Neural Dynamics For Embodied Cognition

Gregor Schöner, Jan Tekülve Institute for Neural Computation (INI) Faculty of Computer Science Ruhr-University Bochum Mathis Richter Research group Neuromorphics Intel Corp.

Neuro-physics

Neural dynamics

Recurrent neural dynamics

Neural fields: dynamics

Neural fields: dimensions

Binding

Sequences

Coordinate transforms

Relational concepts, grounding, mental mapping

Conclusions

Neuro-physics

- membrane potential, u(t), evolves as a dynamical system $\tau \dot{u}(t) = -u(t) + h + \operatorname{input}(t)$ $\tau \approx 10 \text{ ms time scale}$
- only when membrane potential exceeds a threshold is activation transmitted to downstream neurons

- spiking mechanism replaced by a threshold function
- that captures the effective transmission of spikes in populations

replace spiking mechanism by sigmoid:

low levels of activation: not transmitted to downstream systems

high levels of activation: transmitted to downstream systems

abstracting from biophysical details ~ population level membrane potential

Connectionism

employs the same abstraction: "neurons" sum input activations and pass them through a sigmoidal threshold function

output

dynamical system: the present determines the future
 fixed point = constant solution = stationary state
 stable fixed point = attractor: nearby solutions converge to the fixed point

($\sigma(u)$ and g(u) used interchangeably)

u

- so far, the dynamics just does low-pass filtering... (smoothing the time course)
- that would change as a step-function in a forward neural network
- when does neural dynamics make a real difference?

Neuro-physics

Neural dynamics

Recurrent neural dynamics

Neural fields: dynamics

- Neural fields: dimensions
- Binding
- Sequences
- Coordinate transforms

Relational concepts, grounding, mental mapping

Conclusions

Neuronal dynamics with excitatory recurrent connection = interaction

- in recurrent networks, time is conceptually necessary as some inputs are outputs from the same neuron/population ...
- "past outputs are new input"
- => dynamics

 $\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$

- at intermediate input levels: bistable dynamics
- "on" vs "off" state

Neuronal dynamics with self-excitation

decreasing input
strength => reverse
detection instability

=> simulation

OXFORD SERIES IN DEVELOPMENTAL COGNITIVE NEUROSCIENCE

dynamicfieldtheory.org

Dynamic Thinking

Gregor Schöner, John P. Spencer, and the DFT Research Group

OXFORD

```
Neuronal dynamics with self-excitation
```

the detection and its reverse create events at discrete times from time-continuous changes

Neuronal dynamics with inhibitory recurrent connectivity

coupling/interaction

$$\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$$

$$\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$$

Neuronal dynamics with competition

Neuronal dynamics with inhibitory recurrent connectivity

Neuronal dynamics with inhibitory recurrent connectivity du_l/dt h+s₁ assume $u_2 > 0 \Rightarrow u_2$ inhibits u_1 U => attractor for $u_1 < 0$ inhibition h+s1-c15 from u₂ du_2/dt $=>u_1$ does not inhibit u_2 U₂ h+s2 $\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$ $\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$

Neuronal dynamics with inhibitory recurrent connectivity

 $u_2 > 0$ and $u_1 < 0$

 $u_2 < 0$ and $u_1 > 0$

=> competition/selection

$$\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$$

$$\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$$

=> simulation

OXFORD SERIES IN DEVELOPMENTAL COGNITIVE NEUROSCIENCE

dynamicfieldtheory.org

Dynamic Thinking

Gregor Schöner, John P. Spencer, and the DFT Research Group

OXFORD

Neuro-physics

Neural dynamics

Recurrent neural dynamics

Neural fields: dynamics

Neural fields: dimensions

Binding

Sequences

Coordinate transforms

Relational concepts, grounding, mental mapping

Conclusions

Neural dynamics of fields

continuously many activation variables

spanned by a dimension

- combine detection with selection
- => local excitation/ global inhibition

Neural dynamics of fields

Neural dynamics of fields

=> simulation

OXFORD SERIES IN DEVELOPMENTAL COGNITIVE NEUROSCIENCE

dynamicfieldtheory.org

Dynamic Thinking

Gregor Schöner, John P. Spencer, and the DFT Research Group

OXFORD

Attractors and their instabilities

- input driven solution (subthreshold)
- self-stabilized solution (peak, supra-threshold)
- selection / selection instability
- working memory / memory instability
- boost-driven detection instability

detection instability reverse detection instability

Noise is critical near instabilities

Dynamic regimes

which attractors and instabilities arise as input patterns are varied

examples

- "perceptual regime": mono-stable sub-threshold => bistable sub-threshold/peak => mono-table peak..
- "working memory regime" bistable sub-threshold/peak => mono-table peak.. without mono-stable sub-threshold
- single ("selective") vs. multi-peak regime

