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Neuro-physics
membrane potential, 

, evolves as a 
dynamical system
u(t)

[from: Tresilian, 2012]

τ ·u(t) = − u(t) + h + input(t)
 time scaleτ ≈ 10 ms

only when membrane potential exceeds a threshold 
is activation transmitted to downstream neurons

action
potential



Neural dynamics

spiking mechanism replaced by a threshold function

that captures the effective transmission of spikes in 
populations

1

0

σ(u)

u



Neural dynamics

replace spiking mechanism by sigmoid: 

low levels of activation: not transmitted to downstream systems

high levels of activation: transmitted to downstream systems

abstracting from biophysical details ~ population 
level membrane potential 
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Connectionism

employs the same abstraction: 
“neurons” sum input activations and 
pass them through a sigmoidal 
threshold function 

output = g (∑ (inputs))

inputs

output 

1

0

g(u)

u



Neural dynamics
dynamical system: the present determines the future

fixed point = constant solution = stationary state

stable fixed point = attractor: nearby solutions 
converge to the fixed point

du/dt = f(u)

u

resting
level

vector-field
τ ·u(t) = − u(t) + h

τ ·ufp = − ufp + h = 0
⇒ ufp = h resting level



inputs add to the rate of 
change of activation

positive: excitatory

negative: inhibitory

u

h+s

input, s

resting
level, h 

du/dt

time, t

u(t)

resting level, h

g(u(t))

input, sτ ·u(t) = − u(t) + h + s(t)

input shifts the attractor

activation tracks this shift

 transmitted to down-
stream neurons
σ(u(t))

Neural dynamics

(  and  used interchangeably)σ(u) g(u)



so far, the dynamics just 
does low-pass filtering… 
(smoothing the time 
course)

that would change as a 
step-function in a forward 
neural network

when does neural 
dynamics make a real 
difference? 

Neural dynamics
u

h+s

input, s

resting
level, h 

du/dt

time, t

u(t)

resting level, h

g(u(t))

input, s

output = g (∑ (inputs))
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Neuronal dynamics with excitatory 
recurrent connection = interaction

in recurrent networks, time is 
conceptually necessary as some 
inputs are outputs from the same 
neuron/population …

“past outputs are new input”

=> dynamics

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

s(t)

c σ(u(t))

σ(u(t))



u 

du/dt 

resting
level, h

nonlinear dynamics!

Neuronal dynamics 
with self-excitation

du/dt

u

resting level

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))



u 

du/dt 

resting
level, h

input strength

varying input

=> number of 
attractors changes

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

Neuronal dynamics 
with self-excitation



at intermediate input 
levels: bistable 
dynamics

“on” vs “off” state

u

du/dt

time, t

u(t)<0

u(t)>0

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

Neuronal dynamics 
with self-excitation

“off” “on”



increasing input 
strength => 
detection instability

u 

du/dt 

resting
level, h

input strength

u 

du/dt 

 

fixed point

unstable

stable
stimulus
strength

stimulus
strength

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

Neuronal dynamics 
with self-excitation



decreasing input 
strength => reverse 
detection instability

u 

du/dt 

resting
level, h

input strength

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

Neuronal dynamics 
with self-excitation u 

du/dt 

 

fixed point 

unstable

stable 

stimulus
strength

stimulus
strength



dynamicfieldtheory.org

=> simulation

http://dynamicfieldtheory.org


the detection and its  
reverse create events at 
discrete times from 
time-continuous changes

time, t

u(t)

detection 
instability

reverse
detection 
instability

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

Neuronal dynamics 
with self-excitation



Neuronal dynamics with inhibitory 
recurrent connectivity

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))

coupling/interaction



assume  =>  inhibits  

=> attractor for 

=>  does not inhibit 

u2 > 0 u2 u1

u1 < 0

u1 u2

u1

h+s1

du1/dt

u2

h+s2

inhibition
from u2

du2/dt

h+s1-c12

Neuronal dynamics with competition

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))



assume  =>  inhibits  

=> attractor for 

=>  does not inhibit 

u2 > 0 u2 u1

u1 < 0

u1 u2

u1

h+s1

du1/dt

u2

h+s2

inhibition
from u2

du2/dt

h+s1-c12

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))

Neuronal dynamics with inhibitory 
recurrent connectivity



assume  =>  inhibits  

=> attractor for 

=>  does not inhibit 

u2 > 0 u2 u1

u1 < 0

u1 u2

u1

h+s1

du1/dt

u2

h+s2

inhibition
from u2

du2/dt

h+s1-c12

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))

Neuronal dynamics with inhibitory 
recurrent connectivity



by symmetry, to possible 
attractor stats

 and 

 and 

=> competition/selection

u2 > 0 u1 < 0

u2 < 0 u1 > 0

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))

Neuronal dynamics with inhibitory 
recurrent connectivity



dynamicfieldtheory.org

=> simulation

http://dynamicfieldtheory.org
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Neural dynamics of fields

continuously many 
activation variables

spanned by a dimension

combine detection 
with selection 

=> local excitation/
global inhibition

dimension

global inhibition

input

activation field

local excitation



Neural dynamics of fields
σ(u)

u

x�x�

�(x�x�)

τ ·u(x, t) = − u(x, t) + h + s(x, t) + ∫ dx′ w(x − x′ ) σ(u(x′ ))

w(x − x′ ) = wexce
− (x − x′ )2

2σ2 − winh

dimension

global inhibition

input

activation field

local excitation



Neural dynamics of fields

τ ·u(x, t) = − u(x, t) + h + s(x, t) + ∫ dx′ w(x − x′ ) σ(u(x′ ))

dimension

global inhibition

input

activation field

local excitation
self-

excitation

mutual
inhibition

s(x)
u(x)

u1 u2

x

s1
s2

self-
excitation



dynamicfieldtheory.org

=> simulation

http://dynamicfieldtheory.org


Attractors and their instabilities

input driven solution (sub-
threshold) 

self-stabilized solution 
(peak, supra-threshold)

selection / selection 
instability 

working memory / 
memory instability 

boost-driven detection 
instability

detection 
instability

reverse
detection 
instability

Noise is critical
near instabilities



Dynamic regimes

which attractors and instabilities arise as 
input patterns are varied

examples

“perceptual regime”: mono-stable sub-threshold => 
bistable sub-threshold/peak => mono-table peak..

“working memory regime” bistable sub-threshold/peak 
=> mono-table peak.. without mono-stable sub-threshold

single (“selective”) vs. multi-peak regime 
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What do activation patterns mean?

how do neural 
fields come to 
“represent” 
feature spaces? 

activation

motion directionhorizontalposition
ve

rt
ic

al
 p

os
iti

on

horizontal position

motion
direction 0

movement
direction

movement
amplitude

activation

movem
ent

direct
ion

movement
amplitude

0



Neural networks

forward connectivity 
determines “what a neuron 
stands for”= space code (or 
labelled line code) 

while the activation level may 
“stand for” intensities =rate 
code

generic neural networks 
combine both codes

 Neural Dynamics 11

is uniquely represented by a particular rate of neural firing. In general, however, the map is 
invertible, so that a many-to-one mapping may result. This is the case, for instance, when dif-
ferent patterns of input are mapped onto the same “response.” Still, information-theoretical 
terms are sometimes used to characterize such networks by saying that the output neurons 
“encode” particular patterns of input, perhaps with a certain degree of invariance, so that a 
set of changes in the input pattern do not affect the output. A whole field of connectionism or 
neural network theory is devoted to finding ways of how to learn these forward mappings from 
examples. An important part of that theory is the proof that certain classes of learning meth-
ods make such networks universal approximators; that is, they are capable of instantiating any 
reasonably behaved mapping from one space to another (Haykin, 2008). In this characterization 
of a feed-forward neural network, time does not matter. Any time course of the input pattern 
will be reflected in a corresponding time course in the output pattern. The output depends only 
on the current input, not on past inputs or on past levels of the output or the hidden neurons.

