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Working memory is a cognitive system that actively 
holds information in mind to facilitate cognitive opera-
tions. For instance, working memory would play a key 
role if you were asked to type the first, fourth, and fifth 
digits of a personal identification number (PIN) into a 
banking app. In this case, you must “load” information 
into an active, working memory state from long-term 
memory; hold that information in mind for a short dura-
tion; and then manipulate the information to achieve 
the goal. Note that PINs are kept to four to six digits 
for a reason—any longer and the number would exceed 
the limited capacity of working memory.

Working memory plays an important role in child 
development, and many theories of cognitive develop-
ment take increases in working memory capacity as a 
starting point for cognitive change (Case, 1985). For 
instance, increases in working memory capacity are 
thought to underlie improvements in speed of process-
ing as well as improvements in children’s reasoning 
ability (Kail, 1991). More generally, individual differ-
ences in working memory abilities correlate with mea-
sures of children’s academic performance and general 
intelligence (Conway, Kane, & Engle, 2003). Given 
these findings, it is not surprising that deficits in work-
ing memory are thought to play a central role in neu-
rodevelopmental disorders such as attention-deficit/
hyperactivity disorder (Willcutt, Doyle, Nigg, Faraone, 
& Pennington, 2005).

Recent studies suggest that working memory is open 
to intervention (Diamond, Barnett, Thomas, & Munro, 
2007). This raises exciting potential to overcome the 

limited working memory abilities of at-risk children 
(Vicari, Caravale, Carlesimo, Casadei, & Allemand, 2004). 
Nevertheless, questions have been raised about whether 
working memory training extends outside the labora-
tory to affect how children deploy working memory in 
real-world settings (Diamond & Lee, 2011). One pos-
sible way to boost the effectiveness of interventions is 
to intervene early in development. This would capital-
ize on the massive brain plasticity evident in the first 
few years of life.

Work in this direction has shown promise. For 
instance, early interventions designed to encourage 
caregivers to notice what their infants are attending to 
and “follow” their infants into those attentional episodes 
have had positive impacts on the cognitive outcomes 
of at-risk children (Landry, Smith, & Swank, 2006). Epi-
sodes of joint attention are thought to enhance working 
memory because they keep infants focused on the same 
object for longer, improving infants’ representation 
of the object and allowing the caregiver to contingently 
respond to infants’ bids for information. Although 
caregiver-based interventions are promising, their effec-
tiveness has been limited by such factors as individual 
differences in caregivers’ abilities, social-contextual dif-
ferences, and stressors in the home.

It might be possible to optimize such interventions 
if we understood how working memory develops in 
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infancy and early childhood. The present article focuses 
on this question and on how neural-network models 
have shed light on the processes that underlie changes 
in working memory capacity. Moreover, I highlight the 
advantages of having a model that researchers can use 
to test developmental hypotheses about how working 
memory changes as well as how to intervene in cases 
in which children are at risk.

What Neural Processes Underlie 
Working Memory?

Efforts to understand how neural activity gives rise to 
working memory have focused on sustained activation 
(Constantinidis & Steinmetz, 1996; Fuster & Alexander, 
1971; Miller, Erickson, & Desimone, 1996). In particular, 
when information is held in working memory, neural 
populations go into a self-sustaining state in which 
activation persists even in the absence of an external 
stimulus. For instance, consider a situation in which a 
participant is shown an object at a spatial location for 
1 s; the object is hidden; and then 5 s later, the partici-
pant is asked to point to the remembered location. 
When the participant sees the initial object, the object’s 
location is encoded by the brain, creating an increase 
in neural activity in parts of the brain sensitive to spatial 
information. This activity persists during the delay as if 
the brain is re-presenting the stimulus to itself. After 
the delay, the brain then translates this remembered 
location into a pointing response to the location in 
space.

To understand how self-sustaining activation is real-
ized in the brain, researchers can build artificial neural 
networks that simulate the millisecond-by-millisecond 
processes hypothesized to underlie sustained activity. 
One way to do this is to build detailed models of indi-
vidual neurons and connect them into a more complex 
network (Deco, Rolls, & Horwitz, 2004). Such models 
are good at simulating how brains work in detail; how-
ever, they are not so good at explaining how people 
work, because they fail to explain data from behavioral 
experiments. For instance, sometimes people forget 
locations, whereas other times they make large but 
systematic errors (Schutte & Spencer, 2009). To under-
stand these errors, we need neural-network models that 
can do what people do.

