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Words are the building blocks of language

How do people learn the meanings of words when there
are an infinite number of possible referents?

* One possibility: Track word-object co-occurrences (cross-
situational statistical learning)
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Words are the building blocks of language

How do people learn the meanings of words when there
are an infinite number of possible referents?

* One possibility: Track word-object co-occurrences (cross-
situational statistical learning)

* But what is the nature of this type of statistical learning?

Two classes of theories
* Hypothesis testing accounts
* Associative learning
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Hypothesis Testing

* Encounter a novel word
* Make a single hypothesis about the word-object
mapping

* If later evidence shows that this hypothesis is wrong,
form a new one and proceed to verification...
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Hypothesis Testing

“Oh look! A zud!” “Oh look! A zud!”
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Associative Learning

* When encounter a novel word, form multiple
associations between word and available objects

e Over time, refine these associations based on available
co-occurrences

 Strongest association wins (as correct word usage should
always drive you to one strong association)
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Associative Learning

e 2 words x 2 pictures on each training trial; 3x3;4 x4
* Taught same 18 words

* 6 repetitions of each target word-ref pairing — so same
exposure in each condition but different erroneous
mappings (5.09 incorrect mappings in 2x2, 8.78 in 3x3,
12.22 in 4x4)

* 4 AFC test with one word on each test trial (foils from 18)
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Limitations of existing theories

* Both types of theories have been used to explain the
same data; Yu and Smith (2012) used this to call for
implementation-level theories

* Current theories are not comprehensive (tend to explain
only a subset of data from specific tasks)

* Current theories fail to take time seriously despite
evidence that how processes unfold in real time, over
learning, and over development matter...

Yu & Smith (2012). Psychological Review.
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Cross-Situational Word Learning

e 12-14 month old children can learn 4 words (Smith & Yu, 2008, Yu & Smith,
2011). Older kids and adults can learn up to 9-16 words.

 What is changing over development?
* Individual differences: ‘strong’ vs ‘weak’ learners.

* Moment-by-moment variation in looking matters — strong learners have
fewer, longer fixations.
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Today’s talk focuses on a new theory of CSWL

* WOLVES

* Overview of model & demonstrate that it is a good model.

 Timescale of the task

e Simulations that highlight role of attention and learning processes.

* Timescale of development

* Present the first developmental account of CSWL highlighting the role of
memory processes.

e Model evaluation

* |s the theory comprehensive?
 How does it fare relative to competitor models?
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WOLVES

“BOSA”
“REGLI”

Task Input

Word Form Spatial Working Y hdorsz/ , Spatial
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(scene) pathway (retinal)
Vocabulary Word-Obiject Scene representation Working Memory Object
(long-term word- Mappings (what objects are where) & Novelty Features
object associations) Detection (retinal)
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Word-Object Learning Visual Exploration in Space

Johnson, Spencer & Schéner (2009);
Perone & Spencer (2013b)

Samuelson, Smith, Perry & Spencer (2011);
Samuelson, Jenkins & Spencer (2013)

Bhat, Spencer, Samuelson (2021). Psychological Review.




WOLVES

Figure 4
The Overall Architecture of WOLVES
visual display
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Note. Scene WMs and memory traces are not shown for representational simplicity. Arrows represent uni/bidirectional (green: excitatory, red: inhibitory)
connectivity in the model. See text for additional details. WOLVES = word-object leaming via visual exploration in space. See the online article for the color

version of this figure.

Full model includes ventral pathways for colour and shape
as well as memory traces for all field except visual field,
attention fields and IOR
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WOLVES in action
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VES Cycle

Figure 3
Visual Exploration in Space Model in Four Stages of an Autonomous Looking Cycle
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Note. The top-left panel shows the model detecting novel objects in the scene. The top-right panel shows the model attending to one object. The bottom-left
panel shows the model having consolidated the object in working memory. The bottom-right panel shows model releasing attention to begin a new looking
cycle. VES = visual exploration in space. See the online article for the color version of this figure.




Figure 5

Processing in WOLVES During Smith and Yu's (2008) Cross-Situational Word Learning Task
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Does WOLVES capture — and explain — empirical data?

Will compare WOLVES to Kachergis et al. (2012) as relevant:
an AL model that distributes attention between known and
novel associations; has memory decay to capture association
frequency; one shot computation on each trial.
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WOLVES explains HT data
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WOLVES also explains associative learning data

* With more things to look at, WOLVES forms more
incorrect associations with weaker association strengths

Figure 16
Data from Yu and Smith (2007) and the WOLVES and Kachergis Models
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Does WOLVES capture — and explain — empirical data?

Yes and successfully generates novel predictions.
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What about CSWL in early development?




Smith & Yu (2008), Yu & Smith (2011)

] Smith & Yu 2008 (14 m)
B Yu & Smith 2011
I WOLVES Model
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Bhat, Spencer, Samuelson (2021). Psychological Review.