A recurrent network such as the one illustrated in Figure 1.3 cannot be characterized by 
such an input–output mapping. In a recurrent network, loops of connectivity can be found so 
that one particular neuron (e.g., u4 in the figure) may provide input to other neurons (e.g., u6), 
but also conversely receive input from those other neurons either directly (u6) or through some 
other intermediate steps (e.g., through u6 and u5 or through the chain from u6 to u5 to u2 to u4).  
The output cannot be computed from the input value because it depends on itself! Recurrence 
of this kind is common in the central nervous system, as shown empirically through methods 
of quantitative neuroanatomy (Braitenberg and Schüz, 1991).

To make sense of recurrent neural networks, the notion of time is needed, at least in some 
rudimentary form. For instance, neural processing in such a network may be thought of as 

s1

u1

s3s2

g(u6)

u2 u3

u4 u5

u6

FIGURE 1.2: In this sketch of a feed-forward neural network, activation variables, u1 to u6 , are symbolized by the 
circles. Inputs from the sensory surface, s1 to s3, are represented by arrows. Arrows also represent connections where 
the output of one activation variable is input to another. Connections are ordered such that there are no closed loops 
in the network.

s1 s3s2

g(u6)

u1 u2 u3

u4 u5

u6

FIGURE 1.3: Same sketch as in Figure 1.2, but now with additional connections that create loops of connectivity, 
making this a recurrent neural network.
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Neural fields

forward connectivity 
from the sensory surface 
extracts perceptual 
feature dimensions

sensory signal, s(x)

dimension, y

dimension, x

activation
field, u(y)



Neural fields

as described by tuning 
curves or receptive fields

sensory signal, s(x)

tuning curve

dimension, y

dimension, x

activation
field, u(y)

62 Fou n dat ions  of Dy na m ic  Fi e l d T h eory

interactions effects. In Chapter  2, we described 
how such interactions bring about the activation 
dynamics in DFs that form peaks and create deci-
sions. Here we will show that lateral interactions 
in DFs are consistent with empirical data and can 
account for the observed activation patterns in 
the visual cortex. In this context, we will present 
an extension of the basic DF model, the two-layer 
field. The two-layer field ref lects more closely the 
biological connectivity within neural populations 
and is particularly aimed at capturing the tempo-
ral details of population dynamics. With this tool, 
we can also demonstrate how to fit activation pat-
terns for the preparation of reach movements in the 
motor cortex with a DF model.

The analysis method of DPA plays a key role in 
all of this by bringing empirically measured popu-
lation responses into the same format used in DF 
models. This makes it possible to directly compare 
activation patterns in DF models with neural data. 
In particular, this method allows us to make test-
able predictions from DF models about activation 
patterns in biological neural populations. The DPA 
method thereby provides the neural grounding for 
the dynamic field theory (DFT), establishing a 
direct link between the level of neural activity and 
DF models of behavior and cognition.

L I N K I NG  N E U R A L  AC T I VAT ION 
T O   P E RC E P T ION,  C O G N I T ION, 
A N D  BE H AV IOR
This section concerns the link between neuro-
physiology and things that actually matter to liv-
ing, behaving biological agents like you and me. Is 
this apple green or red? Where do I  have to move 
my hand to grab it? Some aspect of neural activation 
must ref lect the state of affairs on this macroscopic 
level—the level of perceptual decisions, cogni-
tive states, and overt behavior. As presented in the 
introduction, we believe that this role is played by 
patterns of activation in neural populations. To sub-
stantiate this claim, we need to take a brief detour to 
the realm of single neurons, and then work our way 
up to population-based representations.

To determine the link between the activity of 
a single neuron and external conditions, neuro-
physiologists record the spiking of the neuron via 
a microelectrode placed near (or within) the cell 
while varying sensory or motor conditions in a 
systematic fashion. This could mean, for instance, 
varying the color or position of a visual stimulus or, 
in the motor case, varying the direction of a limb 

movement that an animal has to perform. Not all 
neurons are sensitive to all parameters, so the first 
step is to determine which parameters cause the 
neuron to change its activity level. When we find a 
parameter that reliably affects the spike rate of the 
recorded neuron, we can proceed to assessing the 
exact nature of the relationship. In order to do this, 
the parameter value is varied along the underlying 
dimension and the spike rate for each sample value 
is recorded. The results of this procedure can be 
visualized by plotting spike rate against the param-
eter dimension. An idealized function may be fitted 
to the data points, interpolating spike rate between 
sample values. The resulting curve is called the tun-
ing curve of the neuron.

This technique has revealed that, throughout 
the brain, many neurons share a roughly similar 
type of mapping between parameter dimension and 
spike rate, which is characterized by Gaussian-like 
tuning curves (Figure 3.1). That is, they fire most 
vigorously for a specific “preferred” parameter 
value, while spike rate declines with rising distance 
from that value, reaching the neuron’s activity base-
line for very distant values.

A classic example for these characteristics 
can be found in the visual cortex, where many 
cells respond strongly to bars of light of a par-
ticular orientation and reduce their firing as the 
angle of orientation deviates from that preferred 
value (Hubel & Wiesel, 1959, 1968). Visual cells 
show tuning along other feature dimensions as 
well, such as color (Conway & Tsao, 2009), shape 
(Pasupathy & Connor, 2001)  or the direction of 
motion (Britten & Newsome, 1998). Neurons in 
nonvisual areas exhibit similar properties, such 
as cells in auditory cortex that are tuned to pitch 
(Bendor & Wang, 2005), or cells in somatosensory 
cortex that are tuned to the orientation of tactile 
objects (Fitzgerald, 2006).The most common 
scheme, however, is tuning to locations in physical 
space. In sensory areas, most cells are tuned to the 

Feature dimension

Sp
ik

e 
ra

te

FIGURE  3.1: Schematic illustration of an idealized 
tuning curve.
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Neural fields

=> neural map from 
sensory surface to 
feature dimension 

neglect the sampling by 
individual neurons => 
activation field

sensory signal, s(x)

dimension, y

dimension, x

activation
field, u(y)



Neural fields

analogous for projection 
onto to motor surfaces… 

which actually involves 
behavioral dynamics (e.g., 
through neural oscillators 
and peripheral reflex 
loops)

motor 
dimension, r

activation
field, u(r)

motor
state, r

dr/dt



Neural estimation of fields

Bastian, Riehle, Schöner, 2003

movement
direction



Distribution of Population 
Activation (DPA) <=> neural field

precue

response
signal
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time [ms]

movement 
direction
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complete
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[Bastian, Riehle, Schöner, 2003]

0 60 120 180 240 300 360

ac
tiv

at
io

n

movement direction 
required in this trial

movement direction

Distribution of population activation =
tuning curve * current firing rateΣ

neurons

[after Bastian, Riehle, Schöner, submitted]

note: neurons are not 
localized within DPA! 
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Cells

Time

500 ms

Spatial cues

Color cue

Go signal

+100–10

Activity
with respect to

baseline

Memory
period

Figure 2
Population activity in the dorsal premotor cortex during a reach-selection task. The 3D colored surface
depicts neural activity with respect to baseline, with cells sorted by their preferred direction along the
bottom edge. Diagrams on the left show the stimuli presented to the monkey at different points during the
trial (cross indicates the cursor). Note that during the period of ambiguity, even after stimuli vanished, the
population encodes two potential directions. Data from Cisek & Kalaska (2005).

converted to a motor plan after the decision
is made. In contrast, we propose that multiple
movement options are specified within the same
system that is used to prepare and guide the ex-
ecution of the movement that is ultimately se-
lected. The simultaneous specification of mul-
tiple actions can even occur when only a single
object is viewed. For example, the multiple af-
fordances offered by a single object can evoke
neural activity in the grasp-related area AIP that
can represent several potential grasps until one
is instructed (Baumann et al. 2009), in agree-
ment with the predictions of theoretical models
(Fagg & Arbib 1998).