Neuro-physics

Neural dynamics

Recurrent neural dynamics

Neural fields: dynamics

Neural fields: dimensions

Binding

Sequences

Coordinate transforms

Relational concepts, grounding, mental mapping

Conclusions

What do activation patterns mean?

Neural networks

forward connectivity determines "what a neuron stands for"= space code (or labelled line code)

- while the activation level may "stand for" intensities =rate code
- generic neural networks combine both codes

Neural fields

forward connectivity from the sensory surface extracts perceptual feature dimensions

Neural fields

Neural fields

- => neural map from sensory surface to feature dimension
- neglect the sampling by individual neurons => activation field

Neural fields

- analogous for projection onto to motor surfaces...
- which actually involves behavioral dynamics (e.g., through neural oscillators and peripheral reflex loops)

Neural estimation of fields

Bastian, Riehle, Schöner, 2003

Distribution of Population Activation (DPA) <=> neural field

Distribution of population activation =

note: neurons are not localized within DPA!

[Bastian, Riehle, Schöner, 2003]

Neuro-physics

Neural dynamics

Recurrent neural dynamics

Neural fields: dynamics

Neural fields: dimensions

Binding

Sequences

Coordinate transforms

Relational concepts, grounding, mental mapping

Conclusions

What does it mean when different dimensions are combined?

Combining different feature dimensions

neurons tuned to multiple dimensions

e.g. receptive field + direction tuning

=> combines visual space and orientation

"anatomical" binding

[Hubel, Wiesel, 1962]

Combining different feature dimensions

example: a joint representation of color and visual space "binds" these two dimensions

Extract the bound features

- project to lowerdimensional fields
- by summing along the marginalized dimensions
- (or by taking the softmax)

Assemble bound representations

project lower-dimension field onto higherdimensional field as "ridge input"

Assemble bound representations

Assemble bound representations

- binding problem: multiple ridges along lower-dimensional space lead to a correspondence problem
- => assemble one object at a time...
- => sequentiality bottleneck!

Search

- ridge input along one dimension extracts
 from bound
 representation
 matching objects
- other dimensions of those objects can then be extracted

e.g. visual search

Visual search

[Grieben et al. Attention, Perception & Psychophysics 2020; CogSci 2021]

Visual search

=> hands on exericse

[Grieben et al. Attention, Perception & Psychophysics 2020]

Scaling feature dimensions

=>

- 2 spatial dimensions
- depth 🛋
- orientation
- color
- texture 🗧
- movement direction
- size

- e.g. 8 dimensions
- 100 neurons per dimension
 - $= 10^{2*8} = 10^{16}!$
 - more than there are in the entire brain!
 - > only small sets of feature dimensions can be bound "anatomically"

Binding through space

- many 3 to 4 dimensional feature fields
- all of which share the one dimension: visual space (~all neurons have receptive fields)
- bind through space à la Feature Integration Theory (Treisman)

[Grieben et al. Attention, Perception & Psychophysics 2020]

Binding through space

[Grieben et al. Attention, Perception & Psychophysics 2020]

Neuro-physics

Neural dynamics

Recurrent neural dynamics

Neural fields: dynamics

Neural fields: dimensions

Sequences

Coordinate transforms

Relational concepts, grounding, mental mapping

Conclusions

Sequential processes

How may neural attractors lead to the sequences of processing steps/actions that characterize higher cognition and behavior?