Smith & Yu (2008), Yu & Smith (2011)

S&Y Y&S WOLVES
(2008) (2011)

Test Trials

Mean looking per 8s trial 6.10 5.92 6.26 .26 4.22
Pref. looking ratio .60 .54 .54 .04 6.10
Mean words learned ( of 6) 4.0 3.5 4.0 .35 7.14
Prop. Strong/weak learners NA .67 74 .07 10.45
Mean looking to target per trial 3.6 3.25 3.36 .19 5.03
Mean looking to distractor per trial 2.5 2.67 2.89 .32 11.92
Training Trials S W

Mean looking per 4s trial 3.04 296 3.07 3.01 .02 71
Mean fixations per trial NA 2.75 3.82 2.89 22 6.98
Mean fixation duration NA 1.69 1.21 1.31 22 14.38

RMSE = Root Mean Squared Error, MAPE = Mean Absolute Percentage Error

Bhat, Spencer, Samuelson (2021). Psychological Review.




The Role of Spatial Attention
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The Role of Spatial Attention
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We created the difference between strong and weak
learners via manipulation of a particular parameter.

This mechanistically relates variations in spatial attention to
learning outcomes and highlights the contribution of real-time
looking dynamics to CSWL.
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Timescale of Development

* Vlach & Johnson (2013), Vlach & DeBrock (2017, 2019)

H.A. Vlach, S.P. Johnson/Cognition 127 (2013) 375-382

16 mo learn words from
massed but not interleaved
presentation.

20 mo learn equally with
massed or interleaved.

Older children learn better
with interleaved
presentation.
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Timescale of Development

* Memory: Tau_Decay
defines how fast a
memory trace
deteriorates.

tau_decay = 1000
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Timescale of Development
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Bhat, Spencer, Samuelson (2021). Psychological Review.
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We captured 60 datapoints from 12 months to 5
years with a change to just one parameter.

WOLVES is a powerful developmental model

This is because it has rich real-time and learning dynamics.




s WOLVES a comprehensive theory?

Compared WOLVES to 2 competitor models:

* Kachergis et al. (2012)

e Stevens et al. (2017) — Pursuit: an HT model that uses an AL
mechanism to weigh different hypotheses. Only adds a
word to the lexicon if the conditional probability of
hypothesis exceeds a threshold.
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Model Validation; coverage & comparison

5 CSWL studies with adults

* Trueswell et al. (2013), Yu & Smith (2007), Yu, Zhong & Fricker (2012),
Yurovsky et al. (2012), Kachergis et al. (2012)

e 7 CSWL studies with infants, toddlers & children

* Smith & Yu (2008), Yu & Smith (2011), Smith & Yu (2013), Vlach & Johnson
(2013), Vlach & DeBrock (2019), Vlach & DeBrock (2017), Suanda etal. (2014)

Data WOLVES Kachergis et al.*
Points

Grand Mean Specific tasks 69 .0 13.51 .0 19.95 2 42.13
Standard Deviations 69 .04 15.79 .07 21.99 13 25.52
Grand Mean 3 Gen Exp 15 .03 4.05 21 47.42 13 23.91
Grand Mean : 15.80 unable to capture

*Kachergigs et al. (2012, 2013, 2017); *Stevens et al. (2017)
Bhat, Spencer, Samuelson (2021). Psychological Review.




s WOLVES a comprehensive theory?

Yes.

Also raises interesting questions about metrics for model
comparison. AlIC lowest for Kachergis model, but WOLVES
clearly outperforms this competitor model.

Suggests that the penalty for ‘free’ parameters too steep
and/or that other metrics — like model generalisation — are

more useful. l b/




Conclusions

* WOLVES

* Formal neural-process account of CSLW based on autonomous real-time
visual exploration and non-linear associative learning.

e Captures a large range of data and beats other models in direct comparison.
* Timescale of the task

 Mechanistically related the strength of spatial attention to learning
outcomes.

* Timescale of development

* Presented the first developmental account of CSWL based on changes in
memory strength.

 Future Directions

* Currently exploring how we can use the model to make predictions,
understand relations between tasks, and understand individual differences.
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Thank you

Members of Developmental Dynamics Lab, University of East Anglia

Funding: NICHD RO1HDO045713 to L.K. Samuelson
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We've highlighted the real timescale.
What about the timescale of learning in the task and the
timescale of development?




Timescale of the task

Smith & Yu (2008) Smith & Yu (2013): Novelty Trap

No overall difference in looks to target v. distractor at test

Fewer “learners” &@%




Timescale of the task
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Timescale of the task

Habituation over training
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Two types of learning on timescale of the task:

* |learning / habituating to visual features

e |earning word + object mappings