Evidence that the nervous system can si-
multaneously represent multiple potential ac-
tions suggests a straightforward interpretation
of the finding, described above, that early re-
sponses in many premotor and parietal re-
gions first appear to encode information about
relevant stimuli and later change to encode
motor variables. Perhaps the early activity,

time-locked to stimulus appearance, does not
encode the stimuli themselves but rather the set
of potential actions that are most strongly asso-
ciated with those stimuli (Wise et al. 1996), such
as actions with high stimulus-response com-
patibility (Crammond & Kalaska 1994). This
would imply that the functional role of this ac-
tivity does not change in time from sensory to
motor encoding but simply reflects the arrival
of selection influences from slower but more
sophisticated mechanisms for deciding which
action is most appropriate.

Recent computational models have pro-
posed that whenever multiple potential targets
are available, representations of potential ac-
tions emerge within several frontoparietal neu-
ral populations, each composed of a continuum
of cells with different preferences for the po-
tential parameters of movement (Cisek 2006,
Erlhagen & Schöner 2002, Tipper et al. 2000).
In each population, cells with similar prefer-
ences mutually excite each other (even if they
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[Cisek, Kalaska 2005]

Decision making 
in DPA

dorsal
pre-motor 

cortex
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What does it mean when different 
dimensions are combined? 

activation

motion directionhorizontalposition
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movement
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Combining different feature dimensions

neurons tuned to multiple dimensions 

e.g. receptive field + direction tuning 

=> combines visual space and orientation

“anatomical” binding

[Hubel, Wiesel, 1962]



Combining different feature dimensions

example: a joint 
representation of color 
and visual space 
“binds” these two 
dimensions

Space-Color Field
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spatial location

space-color
field

0
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360

visual scene

for now: 2D field, one spatial
dimension and one color dimension

color processing in visual cortex not
fully understood, but population
code over hue values is a reasonable
simplification

qualitatively same e↵ects as in 3D
field, but easier to visualize in 2D

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 7 / 37

[Schneegans et al.,Ch 5 of DFT Primer, 2016]



Extract the bound features

project to lower-
dimensional fields 

by summing along the 
marginalized dimensions

(or by taking the soft-
max)

Read-out from high-dimensional field
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space-color
field
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visual scene

spatial field

fields of di↵erent dimensionality
can interact with each other

read-out of one feature
dimension: integrate over
discarded dimensions

e.g. spatial readout:

IS(x) =

Z
f (uv (x , y))dy

often additional Gaussian
convolution in read-out for
smoothness (reflects synaptic
spread in biological system)

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 10 / 37

[Schneegans et al.,Ch 5 of DFT Primer, 2016]



Assemble bound representations
project lower-dimension field onto higher-
dimensional field as “ridge input” 
Ridge Inputs to Multi-Dimensional Fields
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projection from 1D to 2D: ridge input
does only specify value in one dimension, homogeneous in the other
should typically not induce a peak by itself

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 11 / 37

[Schneegans et al.,Ch 5 of DFT Primer, 2016]



Assemble bound representationsRidge Intersections
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intersection of 1D ridges can
specify location in 2D

binding problem when multiple
items are present

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 12 / 37

[Schneegans et al.,Ch 5 of DFT Primer, 2016]



Feature Conjunctions and Feature Binding
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visual scene

spatial field

multiple ridges create additional
intersections

1D fields with multiple peaks do
not specify which features
belong together

combined representation
necessary to resolve feature
binding problem

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 13 / 37

binding problem: 
multiple ridges along 
lower-dimensional 
space lead to a 
correspondence 
problem

=> assemble one 
object at a time… 

=> sequentiality bottle-
neck!

Assemble bound representations

[Schneegans et al.,Ch 5 of DFT Primer, 2016]



Search
Visual Search
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combine top-down feature input
(1D) with bottom-up localized
input (2D)

read out spatial position of
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The neural dynamic process model
The surprising efficiency of triple conjunction search (Found, 
1998) has created a puzzle for modelers who link visual fea-
ture binding to selective attention, igniting an ongoing deba-
te on whether features are bound with or without attention. 
Nordfang and Wolfe (2014) identified feature sharing and 
grouping as important factors in solving the puzzle and the-
reby established new constraints for models of visual search. 
Here we extend our neural dynamic model of scene percep-
tion and visual search (Grieben et al., 2020) to account for 
these constraints without the need for preattentive binding. In 
the model, parallel neural processes evolve in continuous time 
from which selection events emerge sequentially through dy-
namic instabilities. 

Dynamic Field Theory (DFT) (Schöner et al., 2016) is a mathe-
matical framework that uses graded patterns of activation in 
neural populations evolving in continuous time to account for 
perception, action, and embodied cognition. Functional states 
are stable patterns of population activation. Peaks are the units 
of representation in DFT. Dynamic instabilities are the basis for 
the emergence of sequences of processing steps in which ac-
tivation patterns transition between stable states. Fields may 
operate in different dynamic regimes. In the self-stabilized re-
gime, peaks are stabilized against decay and changes in in-
put. In the selective regime, only a single peak is stable at a 
time. In the regime of sustained activation, peaks may persist 
when the localized input is removed. Networks of fields are 
defined by directional coupling among fields or nodes (0D).

Feed-forward feature maps
The bottom-up pathway of the mo-
del is a parallel preattentive pro-
cess purely driven by input.
(A1) Visual input may come from 
a live camera image or from ran-
domly generated search displays. 
(A2) Three features are extracted 
in parallel: color, orientation, and 
shape. 
(B) The neural activation pattern 
across the entire neural population 
for each feature is represented in 
the respective scene space/fea-
ture map. These neural represen-
tations are defined over the two 
dimensions of visual space and 
over one feature dimension.
(C) The activation of the scene 
space/feature map fields is mar-
ginalized along the feature dimen-
sion, using a 3D center-surround 
filter as the projection kernel, re-
sulting in a conspicuity map for 
each feature. Due to the inhibitory 
part of the center-surround kernel 
the relative bottom-up salience of 
an object decreases linearly with 
the number of features shared with 
its flankers. The locally excitatory 
part of the center-surround kernel 
gives objects that are surrounded 
by empty space or by flankers 
that share no features with them 
a competitive advantage. The-
se conspicuity maps are integra-
ted in a spatial salience map. The 
output of this field is the nonlinear 
bottom-up salience map that is re-
sponsible for the grouping effect. 

Feature matching 
(F) This sub-network compares (in 
parallel) expected feature (G) and 
attended feature (E). The mismatch 
detection field generates a peak 
if expected and attended feature 
fields have peaks at different lo-
cations along the feature dimen-
sion. A peak in all three fields (at-
tended feature, expected feature, 
and mismatch detection) signals a 
no match. Absence of a peak in 
the mismatch detection field, with 
peaks in the two other fields, sig-
nals a match. 
Attentional selection
(D) The scene spatial selection 
field receives weighted bottom-
up bias, and weighted top-down 
bias. This field operates in the dy-
namic regime of selection. This 
provides the neural substrate for 
feature binding through selection. 
(H) The three space/feature over-
lap fields receive sub-threshold 
input from the feature maps (B) 
and feature input from the target 
search cue (G). Peaks form where 
activation overlaps.
(H1) The feature guidance field 
receives the marginalized activa-
tion of these fields (H) as spatial in-
put. The resting level of this field is 
down-regulated dynamically via 
inhibitory connections from (G) so 
that it decreases linearly with the 
number of cued features. The out-
put of this field provides the non-
linear top-down bias and is re-
sponsible for the sharing effect.