An alternative is to use models that simulate how 
populations or groups of neurons work without wor-
rying about the details of each individual neuron. There 
is a long history of this type of approach in psychology 
and neuroscience. For instance, connectionist models 
adopt this type of simplification (e.g., Rumelhart, 
McClelland, & the PDP Research Group, 1986). These 
simpler models can be more readily matched up with 

behavioral data, but, importantly, they still simulate 
what the brain does (Bastian, Schöner, & Riehle, 2003; 
O’Reilly, Braver, & Cohen, 1999).

Dynamic field models are an example from this class 
of neural-network models (Schöner, Spencer, & the DFT 
Research Group, 2016; Spencer & Schöner, 2003). 
Dynamic field models simulate the activity of neural 
populations from millisecond to millisecond as the 
model engages in a task. For instance, a researcher 
might show the model a location, have it remember the 
location, and then “point” to the location after a 5-s 
delay. Such models have proven quite effective at cap-
turing both self-sustaining brain activity as well as the 
interesting errors children and adults make in such 
simple tasks (Schutte & Spencer, 2009).

Note that dynamic field models have most often been 
applied to spatial and visual working memory, and the 
remainder of this article will focus on these examples. 
Readers may be familiar with proposals within this 
domain that working memory consists of a limited num-
ber of fixed-resolution representations in independent 
memory “slots” (Luck & Vogel, 1997). An alternative 
view holds that visual working memory is better con-
ceived of as a shared resource that can be flexibly 
distributed among the visual items (Bays & Husain, 
2008). The ideas presented here differ in that I take an 
explicitly neural approach to understanding how the 
brain might implement working memory. Nevertheless, 
there are interesting links to these other views. For 
instance, working memory representations in a dynamic 
field model have an “all-or-none” quality, similar to 
notions that working memory slots are either occupied 
or not (for a detailed discussion of these parallels, see 
Johnson, Simmering, & Buss, 2014).

It is also important to acknowledge that visuospatial 
working memory is only one corner of the working 
memory world. For instance, a large body of research 
has examined the behavioral and neural bases of pho-
nological and verbal working memory (for a review, 
see, e.g., Acheson & MacDonald, 2009). Although many 
of the concepts used here are applicable to this work, 
new concepts are also needed, such as how information 
can be learned in sequence. Dynamic field solutions to 
these issues have been proposed (Sandamirskaya & 
Schöner, 2010), but it remains an open challenge to 
extend the models described herein to this research.

Self-Sustaining Activation as the 
Neural Basis of Working Memory

Figure 1a shows an example of a dynamic field model 
in a spatial working memory task in which participants 
are asked to remember the location of each object.1 
One second after the start of the simulation, the model 
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was shown three objects distributed along the feature 
space (x-axis)—a left object, a center object, and a right 
object. Neural sites in the model are ordered along the 
x-axis according to a functional topography, meaning 
neurons that “prefer” or are sensitive to leftward loca-
tions are on the left side of the axis, whereas neurons 
that prefer rightward locations are on the right side of 
the axis (for a discussion, see Schöner et al., 2016).

In response to these inputs, the model built three 
activation peaks—the three bumps with red on top (red 
indicates more intense brain activity; see z-axis). The 
three objects were visible for 2 s and then hidden for 
the remaining 5-s delay period (y-axis). As can be seen 
in Figure 1, the right peak continued to be active 
through the delay (indicated by the red arrow), whereas 
the left and center peaks decayed away.

Figure 1b shows the state of the dynamic field at the 
end of the simulation to clarify this. The dark blue line 
shows the activation across the field, that is, across all 
spatial positions from 0 to 100, and the height shows 
the activation intensity (y-axis). Note that there is only 
one peak on the right; activation around the left and 
center locations is inhibited.

Why does the peak on the right self-sustain, and why 
do the peaks on the left and center decay away? To 
answer these questions, I need to explain the rules that 
govern how activation evolves in the model from mil-
lisecond to millisecond.2 The first thing that influences 
the activation level at each site in the field (i.e., at each 
spatial position) is the external input to the model. 
Much like in an experiment, I can turn inputs on, boost-
ing the model’s activation level at the left, center, and 
right locations.

