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Word-Object Learning via Visual Exploration in Space (WOLVES):
A Neural Process Model of Cross-Situational Word Learning
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Infants, children, and adults have been shown to track co-occurrence across ambiguous naming situations to
infer the referents of new words. The extensive literature on this cross-situational word learning (CSWL)
ability has produced support for two theoretical accounts—associative learning (AL) and hypothesis testing
(HT)—but no comprehensive model of the behavior. We propose Word-Object Learning via Visual
Exploration in Space (WOLVES), an implementation-level account of CSWL grounded in real-time
psychological processes of memory and attention that explicitly models the dynamics of looking at a
moment-to-moment scale and learning across trials. We use WOLVES to capture data from 12 studies of
CSWL with adults and children, thereby providing a comprehensive account of data purported to support
both AL and HT accounts. Direct model comparison shows that WOLVES performs well relative to two
competitor models. In particular, WOLVES captures more data than the competitor models (132 vs. 69 data
values) and fits the data better than the competitor models (e.g., lower percent error scores for 12 of 17
conditions). Moreover, WOLVES generalizes more accurately to three “held-out” experiments, although a
model by Kachergis et al. (2012) fares better on another metric of generalization (Akaike Information
Criterion [AIC]/Bayesian Information Criterion [BIC]). Critically, we offer the first developmental account
of CSWL, providing insights into how memory processes change from infancy through adulthood.
WOLVES shows that visual exploration and selective attention in CSWL are both dependent on and
indicative of learning within a task-specific context. Furthermore, learning is driven by real-time synchrony
of words and gaze and constrained by memory processes over multiple timescales.

Keywords: cross-situational learning, word learning, neural process model, dynamic field theory (DFT),
attention and memory

Words are the building blocks of language. Thus, word learning
forms a central challenge in language acquisition. The difficulty of
this challenge becomes apparent while attempting to make sense of
people conversing in an unknown language. In such a conversation,
every spoken word can potentially refer to a seemingly infinite set of

referents, thus challenging the learner to determine and learn the
speaker-intended mapping (termed the indeterminacy of reference
problem; Quine, 1960). Furthermore, the size of the vocabulary to
learn and retain over multiple learner–environment interactions is
very large. Despite these difficulties, humans are adept at acquiring
vocabulary from infancy, and do so at a remarkable speed. By
2 years of age, infants are typically well skilled and efficient at word
learning (Bloom, 2000; Fenson et al., 2007; McMurray, 2007)
quickly mapping a word to its correct referent in relatively few
learning trials (e.g., Carey & Bartlett, 1978, but, see Bion et al.,
2013; Kalashnikova et al., 2018; Kucker et al., 2015; Horst &
Samuelson, 2008 and Kucker et al., 2015 for recent qualifications
of this ability). In fact, by age six, children know approximately
14,000 words (Templin, 1957), many learned from hearing other
people use them in noisy and ambiguous contexts (Carey, 1978;
Gaskell & Marslen-Wilson, 1999; Newman & Hussain, 2006).
Word knowledge estimates jump to numbers ranging from
50,000 to 100,000 distinct words in adulthood (Bloom, 2000).

How do children learn and retain this large vocabulary from often
ambiguous day-to-day conversational data? There is structure in the
way words and objects co-occur in our daily conversations, espe-
cially with infants: Words more often co-occur with their referents
than with other objects. Learners can therefore capitalize on this
word–referent co-occurrence to infer the intended referent of a word.
This ability is often termed cross-situational word learning (CSWL;
Gleitman, 1990; Pinker, 2009). The first empirical results showing
that children could learn words by tracking information across

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Ajaz A. Bhat https://orcid.org/0000-0002-6992-8224

John P. Spencer https://orcid.org/0000-0002-7320-144X

Larissa K. Samuelson https://orcid.org/0000-0002-9141-3286
This research was supported by HD045713 awarded to Larissa K.