Visual search
Visual search is initiated as soon as a peak is 
formed in the scene spatial selection field (D). It 
terminates when all three features at the atten-
ded location match the features of the search cue 
(G). Responsible for this termination is the fea-
ture matching sub-network (F), whose condition 
of satisfaction (CoS) node is activated when this 
match occurs. If at least one features mismatch is 
detected, the condition of dissatisfaction (CoD) 
node is activated and inhibits the intention node. 
This in turn destabilizes the scene spatial selec-
tion sub-network (D), which deactivates the CoD 
itself. The intention node is released from inhibi-
tion and a new attentional selection takes place. 
That selection is biased away from previously at-
tended locations through inhibitory input to the 
scene spatial selection field (D) from the inhibiti-
on of return field (D1) that contains self-sustained 
peaks at previously attended locations.
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The neural dynamic process model
The surprising efficiency of triple conjunction search (Found, 
1998) has created a puzzle for modelers who link visual fea-
ture binding to selective attention, igniting an ongoing deba-
te on whether features are bound with or without attention. 
Nordfang and Wolfe (2014) identified feature sharing and 
grouping as important factors in solving the puzzle and the-
reby established new constraints for models of visual search. 
Here we extend our neural dynamic model of scene percep-
tion and visual search (Grieben et al., 2020) to account for 
these constraints without the need for preattentive binding. In 
the model, parallel neural processes evolve in continuous time 
from which selection events emerge sequentially through dy-
namic instabilities. 

Dynamic Field Theory (DFT) (Schöner et al., 2016) is a mathe-
matical framework that uses graded patterns of activation in 
neural populations evolving in continuous time to account for 
perception, action, and embodied cognition. Functional states 
are stable patterns of population activation. Peaks are the units 
of representation in DFT. Dynamic instabilities are the basis for 
the emergence of sequences of processing steps in which ac-
tivation patterns transition between stable states. Fields may 
operate in different dynamic regimes. In the self-stabilized re-
gime, peaks are stabilized against decay and changes in in-
put. In the selective regime, only a single peak is stable at a 
time. In the regime of sustained activation, peaks may persist 
when the localized input is removed. Networks of fields are 
defined by directional coupling among fields or nodes (0D).

Feed-forward feature maps
The bottom-up pathway of the mo-
del is a parallel preattentive pro-
cess purely driven by input.
(A1) Visual input may come from 
a live camera image or from ran-
domly generated search displays. 
(A2) Three features are extracted 
in parallel: color, orientation, and 
shape. 
(B) The neural activation pattern 
across the entire neural population 
for each feature is represented in 
the respective scene space/fea-
ture map. These neural represen-
tations are defined over the two 
dimensions of visual space and 
over one feature dimension.
(C) The activation of the scene 
space/feature map fields is mar-
ginalized along the feature dimen-
sion, using a 3D center-surround 
filter as the projection kernel, re-
sulting in a conspicuity map for 
each feature. Due to the inhibitory 
part of the center-surround kernel 
the relative bottom-up salience of 
an object decreases linearly with 
the number of features shared with 
its flankers. The locally excitatory 
part of the center-surround kernel 
gives objects that are surrounded 
by empty space or by flankers 
that share no features with them 
a competitive advantage. The-
se conspicuity maps are integra-
ted in a spatial salience map. The 
output of this field is the nonlinear 
bottom-up salience map that is re-
sponsible for the grouping effect. 

Feature matching 
(F) This sub-network compares (in 
parallel) expected feature (G) and 
attended feature (E). The mismatch 
detection field generates a peak 
if expected and attended feature 
fields have peaks at different lo-
cations along the feature dimen-
sion. A peak in all three fields (at-
tended feature, expected feature, 
and mismatch detection) signals a 
no match. Absence of a peak in 
the mismatch detection field, with 
peaks in the two other fields, sig-
nals a match. 
Attentional selection
(D) The scene spatial selection 
field receives weighted bottom-
up bias, and weighted top-down 
bias. This field operates in the dy-
namic regime of selection. This 
provides the neural substrate for 
feature binding through selection. 
(H) The three space/feature over-
lap fields receive sub-threshold 
input from the feature maps (B) 
and feature input from the target 
search cue (G). Peaks form where 
activation overlaps.
(H1) The feature guidance field 
receives the marginalized activa-
tion of these fields (H) as spatial in-
put. The resting level of this field is 
down-regulated dynamically via 
inhibitory connections from (G) so 
that it decreases linearly with the 
number of cued features. The out-
put of this field provides the non-
linear top-down bias and is re-
sponsible for the sharing effect.

Visual search
Visual search is initiated as soon as a peak is 
formed in the scene spatial selection field (D). It 
terminates when all three features at the atten-
ded location match the features of the search cue 
(G). Responsible for this termination is the fea-
ture matching sub-network (F), whose condition 
of satisfaction (CoS) node is activated when this 
match occurs. If at least one features mismatch is 
detected, the condition of dissatisfaction (CoD) 
node is activated and inhibits the intention node. 
This in turn destabilizes the scene spatial selec-
tion sub-network (D), which deactivates the CoD 
itself. The intention node is released from inhibi-
tion and a new attentional selection takes place. 
That selection is biased away from previously at-
tended locations through inhibitory input to the 
scene spatial selection field (D) from the inhibiti-
on of return field (D1) that contains self-sustained 
peaks at previously attended locations.
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The neural dynamic process model
The surprising efficiency of triple conjunction search (Found, 
1998) has created a puzzle for modelers who link visual fea-
ture binding to selective attention, igniting an ongoing deba-
te on whether features are bound with or without attention. 
Nordfang and Wolfe (2014) identified feature sharing and 
grouping as important factors in solving the puzzle and the-
reby established new constraints for models of visual search. 
Here we extend our neural dynamic model of scene percep-
tion and visual search (Grieben et al., 2020) to account for 
these constraints without the need for preattentive binding. In 
the model, parallel neural processes evolve in continuous time 
from which selection events emerge sequentially through dy-
namic instabilities. 

Dynamic Field Theory (DFT) (Schöner et al., 2016) is a mathe-
matical framework that uses graded patterns of activation in 
neural populations evolving in continuous time to account for 
perception, action, and embodied cognition. Functional states 
are stable patterns of population activation. Peaks are the units 
of representation in DFT. Dynamic instabilities are the basis for 
the emergence of sequences of processing steps in which ac-
tivation patterns transition between stable states. Fields may 
operate in different dynamic regimes. In the self-stabilized re-
gime, peaks are stabilized against decay and changes in in-
put. In the selective regime, only a single peak is stable at a 
time. In the regime of sustained activation, peaks may persist 
when the localized input is removed. Networks of fields are 
defined by directional coupling among fields or nodes (0D).

Feed-forward feature maps
The bottom-up pathway of the mo-
del is a parallel preattentive pro-
cess purely driven by input.
(A1) Visual input may come from 
a live camera image or from ran-
domly generated search displays. 
(A2) Three features are extracted 
in parallel: color, orientation, and 
shape. 
(B) The neural activation pattern 
across the entire neural population 
for each feature is represented in 
the respective scene space/fea-
ture map. These neural represen-
tations are defined over the two 
dimensions of visual space and 
over one feature dimension.
(C) The activation of the scene 
space/feature map fields is mar-
ginalized along the feature dimen-
sion, using a 3D center-surround 
filter as the projection kernel, re-
sulting in a conspicuity map for 
each feature. Due to the inhibitory 
part of the center-surround kernel 
the relative bottom-up salience of 
an object decreases linearly with 
the number of features shared with 
its flankers. The locally excitatory 
part of the center-surround kernel 
gives objects that are surrounded 
by empty space or by flankers 
that share no features with them 
a competitive advantage. The-
se conspicuity maps are integra-
ted in a spatial salience map. The 
output of this field is the nonlinear 
bottom-up salience map that is re-
sponsible for the grouping effect. 