What makes dynamic field models—and cortical 
fields in the brain—really interesting is that they can 
be more than just input-driven devices. When activation 
at, say, the center location (50) grows in response to 
input, something special happens as activation goes 
above 0—Neuron 50 starts to “talk” to its local neigh-
bors. The rule specifying how neurons talk to each 
other is shown in Figure 1c. This function specifies that 
when Neuron 50 is active, it excites its local neighbors 
(e.g., neighbors ±10 locations away) and inhibits its 
neighbors far away (see the negative dips under the 
dashed blue line). The function in Figure 1c is called a 
local-excitation/surround-inhibition function, a com-
mon form of neural interaction in the brain (Fuster & 
Alexander, 1971).

Why is this function so important? It keeps activation 
going even when input is removed. In particular, Neu-
ron 50 activates Neuron 51; reversely, Neuron 51 acti-
vates neuron 50.3 If this reciprocal or recurrent 
activation is strong enough, the local peak maintains 
itself even when the input is removed. Importantly, 

surround inhibition keeps the activation contained, 
ensuring that excitation does not spread across the 
entire field (causing a seizure). In summary, local exci-
tation and surround inhibition conspire to keep the 
right peak in Figure 1a active during the delay.

But why do the left and center peaks die out? It turns 
out that there is actually nothing special about the right 
peak in this simulation—what is special here is that the 
field can maintain only one peak. If I run the simulation 
multiple times, sometimes the left peak will stick 
around, sometimes the right peak will stick around, and 
so on.4 Thus, the key question is why only one peak 
can be maintained.

The reason is that neural interactions—specified by 
the interaction function in Figure 1c—are not strong 
enough to keep multiple peaks going. In particular, 
excitation is not strong enough in this case to overcome 
two forms of inhibition. First, neighboring peaks can 
kill one another because they are mutually inhibitory. 
As an example, look at the part of the blue line in Fig-
ure 1b inside the red oval—notice that activation is 
suppressed in this region. This inhibition is coming 
from the right peak. Given this, neurons in the region 
inside the red oval will be slightly less active and 
slightly less likely to keep local excitation going. Evi-
dence from adults shows that such neighborhood 
effects exist in working memory experiments, that is, 
people often forget items that are close together in 
space (Franconeri, Jonathan, & Scimeca, 2010).

The other reason peaks die in Figure 1 is that each 
peak contributes a bit of global inhibition. In particular, 
notice that the function in Figure 1c is slightly negative 
to the far left and right (it is below the dashed line). 
This means that activated sites will excite their neigh-
bors close by, inhibit their neighbors far away, and 
slightly inhibit neighbors very far away. Consequently, 
the peak on the right makes it a bit harder to maintain 
a peak anywhere else in the field. This contributes to 
a capacity limitation in the model—the model can main-
tain only a certain number of peaks ( Johnson, Spencer, 
& Schöner, 2009).

How Does Working Memory Capacity 
Change Over Development?

Now that I have dissected how information is actively 
maintained in working memory via self-sustaining acti-
vation and the origin of capacity limits, let us turn to 
the really interesting question: How does working 
memory capacity change over development? Figures 1d 
and 1g show two additional simulations of the dynamic 
field model. Both simulations implement the same basic 
working memory task—present three objects and remem-
ber them for a delay—but the end result is clearly different. 
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The model in Figure 1d remembers two items after the 
delay, whereas the model in Figure 1g remembers all 
three locations.

What did I change to create this magic? If you look 
closely at the panels in the bottom row—Figures 1c, 1f, 
and 1i—you will see that the height of the interaction 
function is increasing from left to right, that is, local 
excitation is stronger. This subtle change is all that is 
required to boost capacity from one item—akin to the 
working memory abilities of an infant (Figs. 1a–1c; see 
Ross-sheehy, Oakes, & Luck, 2003)—to two items—akin 
to the working memory abilities of a young child (Figs. 
1d–1f; see Simmering, 2016)—to three items—akin to 
the working memory abilities of an adolescent or adult 
(Figs. 1g–1i; see Luck & Vogel, 1997).

This idea has been formalized in the spatial-precision 
hypothesis: Over development, children’s working mem-
ory abilities improve via an increase in the strength of 
local excitation and surround inhibition (Schutte, Spencer, 
& Schöner, 2003). This simple hypothesis is actually the 
first formal proposal for how a neural system can 
increase capacity over development (Simmering, 2016). 
Critically, it also leads to a host of consequences. Peaks 
with stronger neural interactions grow faster; thus, pro-
cessing speeds increase. Stronger peaks are less likely 
to decay; thus, forgetting decreases (Schutte & Spencer, 
2002). Stronger peaks are also less likely to be pushed 
around; thus, memory becomes more accurate with 
fewer systematic biases (Schutte & Spencer, 2009). 
Peaks with stronger interactions are narrower; thus, 
discrimination improves (Simmering & Spencer, 2008). 
Finally, capacity increases as more peaks can be actively 
maintained simultaneously (Simmering, 2016). That is 
a lot of bang for the buck!