Sequential processes

the neural attractor = intention predicts its condition of satisfaction

matching input detected => detection instability

inhibits intention... => transition

Sequence of physical acts

task: search for objects of a given color in a given order

Implementation as an imitation task

- learn a serially ordered sequence from a single demonstration
 - yellow-red-green-blue-red

perform the serially ordered sequence with new timing

yellow-red-green-blue-red

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]

red a distractor

red a target

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]

Condition of Satisfaction (CoS)

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]

Visual input

2D visual input

horizontal space

📕 color

"intensity" of 2D input from color histogram at each horizontal location Camera image

Visual search

intention=color cue provides ridge input into spacecolor field

when that ridge overlaps with 2D space-color input => peak formed

ordinal stack

condition of satisfaction (CoS)

intentional state

2D color-space field

Neuro-physics

Neural dynamics

Recurrent neural dynamics

Neural fields: dynamics

Neural fields: dimensions

Binding

Sequences

Coordinate transforms

Relational concepts, grounding, mental mapping

Conclusions

Coordinate transforms

are central to sensory-motor cognition but also critical to higher cognition!

"where are the green objects relative to the red one"

[Richer Doctoral dissertation, 2017]

[Schneegans Ch 7 of DFT Primer, 2016]

Coordinate transforms involve binding

- need a bound neural representation of
 - 🛑 retinal space
 - 🛑 gaze angle
- project to body space
- neural evidence: gain field (Andersen/Pouget)

Retina => body space

Spatial remapping during saccades

[Schneegans, Schöner Biological Cybernetics 2012]

Neuro-physics

Neural dynamics

Recurrent neural dynamics

Neural fields: dynamics

Neural fields: dimensions

Binding

Sequences

Coordinate transforms

Relational concepts, grounding, mental mapping

Conclusions

Concepts, relational thinking

grounding: bringing the target object of a relational phrase into the attentional foreground

[Lipinski, Sandamirskaya, Schöner 2009 ... Richter, Lins, Schöner, *Topics* 2017] "red to the left of green"

binding to role

cued visual search

"red to the left of green"

Concepts, relational thinking

Mental mapping and inference

propositions

"There is a cyan object above a green object."

"There is a red object to the left of the green object."

"There is a blue object to the right of the red object."

" "There is an orange object to the left of the blue object."

inference

"Where is the blue object relative to the red object?"

[Ragni, Knauff, Psych Rev 2013]

[Kounatidou, Richter, Schöner, CogSci 2018]

Neuro-physics

Neural dynamics

Recurrent neural dynamics

Neural fields: dynamics

Neural fields: dimensions

Binding

Sequences

Coordinate transforms

Relational concepts, grounding, mental mapping

Conclusion

- sensory-motor cognition from neural dynamic fields that are coupled to sensory surfaces and act on the motor surfaces (through behavioral dynamics)
- instabilities make decisions

detection

selection

Why do neural dynamic architectures work?

- I) Why is the dynamic regime ("selection", "working memory", "detection", "match" etc.) of a component field invariant as we couple it into a larger architecture?
- 2) Why is the content (the feature space over which fields are defined, the content of a concept node) of a component field invariant as we couple it into a larger architecture?

I) Why is the dynamic regime invariant?

stability => structural stability = invariance of solutions under change of the dynamics

=> dynamic modularity: fields retain their dynamic regime as activation elsewhere varies

2) Why is the content invariant?

coupling among fields must preserve the fields' dimensions: "non-synesthesia principle"

informational modularity (encapsulation)

neural dynamic architectures are specific = constrained by evolution and development

Embodiment hypothesis

cognition does not necessarily activate motor systems

cognition inherits the dynamic properties of sensory-motor cognition:

continuous state, continuous time, stability ..

continuous/intermittent link to the sensory and motor surfaces is possible

=> cognition is generated in the specific embodied cognitive architectures that emerged from evolution/development

DFT vs connectionism/NN

- DFT models are neural network models in the most general sense...
- sharing level of description (activation, sigmoid)

DFT makes more specific commitments

- stability of functionally significant states
- populations as the level of description at which regularities of behavior/thinking can be understood
- instabilities as key elements of neural processing .. sequences
- => all autonomous cognition is based on localist representations
- => all cognitive representations are lowdimensional

DFT as a neural theory for higher cognition

- I) all concepts are grounded
- 2) attentional selection, coordinate transformation, sequential processing ... emulate "function calls"

to the left of = f(target, reference)

3) the sequences of processing steps emerge from dynamic instabilities.

PhD position: Reaching decisions: neural mechanisms underlying learning and development of action decisions

European mobility requirement: less than 12 months in prior 3 years resident of Germany