Feature matching 
(F) This sub-network compares (in 
parallel) expected feature (G) and 
attended feature (E). The mismatch 
detection field generates a peak 
if expected and attended feature 
fields have peaks at different lo-
cations along the feature dimen-
sion. A peak in all three fields (at-
tended feature, expected feature, 
and mismatch detection) signals a 
no match. Absence of a peak in 
the mismatch detection field, with 
peaks in the two other fields, sig-
nals a match. 
Attentional selection
(D) The scene spatial selection 
field receives weighted bottom-
up bias, and weighted top-down 
bias. This field operates in the dy-
namic regime of selection. This 
provides the neural substrate for 
feature binding through selection. 
(H) The three space/feature over-
lap fields receive sub-threshold 
input from the feature maps (B) 
and feature input from the target 
search cue (G). Peaks form where 
activation overlaps.
(H1) The feature guidance field 
receives the marginalized activa-
tion of these fields (H) as spatial in-
put. The resting level of this field is 
down-regulated dynamically via 
inhibitory connections from (G) so 
that it decreases linearly with the 
number of cued features. The out-
put of this field provides the non-
linear top-down bias and is re-
sponsible for the sharing effect.

Visual search
Visual search is initiated as soon as a peak is 
formed in the scene spatial selection field (D). It 
terminates when all three features at the atten-
ded location match the features of the search cue 
(G). Responsible for this termination is the fea-
ture matching sub-network (F), whose condition 
of satisfaction (CoS) node is activated when this 
match occurs. If at least one features mismatch is 
detected, the condition of dissatisfaction (CoD) 
node is activated and inhibits the intention node. 
This in turn destabilizes the scene spatial selec-
tion sub-network (D), which deactivates the CoD 
itself. The intention node is released from inhibi-
tion and a new attentional selection takes place. 
That selection is biased away from previously at-
tended locations through inhibitory input to the 
scene spatial selection field (D) from the inhibiti-
on of return field (D1) that contains self-sustained 
peaks at previously attended locations.
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Binding through space

many 3 to 4 dimensional feature 
fields

all of which share the one 
dimension: visual space (~all 
neurons have receptive fields)

bind through space à la Feature 
Integration Theory (Treisman) 
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Fig. 6 The feature extraction pathway in illustrated in the blown up portion on the left and bottom. The pathway is

positioned within the complete neural dynamic architecture. See text for an explanation.

From the scene space/feature maps input is generated into a single central salience map, represented

by the scene spatial salience field. That input is obtained by integrating along each feature dimension

within each space-feature field (conspicuity) and summing across the three conspicuity representations.

3.2 Attentional selection

Visual cognition always entails attentional selection decisions. Figure 7 highlights the sub-system of the

neural dynamic architecture that generates such selection decisions.

Central is the scene spatial selection field that represents the localization of spatial attention. It re-

ceives multi-peak input from the salience field and singles out the most salient location by being in the

dynamic regime of selection, in which a single supra-threshold peak may be stable at any moment in

time. The selection decision is biased toward previously unattended positions by additional input from

the inhibition of return memory trace, which reflects the recent history of activation of the scene spatial

selection field. The self-sustained spatial working memory field reinforces that e↵ect, but its representa-

[Grieben et al. Attention, Perception & Psychophysics 2020]
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Fig. 8 The fields involved in the exploration and memorization sub-task are highlighted within the complete neural dynamic architecture

while in visual working memory and beyond item location
is represented independently of gaze. The coordinate
transform that achieves this invariance is prohibitively
costly if performed directly on the bound visual objects
(Schneegans et al., 2016). Instead, the transformation is
only performed for the spatial dimension of the fields, and
the feature information is added back in as modeled here.
For this paper, however, we omit coordinate transforms by
assuming that all representations share the original retinal
frame (i.e., that of the fixed camera), which is equivalent to
assuming the absence of eye or head movements.

The memory space/feature maps provide three-
dimensional input to an analogous set of three memory
space/feature selection fields (G). In these fields, one item
from the input is selected and brought above threshold,
again based on overlap with column input from the scene
spatial selection field. The result is an isolated representa-
tion of the memory item at the attended location. Projections
from both this representation and the scene space/feature
selection fields converge onto a neural feature matching
mechanism (H , see “Match and mismatch detection”),
which detects whether the attended item’s features have
been successfully committed to scene working memory.
When this detection occurs, the task node is deactivated
through an inhibitory connection (red line in Fig. 8). This
concludes one step in the exploration sequence. By default,
that is, unless another task becomes active (see below),
the task node is then reactivated, thus initiating another

cycle of attentional selection and commitment to working
memory.

Task 2: Retaining feature cues

Figure 9 highlights the sub-network that is responsible for
retaining a feature cue for visual search. It is activated by
the “retain” task node, which may itself be activated from
different sources depending on the cognitive task at hand. In
the current context, the task node is activated by the onset
detector (D3 in Fig. 9) when it detects a change in the visual
scene.

Analogously to exploration, the retain process consists
of storing currently attended feature values in self-sustained
fields, the search cue fields (I ), which are one-dimensional
since only the feature values of the cue are relevant (not its
position).

To forward feature values from the scene space/feature
selection fields to the search cue fields, the retain node
homogeneously boosts activation in the retain gate fields
(I1), enabling them to build peaks and thus pass on
activation.

The retain sub-task is terminated once the content of
the search-cue fields matches the features of the currently
attended item. Upon deactivation of the retain node, peaks
in the attention field and the gating fields decay, whereas in
the search cue fields the cue’s feature values are retained for
later use.

[Grieben et al. Attention, Perception & Psychophysics 2020]



FIGURE 5.11: Multi-item trial in the multifeature model with high spatial proximity and different possible outcomes. (a) 
At the start of each trial, a cue item is presented (not shown) and the color memory field is boosted concurrently. This 
causes a peak to build there, which is retained throughout the trial and ref lects the target color. The projection to the color 
attention field activates the respective value there, which in turn biases activation in the space-color field. (b) Next, the 
test display with multiple items is presented. Each of the items is represented by one peak in each visual sensory field. The 
activation ridge from the color attention field enhances the space-color peak of the target item (the green S), causing this 
peak to determine peak position in the spatial attention field. The spatial attention peak projects back into both visual 
sensory fields, enhancing the space-shape peak at that location (and less so the peaks of close-by items). (c) Brief boosts to 
the shape memory field and the spatial read-out field force these fields to form peaks, which correspond to the shape and 
spatial response of the model, respectively. In most cases, the correct shape and location are chosen, as shown here. (d) 
In some cases, the feature-space peak of a distractor item spatially close to the target item (here, the space-shape peak of 
the yellow O) is overly enhanced by the ridge from the spatial attention field. In this case, the erroneously enhanced peak 
may prevail in determining peak position in the shape attention field and, thus, the shape response, resulting in an illusory 
conjunction. Illusory conjunctions are also associated with a shift of peak position in the spatial attention field, which is 
why the location response is as well displaced toward the spatial midpoint between the involved items.
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[Schneegans et al.,Ch 5 of DFT Primer, 2016]
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Sequential processes

How may neural attractors lead to the 
sequences of processing steps/actions that 
characterize higher cognition and behavior?  



Sequential processes

the neural attractor = intention predicts its condition 
of satisfaction

matching input detected => detection instability 

inhibits intention… => transition 

intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

prediction

[Sandamirskaya … 2010-2016]



task: search for objects of a given color in a given order

1 blue

2 red

green

vehicle

target 1

target 2

obstacles

target 13

Sequence of physical acts

stably couple to 
objects once they 
are detected 

ignore objects 
when their turn 
has not yet come 
(distractors)



yellow-red-green-blue-red yellow-red-green-blue-red

Implementation as an imitation task
learn a serially ordered 
sequence from a single 
demonstration

perform the serially 
ordered sequence with 
new timing

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]



red a distractor red a target

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]



Condition of 
Satisfaction

(CoS)

excites the corresponding memory node, which, in its turn,
provides an excitatory input to the ordinal node which is to
be activated next. The active ordinal node also projects onto
a single intention field defined over the dimension of color.
Which color each node activates is learned, or memorized,
in the training phase through a fast Hebbian learning
mechanism. The intention field is reciprocally coupled with
a two-dimensional space-color field, in which the spatial
dimension samples the horizontal axis of the camera
image. The space-color field receives ridge-input localized
along the color dimension, but not along space, from the
intention field. It also receives a two-dimensional space-
color input from the visual array. Where visual input
overlaps with the ridge, a peak is formed, the spatial pro-
jection of which specifies the visual angle under which an
object of the color being sought is located.