But how does all of this happen? Clearly, there is not 
a controller sitting in the brain, turning up the strength 
of neural interactions. One possibility is that this activ-
ity reflects structural changes in the brain such as 
increases in myelination (for a discussion, see Edin 
et al., 2009). Myelin is a fatty insulating layer that sur-
rounds neural fibers, enhancing the efficiency of neural 
conduction. Because myelin makes brain signals more 
efficient, it could effectively increase the strength of 
excitation and inhibition. Although this may contribute 
to some of the changes evident in development, this 
account also raises the question of what causes changes 
in myelination—that is, what causes the cause?

My colleagues and I have pursued an alternative 
possibility (see, e.g., Perone & Spencer, 2013). To 
explain this, I will return to one last detail from the 
dynamic field model—the cyan line in Figure 1b. This 
line shows the long-term memory trace. Long-term 
memory traces in dynamic field models are built from 
peaks of activation: A peak’s emergence slowly boosts 
a connection weight (the cyan line) that strengthens 

the memory trace locally at the peak’s location. Notice 
that the cyan bump is strongest where each working 
memory peak was centered. Memory traces build 
slowly—it takes multiple trials to build a robust memory 
trace. And memory traces decay very slowly—typically, 
the decay time is 10 to 20 times slower than the build 
time. Thus, memory traces implement a form of long-
term memory that builds and decays dynamically with 
experience,5 a bit like a dynamic prior in Bayesian 
approaches in psychology.

Importantly, the memory trace feeds back into work-
ing memory, subtly boosting excitation wherever the 
cyan line is greater than zero. This can lead to priming 
effects—faster reaction times for familiar items—
because peaks will build faster when input matches 
sites with stronger long-term memory traces (Schöner 
et al., 2016). Note that in the simulations shown here, 
I sped the memory traces up quite a bit. With slower 
build and decay parameters, memory traces do a good 
job of capturing a host of behavioral effects (Lipinski, 
Simmering, Johnson, & Spencer, 2010). For instance, 
people in spatial memory experiments learn the distribu-
tion of locations they are asked to remember, and this 
creates a bias in working memory toward the average 
remembered location (Lipinski, Spencer, & Samuelson, 
2010).

Memory traces can also create changes in working 
memory capacity. This is shown in Figure 2. The graphs 
in the left column are the same as the starting points 
in Figure 1, but note the red arrow in Figure 2b—this 
highlights the low memory-trace strength at the start of 
the simulation. The graphs in the middle column show 
the model’s behavior after I gave it 20 trials of experi-
ence and directed it to remember three randomly 
selected locations on each trial. Critically, these loca-
tions were distributed across the spatial dimension (the 
x-axis), effectively smearing the memory trace out over 
many different locations. As can be seen in the graphs 
in the middle column, when I showed it the original 
three objects, it actively remembered two locations 
instead of just one. Note that I did not change anything 
about the model—I simply gave it lots of distributed 
experience—and the model developed a capacity of 
two items. This occurs because the memory trace is 
elevated across most of the field, effectively mimicking 
the increase in excitation I created in Figure 1 by 
increasing the strength of local excitation via the inter-
action function. Now that increase in excitation has 
emerged from the model’s own experience.

The graphs in the right column show what happened 
when I gave the model even more experience—it then 
had a working memory capacity of three items. The arrow 
in Figure 1h again highlights the memory-trace strength, 
showing how this boosts excitation across all spatial loca-
tions. Thus, distributed experience remembering object 
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locations in space leads to an emergent increase in spatial 
working memory capacity.

It is important to highlight that distributed experi-
ence is critical. If I simply showed the model the same 
three locations over and over, it would develop a great 
working memory for those three locations, but peaks 
associated with other locations would collapse because 
there would be only a weak excitatory long-term mem-
ory boost at those sites. Along continuous dimensions 
such as direction, distance, color, and orientation, dis-
tributed experience is likely the norm. Thus, these 
simulations point toward a general mechanism for how 
the accumulation of experience can drive developmen-
tal changes in working memory capacity.

