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Roadmap

M sequences
B why do DFT architectures work!?

B embedding DFT in the theoretical landscape



Sequences

M all behavior and thinking consist of sequences
of physical or mental acts

B sometimes in a fixed order as in action
routines, or highly trained action patterns

B but potentially highly flexible ... as in language,
thinking, problem solving ...



DFT challenge for sequences

B DFT postulates that all neural states
underlying behavior/mental process are
attractors that resist change...

B but generating sequences of such states
require change of state! Conflicting
constraints!

M answer: instabilities are induced systematically
to enable switching to a next/new attractor



Road .
2EE® Sequence generation

M an illustrative example

B the neural/mathematical mechanism



Sequence of physical acts

B task: search for objects of a given color in a given order

B | blue
‘ target 2

B 2 red ‘

M green

target |
obstacles

B stably couple to
objects once they
are detected

M ighore objects

‘ carget ;
has not yet come

when their turn

(distractors) vehicle



Implementation as an imitation task

B [earn a serially ordered B perform the serially
sequence from a single ordered sequence with
demonstration new timing
yellow-red-green-blue-red yellow-red-green-blue-red

[Sandamirskaya, Schoner: Neural Networks 23:1163 (2010)]



red a distractor red a target

[Sandamirskaya, Schoner: Neural Networks 23:1163 (2010)]



ordinal dynamics

Condition of %

Satisfaction
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[Sandamirskaya, Schoner: Neural -
Networks 23:1163 (2010)] .




Visual search
Camera image

B 2D visual input color vs.

horizontal space

M intensity of input from a
color histogram within
each horizontal location
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Visual search

B current color searched provides ridge input
into a color-space field

Color-space DF

search cue




Color-space DF
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ordinal stack

intentional state
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transition . Ordinal nodes
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Learning Production
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A intention
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Sequence of instabilities

B the CoS is pre-shaped by the intention field, but is in
the sub-threshold state

B until a matching input pushes the CoS field through
the detection instability

B the CoS field inhibits the intention field that goes
through a reverse detection instability

B the removal of input from the intention to the CoS
field induce a reverse detection instability

M both fields are sub-threshold 17 anesens [\ mersion




CoS and efference copy

B one could think of the “prediction” implied in
the CoS as being a form of efference copy

B that does act inhibitorily...

B but it does so on the (motor)intention, not on
the perception of the outcome that is
predicted!




Generalization

B match-detection => CoS

B mis-match (or change) detection => CoD
(condition of dissatisfaction)

[Grieben, Schoner, CogSci 2021]
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Roadmap How is the next state selected?

B once the current state has been
de-activated...

B three notions

B gradient-based selection
B chaining

B positional representation

M an illustration



How is the next state selected?

B once the current state has been deactivated...

® 3 notions (~Henson Burgess 1997)

.................................................

................................................

M | gradient-based selection

B 2 chaining sz; " ; lé?

B 3 positional representation

Ordinal nodes
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Gradient-based

M 2 field/set of nodes is released from inhibition
onhce the current state is deactivated...

M a new peak/node wins the selective
competition based on inputs...

B e.g. salience map for visual search

M e.g. overlapping input from multiple fields..

B return to previous states avoided by inhibition
of return . Vo

[Grieben, Schoner, CogSci 2021] X X
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Gradient-based

B this is used in many of the DFT architectures
M visual search
B relational grounding

B mental mapping

....................... ) A
@ ...................................................
Y IR y
[Grieben, Schoner, CogSci 2021] X pes o
:  gcene spatia,] selection ....... innipition of return -

llllllllllllllllllllllllllllllllllllllllllllllll




Chaining

B for fixed sequences...

B e.g. reach-grasp

B fixed order of mental operations... e.g. ground reference
object first, then target object

M |ess flexible (e.g.. when going through the same
state with different futures)

B could be thought to emerge with practice/habit
from the positional system

P.
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Positional representation

® a neural representation of ordinal position is
organized to be sequentially activated...

B the contents at each ordinal position is determined by
neural projections from each ordinal node...

Ordinal nodes
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Ordinal nodes
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[Sandamirskaya, Schoner: Neural Networks 23:1163 (2010)]
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Positional representation

M essentially chaining with flexible contents

B good for fast learning of sequences...
M e.g. imitation

M 2 Hippocampus function?