The space-color field projects along the spatial dimen-
sion onto the dynamics of heading direction, creating an
attractor that steers the robot to the detected object. As that

object is approached, its image grows in the robot’s visual
array. The condition-of-satisfaction field (top-right on
Fig. 8) is pre-activated by input from the intention field and
is pushed through the detection instability when the object
of the color being sought looms sufficiently large. This
brings about the transition to the next step in the sequence
as described in Section 3.3.

Before an object that matches the current intention has
been found, no peak exists in the space-color field. The
heading direction does not receive input at that time from
the space-color field and the vehicle’s navigation dynamics
is dominated by obstacle avoidance, which is implemented
using a standard dynamic method (Bicho, Mallet, &
Schöner, 2000). This results in the roaming behavior that
helps the robot search for objects of the appropriate color.

During teaching, the visual input from the object shown
to the robot is boosted enough to induce a peak in the space-
color field. This peak projects activation backwards onto the
intention field, where a peak is induced at the location that

Fig. 8. The architecture for a sequential color-search task on a Khepera robot. An active node of the ordinal dynamics projects its activation onto an intention field,
defined over color dimension. The intention field is coupled to the space-color field, which also receives visual input from the robot’s camera. An activation peak
in the space-color field drives the navigation dynamics of the robot, setting an attractor for its heading direction. The condition-of-satisfaction field is also defined
over color dimension and is activated when the object of the currently active color takes up a large portion of the camera image.

Y. Sandamirskaya et al. / New Ideas in Psychology xxx (2013) 1–1814

Please cite this article in press as: Sandamirskaya, Y., et al., Using Dynamic Field Theory to extend the embodiment stance toward
higher cognition, New Ideas in Psychology (2013), http://dx.doi.org/10.1016/j.newideapsych.2013.01.002

[Sandamirskaya, Schöner: Neural 
Networks 23:1163 (2010)]



Visual input

2D visual input 

horizontal space

color

“intensity” of 2D input 
from color histogram at 
each horizontal location 
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Visual search
intention=color cue provides ridge input into space-
color field

when that ridge overlaps with 2D space-color input => 
peak formed

Color
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2D color-space fieldintentional state

color

condition of satisfaction (CoS)ordinal stack

colorspace
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Learning Production
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Figure 11: One run of the robotic demonstrations. A: Time-courses of activation of five ordinal nodes during
sequence learning and production. B: Time-course of activation in the action field. Positive activation in the
field encodes the color currently searched for. C: Time-course of activation in the condition of satisfaction
field. Arrows mark the times when condition of satisfaction signals were emitted (detection instabilities in
the field). D: The projection of the perceptual color-space field onto the spatial dimension (horizontal axis of
the image plane). The arrows mark times when the object of interest in each ordinal position first appeared
in the visual array of the robot. The “random search” behavior changed to “approach target” behavior at
these points.
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Coordinate transforms

are central to sensory-motor 
cognition but also critical to higher 
cognition!

Eye Movements and Reference Frames

visual image visual image

visual scene visual scene

eye with 
ocular muscles

limited visual acuity in periphery of the retina, eye movements to
perceive larger scenes, read, etc.

gaze direction depends on eye and head orientation, considered as
single variable in the following

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 23 / 37

[Schneegans Ch 7 of DFT Primer, 2016]

Movement preparation
movement is prepared before it is initiated: 

movement parameters like movement direction, amplitude, time, or 
force level can be predicted from the first 10 to 20 ms of 
movement  

movement parameters are about the hand’s 
movement in space 

[Erlhagen, Schöner, Psych Rev 2002]

movement
direction

movement
extent

3.3 Spatial transformations

camera input

reference fieldtarget field

relational
candidates field

F .: Example of a spatial transfor-
mation that yields the relative position of the
(red) target object with respect to all (green)
reference objects.

vation uRC evolves based on the differential equation
τRCu̇RC(x, y, t) =− uRC(x, y, t) + h+ wξ · ξRC(x, y, t)

+ [kRC,RC ∗ g(uRC)](x, y, t)

+

∫∫
dx′dy′ ASD(x′, y′, t)

BSD(x− x′, y − y′, t).

(3.21)

e last term formalizes how the steerable neural mapping is imple-
mented here as a convolution. As first input

ASD(x, y, t) = [kT ∗ g(uT)](x, y, t), (3.22)
it takes the output of the target field (uT), convolved with a kernel
(kT). As second input

BSD(x, y, t) = [kR ∗ g(uR)](x, y, t), (3.23)
it takes the output of the reference field (uR), convolved with a ker-
nel (kR).

Figure 3.7 shows an example of this transformation, where the
activation of the target field holds a single peak that represents a pos-
sible target object and the reference field holds two peaks that are
candidates for the reference object. e activation in the relational
candidates field holds two peaks, each representing the relative posi-
tion of the (possible) target object to one of the (possible) reference
objects.

3.3.4 Rotation
Representing the relative position of the target object is sufficient to
resolve spatial relations in static scenes. For instance, to determine

57

“where are the green objects 
relative to the red one” 

[Richer Doctoral dissertation, 2017]



need a bound neural 
representation of 

retinal space

gaze angle 

project to body space

[Schneegans Ch 7 of DFT Primer, 2016]

Reference Frame Transformation

solution:

expand into combined, higher-dimensional field

then can implement arbitrary (smooth) mappings from this field to
target representation

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 27 / 37

steer: gaze angle retinal space

body space

Coordinate transforms involve binding

neural evidence: gain field 
(Andersen/Pouget)



DNF Mechanism for Reference Frame Transformation
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Coordinate transform



DNF Mechanism for Reference Frame Transformation
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Coordinate transform



DNF Mechanism for Reference Frame Transformation
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Coordinate transform



DNF Mechanism for Reference Frame Transformation
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Coordinate transform



DNF Mechanism for Reference Frame Transformation
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Coordinate transform



Retina => body space

bi-directional 
coupling

=> predict 
retinal 
coordinates

Multi-Directional Transformations
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[Schneegans, Schöner Biological Cybernetics 2012]

Spatial 
remapping 

during 
saccades
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Concepts, relational thinking

grounding: bringing the 
target object of a 
relational phrase into 
the attentional 
foreground

“red to the left of green”

target reference

[Lipinski, Sandamirskaya, Schöner 2009
… Richter, Lins, Schöner, Topics 2017]



into the reference and target field and enable these fields to track moving objects even if
spatial attention is currently focused elsewhere.

3.2. Attention

The core of the attentional system consists of two three-dimensional attention fields.
They are defined over the same dimensions as the two perception fields, but their activa-
tion remains below threshold unless additional input arrives from a feature attention field
or a spatial attention field.

Fig. 2. Architecture with activation snapshots while it is generating a phrase about a video. Fields are shown
as color-coded activation patterns; for three-dimensional fields, two-dimensional slices are shown. Node acti-
vation is denoted in opacity-coded circles. Spatial templates are illustrated as color-coded weight patterns
(bottom left). Excitatory synaptic connections are denoted by lines with arrowheads, inhibitory connections
by lines ending in circles. Transformations to and from polar coordinates are marked with a “T.” Steerable
neural mappings are denoted as diamonds.

40 M. Richter, J. Lins, G. Sch€oner / Topics in Cognitive Science 9 (2017)

[Richter, 
Lins, 

Schöner, 
ToPiC 
(2017)]
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green

left

red

“red to the left of green”



Concepts, relational thinking

=>  hands on exercise 



Mental mapping and inference

propositions

“There is a cyan object above a green object.”