Samuelson. The content is solely the responsibility of the authors and
does not necessarily represent the official view of the National Institutes
of Health (NIH). The authors wish to thank Teodora Gliga for helpful
comments on an earlier version of this article andWill Penny for checking the
AIC/BIC formulas. The authors greatly appreciate timely help from George
Kachergis, John Trueswell, and Charles Yang with details of the implemen-
tation of their models. Simulations presented in this article were carried out
on the High-Performance Computing Cluster supported by the Research and
Specialist Computing Support service at the University of East Anglia.
Some of the ideas and data in the article have been presented as nonarchival

material at multiple prior conferences and meetings in the form of posters,
symposiums, and talks. The authors have no conflict of interest to disclose.
Correspondence concerning this article should be addressed to Larissa

K. Samuelson, School of Psychology, University of East Anglia, 0.09
Lawrence Stenhouse Building, Norwich, NR4 7TJ, United Kingdom.
Email: l.samuelson@uea.ac.uk

Psychological Review

© 2021 American Psychological Association
ISSN: 0033-295X https://doi.org/10.1037/rev0000313

1

https://orcid.org/0000-0002-6992-8224
https://orcid.org/0000-0002-7320-144X
https://orcid.org/0000-0002-9141-3286
mailto:l.samuelson@uea.ac.uk
mailto:l.samuelson@uea.ac.uk
mailto:l.samuelson@uea.ac.uk
mailto:l.samuelson@uea.ac.uk
https://doi.org/10.1037/rev0000313


multiple separately ambiguous occasions came from Akhtar and
Montague (1999). However, a set of articles from Yu and Smith
(2007; Smith &Yu, 2008) sparked the recent explosion of interest in
CSWL. Yu and Smith (2007) presented adults (and later infants, see
Smith & Yu, 2008) with a number of novel objects and an equal
number of novel names, with no other clue about correct word-
object mappings. Across several trials, however, a word and its
“true” referent always co-occurred while the co-occurrence of all
other word-object pairs was lower. Following these training trials,
participants showed above-chance accuracy when asked to select a
word’s referent from a set of possible choices, suggesting cross-
situational statistics were sufficient to support learning.
Statistical learning, the detection and extraction of reliable pat-

terns in the stream of incoming sensory inputs, has been shown to
operate over different linguistic subdomains such as word segmen-
tation (Estes et al., 2007), and voice-pitch tracking (Saffran et al.,
2005; Saffran & Thiessen, 2003), in addition to other nonlinguistic
modalities and types of stimuli including shapes (Fiser & Aslin,
2001), scenes (Brady & Oliva, 2008), tactile stimuli (Conway &
Christiansen, 2005), and spatial locations (Mayr, 1996). Furthermore,
recent studies exploring the underlying structure in audio and video
recordings of infants in common everyday activities reveal significant
structure in the word-object co-occurrence data outside of the labora-
tory (Frank et al., 2009; Yu, 2008; Yu & Ballard, 2007; Yu et al.,
2005; Yu& Smith, 2012; Yurovsky, Smith &Yu, 2013). But, what is
the nature of the statistical computations that support this learning?
The literature suggests two alternatives: hypothesis testing (HT)

and associative learning (AL). Table 1 summarizes 19 existing
models in the CSWL literature. Models are grouped according to
theoretical accounts—HT, AL, and models that integrate both
perspectives (Mixed). The table compares models in terms of
Input—the form of data the model processes, for example, sub-
symbolic data such as human utterances or artificially generated
symbolic stimuli, and the computational Formalism that the model
uses, for example, connectionist or Bayesian. The table also high-
lights key model features, the main constraints or biases the model
assumes, the experimental data and key behaviors it captures, its
main implications, and some of its limitations. Below, we evaluate
these models and the theoretical accounts they formalize.