B but: must have potential synaptic links to
many representations...

B => such ordinal systems must exist for sub-
representations... embodiment effects...



Serial order d

[Tekulve et al,,
Frontiers in
Neurorobotics

(2019)]
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Road .
% Why do neural dynamic
architectures work!?

B dynamic structural stability

B the “non-synesthesia” principle



Neural dynamic architecture

[Tekulve et al,,
Frontiers in
Neurorobotics

(2019)]
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Neural dynamic architectures

B when we label each field/set of fields with a
“function”, we presuppose that activation in
that subpopulation has a fixed functional
significance...

B [which may misleadingly give the impression
that DFT architectures are information
processing architectures]

B why is it possible to do that even though the
DFT architecture really is just one big
dynamical system!



Two invariances

B Two questions are contained here

B |) why is the dynamic regime (‘selection”,
“working memory”,“detection”, “match” etc.)
of a component field invariant as we couple it

into a larger architecture!

M 2) why is the content (the feature space over
which fields are defined, the content of a
concept node) of a component field invariant
as we couple it into a larger architecture?



DFT architectures

B |) why are attractors and their instabilities
preserved as fields are coupled into architectures!?

B stability => structural stability = invariance of
solutions under change of the dynamics

B => dynamic modularity: fields retain their dynamic
regime as activation elsewhere varies

activation field activation field
4 4

1% input

— >
dimension

sub-threshold

input

) : .’
dimension

self-excited self-excited




DFT architectures

M 2) why do fields retain their meaning...

B coupling among fields must preserve the fields’
dimensions: “non-synesthesia principle”

B informational modularity (encapsulation)

B => neural dynamic
architectures are

specific =
constrained by
evolution and
development
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R0adMP  Positioning DFT in the

theoretical landscape

M in which sense is cognition emerging in DFT
architectures embodied?

B DFT vs connectionism/DNN

B DFT vs. cognitive architectures/symbol
manipulation

B DFT vs.VSA/SPAUN



What does “embodiment” mean?

B cognition activates motor systems!
B cognition is based on sensor systems!

B not necessarily!




What does “embodiment” mean?

B continuous state, continuous time

B continuous/intermittent link to the sensory
and motor surfaces is possible

B closed loop => stability!




Embodiment hypothesis

M all cognitive processes inherit the dynamic

properties of sensory-motor cognition: stability,
instabilities...

B cognition is embedded in
the specific embodied
cognitive architectures
that emerged in
evolution/development




DFT vs connectionism/NN

B DFT models

are neural
network
models in the
most general
sense...

B sharing level of
description
(activation,
sigmoid)

(e.g., Kohonen, Grossberg

Simple Neural
Networks

(logical operations)

i

2-Layer Feedforward
Networks (trained with

( delta rule) — Perceptron

Competitive Networks
unsupervised learning

(Theoretical)
Logogen/
Pandemonium

(Hand wired)

Constraint Satisfaction
Networks (e.g., IA, IAC — Jets &
Sharks, Necker Cube, Stereopsis)

T

Boltzmann

Cg%Q 3-Layer Feedforward Machine
W Networks (trained with (simulated
backpropagatlon algorlthm annealing

Hopfleld Nets
(binary) metaphor)
Cascade correlation

Recurrent Networks (Fahlman & Lebiere)

Cascade Rule
(e.g., Stroop model)

Jordan Elman
Networks Networks (SRN)

#

Attractor
Networks

[ Thomas, McClelland, 2008]



DFT makes more specific
commitments

B stability of functionally significant states

B populations as the level of description at
which regularities of behavior/thinking can be
understood

M instabilities as key elements of neural
processing



DFT’s commitments differ from
connhectionist commitments

B DFT: all autonomous cognition is based on localist
representations

B => which are necessarily low-dimensional

M to enable the homogeneous
form of neural interaction

>

activation field

B to enable stable
. local excitation
representations of new ()

global inhibition

patterns

B to enables instabilities =>
sequences dimension




DFT’s commitments differ from
connhectionist commitments

B => this leads to the special role of the memory
trace.. a possible theory of memory

A

activation field

m local excitation

global inhibition

dimension



DFT’s commitments differ from
connhectionist commitments

B eliminates role of
distributed representations
in association !