“There is a red object to the left of the green object.”

“There is a blue object to the right of the red object.”

“There is an orange object to the left of the blue object.” 

inference

“Where is the blue object relative to the red object?”

[Ragni, Knauff, Psych Rev 2013]



[Kounatidou, Richter, Schöner, CogSci 2018]

Figure 1: Activation snapshot of the architecture as it forms a mental model consisting of five objects. For two-dimensional
fields, activation is shown color-coded, where blue colors denote subtreshold and yellow colors denote suprathreshold activa-
tion. For three-dimensional fields, two-dimensional slices of activation are shown. Neural nodes are denoted by circles that are
filled if the node is active and empty if inactive. Excitatory synaptic connections are shown by black lines with arrowheads,
inhibitory connections by lines ending in black circles; patterned connections are marked with a star. Steerable neural mappings
are denoted by blue diamonds. See text for details.

orange object to the left of the blue object” (shown in Fig-
ure 1) consists of three elements, all of which need to be
represented by the architecture: the object the premise is pri-
marily referring to (the target object, here orange), the spatial
relation (here, to the left of), and the object which the relation
uses as a reference position (the reference object, here blue).
The spatial transformation system represents these three ele-
ments in dedicated dynamic neural fields, the target field, the
relational field, and the reference field, respectively. The tar-
get field and reference field are defined over two-dimensional
space and receive input from the attention field. Whenever
there is a peak in the attention field, one of the fields may
be brought into the dynamic regime to form peaks. The two-
dimensional relational field represents the relative position of
a target object with respect to the reference object. The field
is defined such that the reference object would be in the cen-
ter of the field. The relational field also receives input from
the production nodes of all spatial relation concepts (e.g., TO
THE LEFT OF, see Figure 1). Coordinate transformations be-
tween the absolute spatial positions in the target field and the
relative positions in the relational field are based on steer-
able neural mappings (blue diamonds in Figure 1; Schnee-
gans & Schöner, 2012), which are approximated by convolu-

tions here. The architecture has three such coordinate trans-
forms: the first (leftmost blue diamond) enables the position
of an already existing target object to be transformed into the
relational field. This enables the architecture to make infer-
ences on an already established mental model. The second
coordinate transform (middle diamond) enables the model to
transform peaks in the relational field back into the target
field. This path accounts for the creation of new objects in the
scene: a peak is induced in the relational field from the spa-
tial template that represents one of the spatial relations. The
position in space where the peak forms determines where the
new object is going to be placed in space. The third transfor-
mation (right diamond) has a crucial impact on the position
where the peak forms in the relational field. It transforms
the output of the spatial scene representation field and feeds
inhibitorily into the relational field, introducing inhibition in
positions that are already occupied by objects in the mental
model. Due to this inhibition, peaks induced in the relational
field tend to shift further outward, avoiding changes to the al-
ready established mental model. This is consistent with the
preferred mental models that humans tend to build (Ragni &
Knauff, 2013).



Figure 1: Activation snapshot of the architecture as it forms a mental model consisting of five objects. For two-dimensional
fields, activation is shown color-coded, where blue colors denote subtreshold and yellow colors denote suprathreshold activa-
tion. For three-dimensional fields, two-dimensional slices of activation are shown. Neural nodes are denoted by circles that are
filled if the node is active and empty if inactive. Excitatory synaptic connections are shown by black lines with arrowheads,
inhibitory connections by lines ending in black circles; patterned connections are marked with a star. Steerable neural mappings
are denoted by blue diamonds. See text for details.

orange object to the left of the blue object” (shown in Fig-
ure 1) consists of three elements, all of which need to be
represented by the architecture: the object the premise is pri-
marily referring to (the target object, here orange), the spatial
relation (here, to the left of), and the object which the relation
uses as a reference position (the reference object, here blue).
The spatial transformation system represents these three ele-
ments in dedicated dynamic neural fields, the target field, the
relational field, and the reference field, respectively. The tar-
get field and reference field are defined over two-dimensional
space and receive input from the attention field. Whenever
there is a peak in the attention field, one of the fields may
be brought into the dynamic regime to form peaks. The two-
dimensional relational field represents the relative position of
a target object with respect to the reference object. The field
is defined such that the reference object would be in the cen-
ter of the field. The relational field also receives input from
the production nodes of all spatial relation concepts (e.g., TO
THE LEFT OF, see Figure 1). Coordinate transformations be-
tween the absolute spatial positions in the target field and the
relative positions in the relational field are based on steer-
able neural mappings (blue diamonds in Figure 1; Schnee-
gans & Schöner, 2012), which are approximated by convolu-

tions here. The architecture has three such coordinate trans-
forms: the first (leftmost blue diamond) enables the position
of an already existing target object to be transformed into the
relational field. This enables the architecture to make infer-
ences on an already established mental model. The second
coordinate transform (middle diamond) enables the model to
transform peaks in the relational field back into the target
field. This path accounts for the creation of new objects in the
scene: a peak is induced in the relational field from the spa-
tial template that represents one of the spatial relations. The
position in space where the peak forms determines where the
new object is going to be placed in space. The third transfor-
mation (right diamond) has a crucial impact on the position
where the peak forms in the relational field. It transforms
the output of the spatial scene representation field and feeds
inhibitorily into the relational field, introducing inhibition in
positions that are already occupied by objects in the mental
model. Due to this inhibition, peaks induced in the relational
field tend to shift further outward, avoiding changes to the al-
ready established mental model. This is consistent with the
preferred mental models that humans tend to build (Ragni &
Knauff, 2013).

instance creation 
from boost driven

detection 
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Conclusion

sensory-motor cognition from neural 
dynamic fields that are coupled to sensory 
surfaces and act on the motor surfaces 
(through behavioral dynamics)

instabilities make decisions

detection

selection 

working memory 



Why do neural dynamic 
architectures work?

1) Why is the dynamic regime (“selection”, 
“working memory”, “detection”, “match” etc.) 
of a component field invariant as we couple it 
into a larger architecture? 

2) Why is the content (the feature space over 
which fields are defined, the content of a 
concept node) of a component field invariant as 
we couple it into a larger architecture?



1) Why is the dynamic regime invariant?

stability => structural stability = invariance of 
solutions under change of the dynamics

=> dynamic modularity: fields retain their 
dynamic regime as activation elsewhere varies 

dimension
input input

self-excited

activation field

dimension

activation field

self-excited

sub-threshold



2) Why is the content invariant?

coupling among fields must preserve the fields’ 
dimensions: “non-synesthesia principle”

informational modularity (encapsulation)

Figure 1: Activation snapshot of the architecture as it forms a mental model consisting of five objects. For two-dimensional
fields, activation is shown color-coded, where blue colors denote subtreshold and yellow colors denote suprathreshold activa-
tion. For three-dimensional fields, two-dimensional slices of activation are shown. Neural nodes are denoted by circles that are
filled if the node is active and empty if inactive. Excitatory synaptic connections are shown by black lines with arrowheads,
inhibitory connections by lines ending in black circles; patterned connections are marked with a star. Steerable neural mappings
are denoted by blue diamonds. See text for details.