Let me also emphasize that this is just a toy example 
given that I have made the memory traces unrealisti-
cally fast. My colleague and I have shown, however, 
that this basic explanation does, in fact, quantitatively 
model longitudinal developmental data in infancy (Per-
one & Spencer, 2013). In that simulation experiment, 
we gave our model 300,000 time steps of visual explor-
atory experience to simulate a few months of develop-
mental time. This was sufficient to simulate developmental 
changes in visual processing speed. Decay was present 
in this model, but it was very slow. This enabled the 
long-term memory traces to gradually build over several 
months of experience.

Notably, we also showed in this simulation experi-
ment that we could simulate individual differences in 
development. In particular, we initialized our model 
with very weak neural interactions, which did a good 
job of capturing the behaviors of preterm infants. 
Importantly, the preterm model developed more slowly 
even when given the same chances to explore the 
visual world. This reproduced longitudinal data from 
preterm infants.

Finally, we implemented an intervention in the 
model: After 150,000 time steps, we helped the preterm 
model by occasionally giving it a bit more input at 
whatever object location it happened to be looking 
(Perone & Spencer, 2013). Conceptually, this is similar 
to approaches used in intervention studies that have 
trained caregivers to follow what their infants are look-
ing at and to help them sustain looking to these objects 
by holding the object, talking about the object, and so 
on. After several months of the intervention, the 
dynamic field model showed an advancement in speed 
of processing that was closer to the behavior of our 
term model—the intervention worked.

Conclusions

Working memory is a central cognitive system that 
changes dramatically over development with far-reaching 

consequences. In this article, I have highlighted work that 
integrates neural and behavioral findings using a type of 
neural-network model. This modeling work explains how 
the brain implements sustained activation, how these 
mechanisms give rise to capacity limits, and how capacity 
limits change over development as generalized experi-
ence accumulates. Critically, this account has explained 
a host of behavioral and neural findings, including several 
novel predictions ( Johnson, Spencer, Luck, & Schöner, 
2009).

What does the future hold? At present, my colleagues 
and I are pursuing two key issues. The first is to better 
understand the neural changes that underlie the early 
development of working memory. On this front, we have 
recently proposed ways to simulate brain data directly 
from dynamic field models, opening up tests of this 
modeling framework using functional MRI (Wijeakumar, 
Ambrose, Spencer, & Curtu, 2017) and, early in develop-
ment, functional near-infrared spectroscopy (Wijeakumar, 
Kumar, Reyes, Tiwari, & Spencer, 2019).

The second direction is to capitalize on the promise 
of using neurocomputational models as intervention 
tools. Here, a first step is to understand how working 
memory measured in the laboratory relates to how 
working memory is deployed in the real world in, for 
instance, dyadic exchanges between caregiver and 
infant. Although this work is still in its early stages, we 
hope to use such information to guide and optimize 
dyadic clinical interventions.

For instance, in newer work, my colleagues and I 
developed a dyadic dynamic field model in which we 
can simulate both the caregiver and the infant because 
the models share the same virtual world (Perone, Aneja, 
& Spencer, 2020). This has allowed us to tune the care-
giver model to match the working memory abilities of 
the caregiver and tune the infant model to match the 
working memory abilities of the infant. We can then 
simulate candidate interventions. What if this caregiver 
helped the infant dwell on objects by picking them up 
routinely and shaking them? Alternatively, perhaps the 
infant needs help releasing fixation after a minute or 
two of sustained attention to an object. And might the 
caregiver benefit from a visual or auditory reminder to 
help support his or her working memory abilities? An 
advantage of having a model is that we can implement 
all of these candidate interventions to see which ones 
lead to the best outcomes, that is, the most robust work-
ing memory development for the child.

The best candidate intervention could then be imple-
mented, with the model making step-by-step predictions 
about how the intervention should change working 
memory over time. These constitute predictions that can 
be tested as the intervention proceeds. In this way, one 
can intervene dynamically rather than implementing a 
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one-size-fits-all intervention that can be evaluated only 
after the intervention is complete. We think this could 
revolutionize clinical interventions with young children.
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Notes

1. Simulation code and instructional videos are available at 
www.dynamicfieldtheory.org.
2. By “rules,” I mean the mathematical equation that specifies 
how the model evolves through time.
3. Note that the red line in Figure 1b indicates which neurons 
are above threshold (above zero) and are, therefore, sharing 
local excitation.
4. You can try this online at www.dynamicfieldtheory.org.
5. This implementation of long-term memory connects our the-
ory (see, e.g., Perone & Spencer, 2013) with recent ideas regard-
ing “active” long-term memory (e.g., Oberauer & Lin, 2017).
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