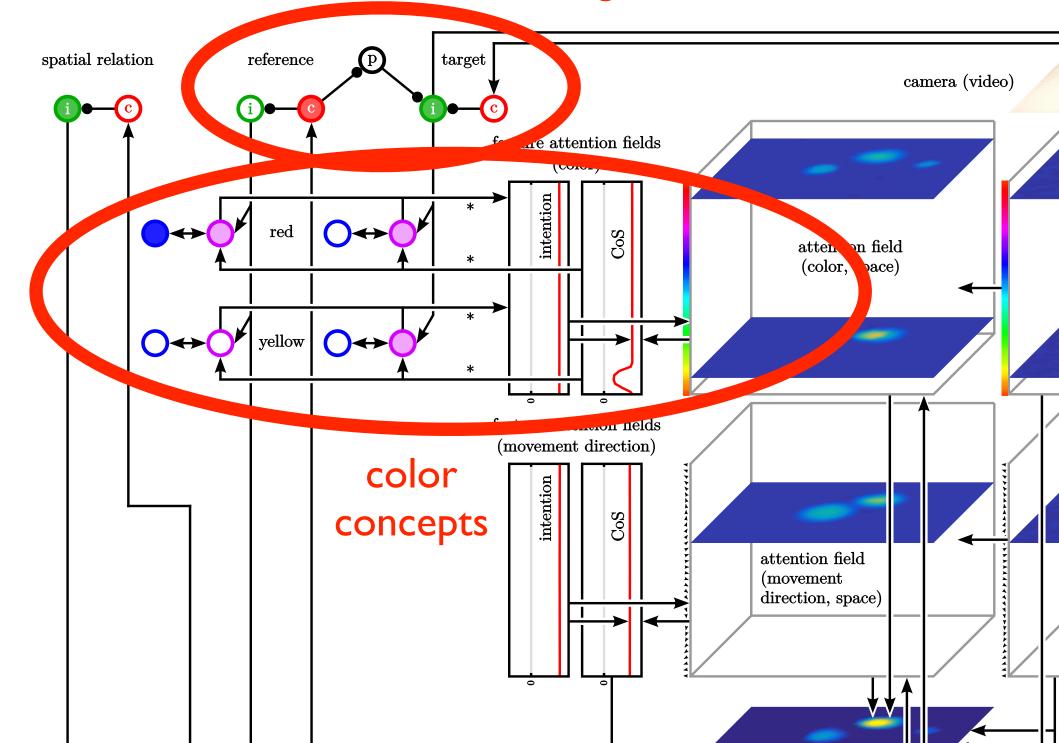


[Lipinski, Sandamirskaya, Schöner 2009 ... Richter, Lins, Schöner, *Topics* 2017]