Me.g,in DFT Rumelhart/
McClelland’s account for
concepts as feature
associations is acually a
form of binding among
localist representations

Pine
Oak
Rose
Daisy
Robin
Canary
Sunfish
Salmon

Item

Living thing
Plant
Animal
Tree
Flower
Bird
Flower
Pine
Oak
Rose
Daisy
Robin
Canary
Sunfish
Salmon

Pretty
Tall
Living
Green
Red
Yellow

Grow
Move
Swim

2 | Fiy

[McClelland, Rogers, 2003]
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Scales
Gills
Roots
Skin
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DFT’s commitments differ from
connhectionist commitments

B high-dimensional neural representations that
resemble distributed representations play a special
role in discrimination/classification... that is
effective only when these processes are driven by

sensory inputs
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DFT vs symbol manipulation

B the “information processing” perspective of
cognition is based on “function calls” that hand
on “‘arguments’’... <=> symbol manipulation

to the left of = f(target, reference)

B |) this is at the core of classical cognitive
architectures



DFT vs symbol

B example: ACT-R for mental

arithmetic

B contents: symbol

B control: activation/weights

M 2) sequence
generation is
driven by an
external
computational
cycle

[Anderson, 2007]

Responds to a Particular

manipulation

addend1 sum

Eight addition-fact < Twelve
W s Bé_/ 5.
/ J Ji
Sﬁ addend2
Four

. A representation of a chunk with its subsymbolic quantities.

Selects an Which Consists of Requests

Pattern That Appears in a Action: to Other Modules:
Set of Modules:
Visual> Declarative>
argl 3 argl 8
op + op -
arg2 X Procedural: arg2 3
value 8 Subtract th
Goal>  Goal>

Task: Solve-equation

| Task: Subtracting




DFT: a neural theory for higher cognition

M |) attentional selection,
coordinate transformation,
sequential processing ...
emulate “function calls”

Reference

“left,,
“I'ight”

0000

“above”

to the left of = f(target, reference)  «weow

Object-centered

B much more constrained and costly in processing
structure ... explains sighature of human cognition

M all concepts are grounded by their very nature...

B open to learning... and memory



DFT: a neural theory for higher cognition

M 2) the sequences of processing steps emerge from
dynamic instabilities.

dimension f satisfact dimension y
< N 3
dict
/ \ - fE

M robust under embodiment!



DFT vs VSA

B Vector-symbolic architectures (VSA) are a an
alternative theoretical proposal for a neural
account for higher cognition

M in the original version (Smolensky): role-filler
binding... compatible with DFT

M in the Gayler/Kanerva/Plate version: high-
dimensional vectors as symbols that afford binding,
and function calling ... not neurally feasible:
autonomy



DFT vs VSA

B requires that the symbol grounding problem is
solved at encoding/decoding



DFT vs VSA

® Eliasmith’s Neural Engineering Framework (NEF)
as a possible neural implementation of VSA

B vectors represented by (small) populations of spiking neural
networks

B NEF is “model neutral”... essentially a method
to “numerically” implement any neural model



DFT vs VSA

B But: to preserve the original vectors,
connectivity in VSA/NEF (SPAUN)
architectures is very special: decode

Compressed eura nsemoie

and re'enCOde-- Semantic Pointer E\IMultiF!IEneurobr:S)
ﬁ \?Vonnﬁcki/lon

. _ A eight Matrices
B => SPAUN brains are not robust =507 ™. .

. e N AN > Calculating
against learning/development due to / Siomaid Func.
non-local inter-dependence of P
connectivities QQQ@

. /4
M (and other issues) o

[Choo Feng Xuan, 2018]
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Outlook/challenges

B sequences of relational concepts that interrelate,
exchange arguments, have hierarchical structure

B “the box to the right of the bottle that stands under the lamp”

M sequences of actions that are directed at goals,
and have hierarchical structure

B “open the box to get the screwdriver with which you remove
the screw to take of the cover of the toaster...”

M goals and their dynamics, motivation...

B emotions...