orange object to the left of the blue object” (shown in Fig-
ure 1) consists of three elements, all of which need to be
represented by the architecture: the object the premise is pri-
marily referring to (the target object, here orange), the spatial
relation (here, to the left of), and the object which the relation
uses as a reference position (the reference object, here blue).
The spatial transformation system represents these three ele-
ments in dedicated dynamic neural fields, the target field, the
relational field, and the reference field, respectively. The tar-
get field and reference field are defined over two-dimensional
space and receive input from the attention field. Whenever
there is a peak in the attention field, one of the fields may
be brought into the dynamic regime to form peaks. The two-
dimensional relational field represents the relative position of
a target object with respect to the reference object. The field
is defined such that the reference object would be in the cen-
ter of the field. The relational field also receives input from
the production nodes of all spatial relation concepts (e.g., TO
THE LEFT OF, see Figure 1). Coordinate transformations be-
tween the absolute spatial positions in the target field and the
relative positions in the relational field are based on steer-
able neural mappings (blue diamonds in Figure 1; Schnee-
gans & Schöner, 2012), which are approximated by convolu-

tions here. The architecture has three such coordinate trans-
forms: the first (leftmost blue diamond) enables the position
of an already existing target object to be transformed into the
relational field. This enables the architecture to make infer-
ences on an already established mental model. The second
coordinate transform (middle diamond) enables the model to
transform peaks in the relational field back into the target
field. This path accounts for the creation of new objects in the
scene: a peak is induced in the relational field from the spa-
tial template that represents one of the spatial relations. The
position in space where the peak forms determines where the
new object is going to be placed in space. The third transfor-
mation (right diamond) has a crucial impact on the position
where the peak forms in the relational field. It transforms
the output of the spatial scene representation field and feeds
inhibitorily into the relational field, introducing inhibition in
positions that are already occupied by objects in the mental
model. Due to this inhibition, peaks induced in the relational
field tend to shift further outward, avoiding changes to the al-
ready established mental model. This is consistent with the
preferred mental models that humans tend to build (Ragni &
Knauff, 2013).

neural dynamic 
architectures are 
specific = constrained 
by evolution and 
development



Embodiment hypothesis

cognition inherits the dynamic properties of 
sensory-motor cognition: 

continuous state, continuous time, stability .. 

continuous/intermittent link to the sensory and motor surfaces is 
possible

=> cognition is generated 
in the specific embodied 
cognitive architectures 
that emerged from 
evolution/development 

cognition does not necessarily activate motor systems



DFT vs connectionism/NN

DFT models 
are neural 
network 
models in the 
most general 
sense… 

sharing level of 
description 
(activation, 
sigmoid) 

P1: JZP
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connectionist models of cognition 25

Hopfield Nets
(binary)

Simple Neural
Networks

(logical operations)

2-Layer Feedforward 
Networks (trained with
delta rule) – Perceptron

3-Layer Feedforward 
Networks (trained with

backpropagation algorithm)

Cascade Rule
(e.g., Stroop model)

Attractor
Networks 

Recurrent Networks

Jordan
Networks

Elman
Networks (SRN)

(Theoretical)
Logogen/ 

Pandemonium
 

(Hand-wired)
Constraint Satisfaction

Networks (e.g., IA, IAC – Jets &
Sharks, Necker Cube, Stereopsis)

Boltzmann 
Machine

(simulated 
annealing
metaphor)

Cascade correlation 
(Fahlman & Lebiere)

Competitive Networks
unsupervised learning

(e.g., Kohonen, Grossberg)

Figure 2.1. A simplified schematic showing the historical evolution of neural network architectures.
Simple binary networks (McCulloch & Pitts, 1943) are followed by two-layer feedforward networks
(perceptrons; Rosenblatt, 1958). Three subtypes then emerge: three-layer feedforward networks
(Rumelhart & McClelland, 1986), competitive or self-organizing networks (e.g., Grossberg, 1976;
Kohonen, 1984), and interactive networks (Hopfield, 1982; Hinton & Sejnowksi, 1986). Adaptive
interactive networks have precursors in detector theories of perception (Logogen: Morton, 1969;
Pandemonium: Selfridge, 1959) and in handwired interactive models (interactive activation:
McClelland & Rumelhart, 1981; interactive activation and competition: McClelland, 1981;
Stereopsis: Marr & Poggio, 1976; Necker cube: Feldman, 1981, Rumelhart et al., 1986). Feedforward
pattern associators have produced multiple subtypes: for capturing temporally extended activation
states, cascade networks in which states monotonically asymptote (e.g., Cohen, Dunbar, &
McClelland, 1990), and attractor networks in which states cycle into stable configurations (e.g., Plaut
& McClelland, 1993); for processing sequential information, recurrent networks (Jordan, 1986;
Elman, 1991); and for systems that alter their structure as part of learning, constructivist networks
(e.g., cascade correlation: Fahlman & Lebiere, 1990; Shultz, 2003). SRN = simple recurrent network.

content addressable memory in networks
with attractor states, formalized using the
mathematics of statistical physics (Hopfield,
1982). A fuller characterization of the many
historical influences in the development

of connectionism can be found in Rumel-
hart and McClelland (1986, Chapter 1),
Bechtel and Abrahamsen (1991), McLeod,
Plunkett, and Rolls (1998), and O’Reilly
and Munakata (2000). Figure 2.1 depicts a

[Thomas, McClelland, 2008]



DFT makes more specific 
commitments

stability of functionally significant states

populations as the level of description at 
which regularities of behavior/thinking can be 
understood

instabilities as key elements of neural 
processing .. sequences

=> all autonomous cognition is based on 
localist representations

=> all cognitive representations are low-
dimensional 



DFT as a neural theory for higher cognition 

2) attentional selection, 
coordinate transformation, 
sequential processing … 
emulate “function calls”
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3) the sequences of processing steps emerge from dynamic 
instabilities. 

intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

prediction

1) all concepts are grounded

=> DFT=neurosymbolics



Job ad
                                                                                                                                         

PhD position: Reaching decisions: neural mechanisms underlying learning and 
development of action decisions 
Project description 
How the targets of reaching movements are selected is being studied to understand the neural basis for 
decision making.  The classical theoretical framework is based on accumulating perceptual information 
along a decision dimension until a criterion level is reached. Behavioral and neural evidence suggests, 
however, that the time course of perceptual information matters and that this information is 
continuously coupled into motor processes even after movement initiation. This is exemplified in the 
mouse tracking paradigm, in which the decision process unfolds while a movement is ongoing. Building 
on neural processing principles formalized in Dynamic Field Theory, the goal of the project is to provide 
an account for the dynamics of sensorimotor decision processes and for the online updating of 
movements.  
The theoretical work will make use of dynamical systems modeling. The models are designed within a 
given framework (Home | Dynamic field theory), are simulated numerically, and are embedded in 
simulated experimental paradigms. The work requires good conceptual understanding, while 
mathematical analysis and computer programming are only used to a limited extent.  
 
The project will form the research component of doctoral studies at the Institute for Neural Computation 
at Ruhr University Bochum (https://www.ini.rub.de/, https://www.ruhr-uni-bochum.de/en ), which is a 
vibrant interdisciplinary environment with a broad range of research groups. The project is part of the 
European Training Network REPAIRS (RE-learning Perception-Action In Rehabilitation from a Systems 
perspective)) (https://repairs-etn.eu/ ), which will train 15 highly-skilled PhD students in fundamental 
research on how individuals re-learn perception and action and in cutting-edge rehabilitation practice 
using a systems perspective. The project also provides ample training opportunities in transferable and 
networking skills.  
 
Requirements 
A MSc degree in computer science, physics, mathematics, or engineering 
Psychologists or cognitive scientists with an affinity to mathematical thinking may also qualify  
 
Applicants must also fulfil the criteria defined by the European Commission: 
• As an Early Stage Researcher, you have to be in the first four years of your research career and have 

not been awarded a doctoral degree at the time of recruitment. 
• At the time of recruitment by the host organisation, researchers must not have resided or carried 

out their main activity (work, studies, etc.) in the country of their host organisation (Germany) for 
more than 12 months in the 3 years immediately prior to the reference date. 

 
How to apply 
Applications should include a CV, a short letter of motivation, names and contact information of two or 
more references, and diplomas and certificates indicating that a degree equivalent to a European Master 
degree has been obtained. Direct applications electronically to gregor.schoener@ini.rub.de.  
 

European mobility requirement: less than 12 months in 
prior 3 years resident of Germany