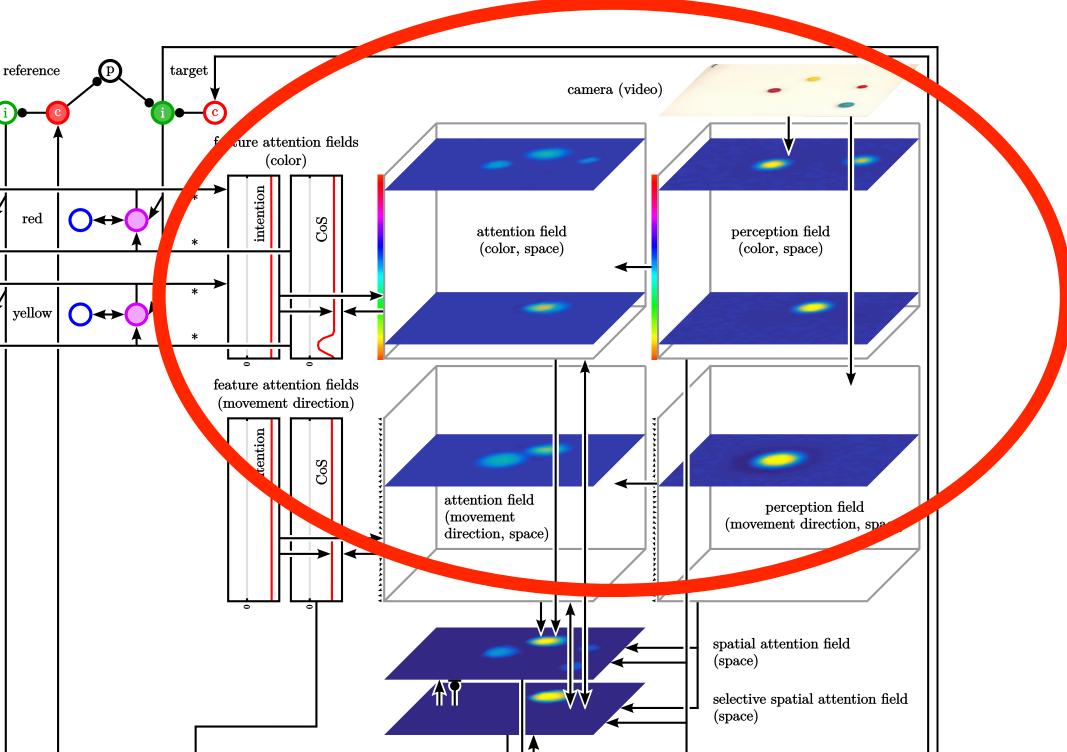


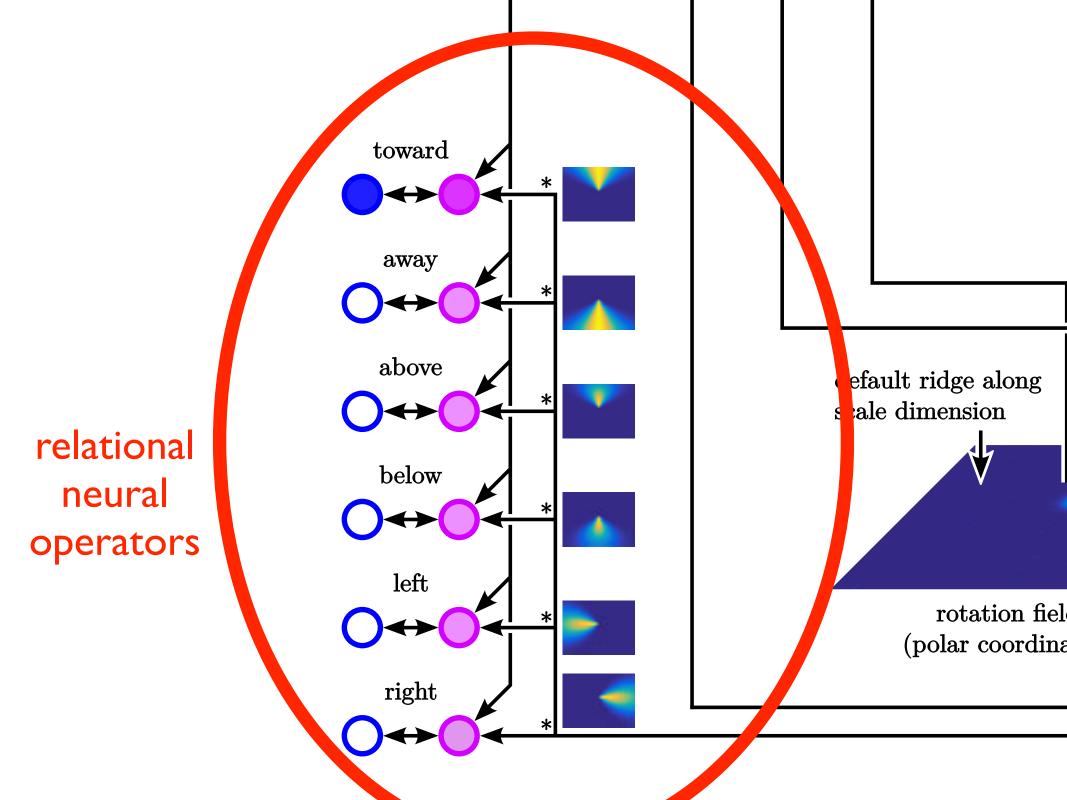
[Richter, Lins, Schöner, ToPiC (2017)]

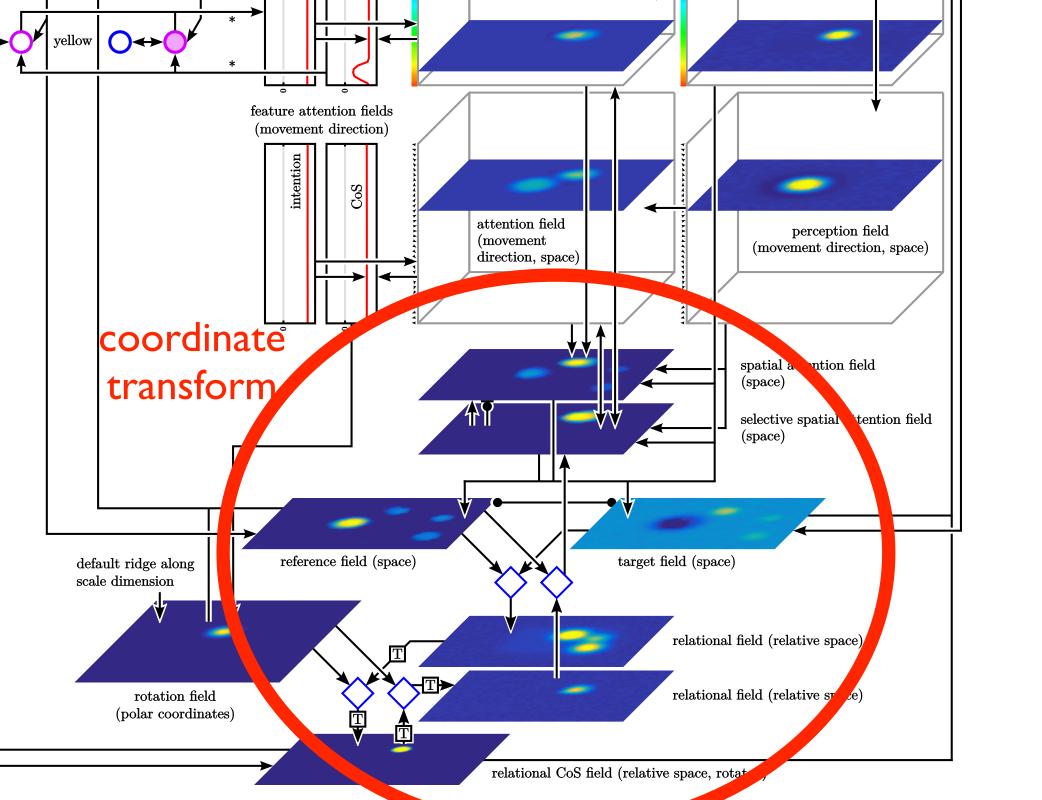
binding to role



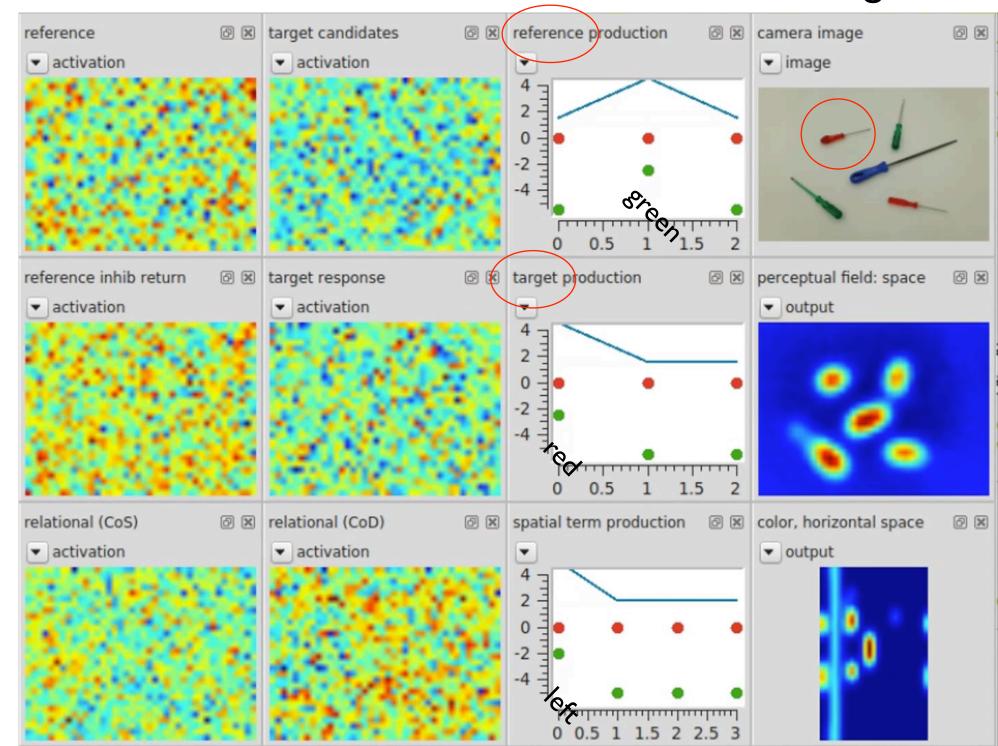
cued visual search







"red to the left of green"



Concepts, relational thinking

- => special lecture by Daniel Sabinasz on Thursday
- how the sequence of processing steps arises...
 - => next core lecture

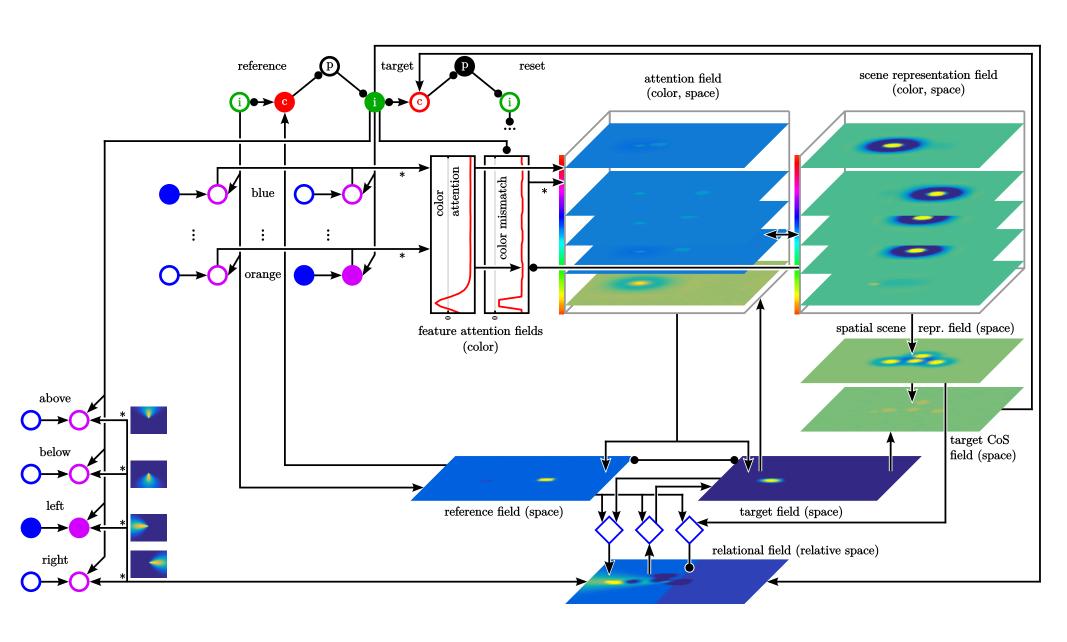
Mental mapping and inference

propositions

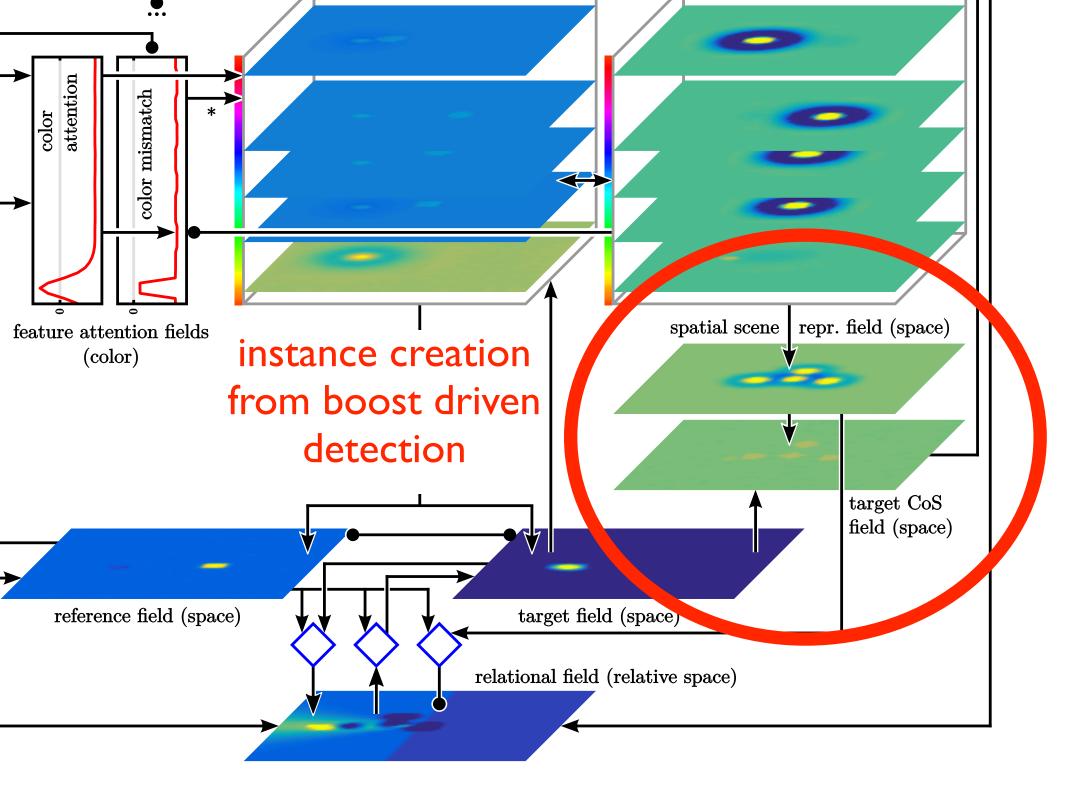
- "There is a cyan object above a green object."
- "There is a red object to the left of the green object."
- "There is a blue object to the right of the red object."
- "There is an orange object to the left of the blue object."

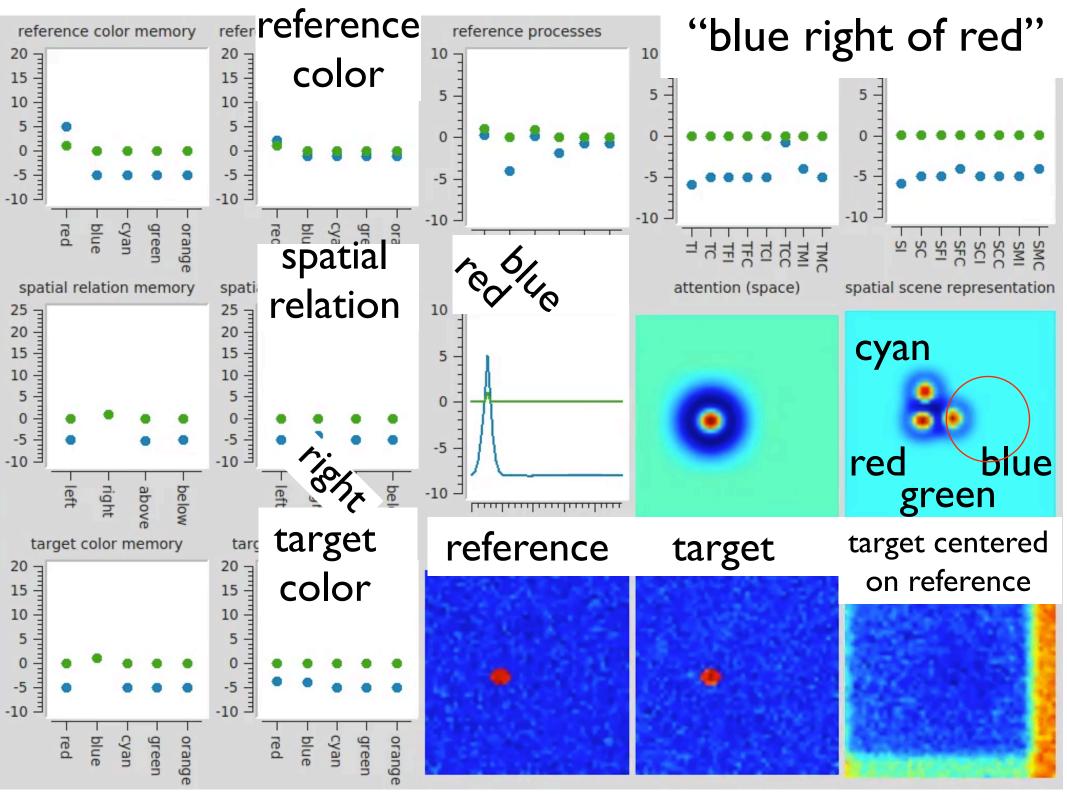
inference

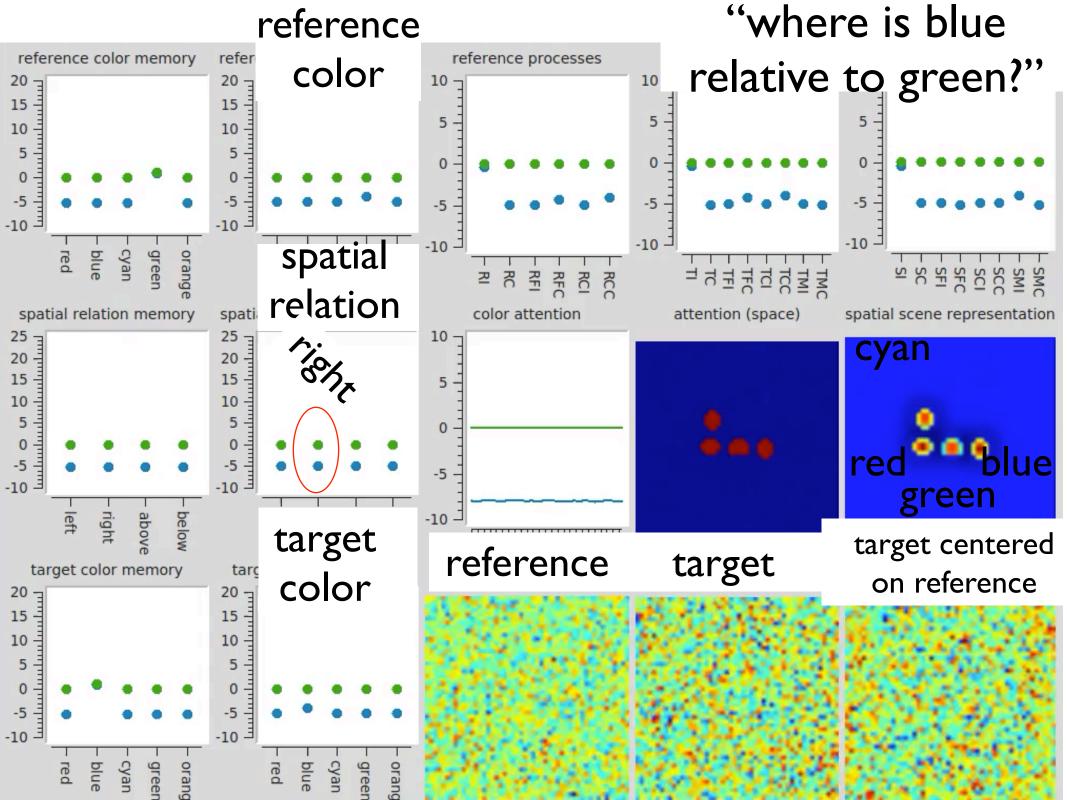
"Where is the blue object relative to the red object?"



[Kounatidou, Richter, Schöner, CogSci 2018]







Conclusion

- dynamic fields across different feature spaces enable new cognitive functions: binding to space, search, coordinate transforms, binding through space, concepts, grounding/ descriptions, mental mapping
- next: how do sequences of neural attractor states come about?