Hypothesis Testing Accounts

HT accounts of CSWL suggest that learners form a single
hypothesis about word-object mappings on each presentation that
is either verified by later consistent encounters or disconfirmed
causing the learner to build and test a new hypothesis (Medina et al.,
2011; Trueswell et al., 2013). For example, Trueswell et al. (2013)
exposed adult participants to a set of everyday objects and a novel
word and asked them to choose the most likely referent. If learners
responded incorrectly to a given word, they were found on later
trials to be equally likely to choose any of the alternatives, even
though some of those alternatives had co-occurred with the tested
word in prior trials and were, therefore, more likely candidates for
the word. Trueswell et al. (2013) interpreted this finding as showing
that participants had not tracked multiple possible referents for a
given word, as they did not have a preferred second choice. This
argument was also supported by eye-tracking data showing that
participants did not look significantly more at the statistically more

frequent alternative referent (but, see Roembke & McMurray, 2016
for conflicting data). It appeared that learners simply restarted from
scratch if their previous guess was wrong. Using a similar paradigm
with 2- and 3-year-old children, Woodard et al. (2016) concluded
that children also hypothesize a single meaning that is tested on
subsequent encounters.

HT models represent word learning as an instance-by-instance
selection, induction, and inference computation, guided by (pre-
sumably) built-in language-specific constraints such as one-trial fast
mapping (Trueswell et al., 2013), mutual exclusivity (Markman,
1990), or the novel name–nameless category principle (Golinkoff
et al., 1994). These constraints help limit the set of possible initial
hypotheses about a word’s correct referent. For example, Trueswell
et al.’s (2013) Propose-but-Verify (PbV) model stores only one
hypothesized mapping for a word at the first instance. This hypoth-
esis is recalled with some probability when the same word is
encountered again and is compared against the currently available
referent set. If the hypothesized referent is present, the model infers
the hypothesis is correct and stores it with an increased probability
for recall. Otherwise, the model removes the current hypothesis
from memory and makes a new hypothesis by selecting one from
any of the available referents at random.

A strength of HTmodels is that they are memory efficient, storing
a limited number of associations per word. More importantly, HT
models highlight referent selection as a core process which makes
the model an active learner whose selection decisions impact its
future learning (shown empirically by Trueswell et al., 2013). HT
models are limited, however, in that forming a single hypothesis
means missing a lot of structure in the data; for example, HT models
cannot learn homophones (Stevens et al., 2017). HT models often
require that strong constraints like mutual exclusivity or N3C
preexist, and these models are specified at a computational, rather
than process, level. Furthermore, to date, HT models of CSWL have
been applied to either artificially generated corpuses (Najnin &
Banerjee, 2018; Siskind, 1996; see Table 1), small sets of utterances
(Frank et al., 2009; Sadeghi et al., 2017), or a single empirical study
(Trueswell et al., 2013). Thus, although these models demonstrate
the possibility that HT could be used to learn multiple word-object
mappings, they have not been generalized widely across studies.
Furthermore, these models have not been applied to the range of
infant studies that have demonstrated the importance of basic cogni-
tive processes such as visual exploration (Yu& Smith, 2011; Smith &
Yu, 2013) or memory (Vlach & Johnson, 2013) in CSWL.

Associative Learning Accounts of Cross-Situational
Word Learning (CSWL)

In contrast to HT accounts, AL accounts suggest that learners
store information about the multiple possible word–referent map-
pings that are available in each word-learning situation (Smith,
2000; Yu, 2008). Correct mappings then emerge from strengthening
and weakening of associations over repeated exposures. These
accounts, therefore, suggest that CSWL is a gradual, parallel
accumulation of statistical regularities in the input as information
about multiple word-object co-occurrences are tracked simulta-
neously (Yu & Ballard, 2007; Yu & Smith, 2007). For example,
Suanda et al. (2014) exposed children to a set of novel images and
words with two pairings per trial while varying the frequency with
which a word co-occurred with a distracter in training. They found
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that children’s learning of a word was directly proportional to the
frequency of its co-occurrence with a target image (and inversely
proportional to distracter frequency). Suanda et al. (2014) con-
cluded that children’s responses reflected an accumulation of the
statistical structure of the learning environment. Similarly, Yu and
Smith (2007) controlled within-trial uncertainty in their study with
adults by varying the maximum possible word-object associations
per trial from 4 to 16. Adults’ performance at test was directly
related to within-trial uncertainty. Yu and Smith (2007) suggested
that adult performance reflected the statistical structure in the input
capped by the real-time processing demands of limited attention and
memory.
The core of AL models of CSWL is a set of mappings between

words and referents with strengths that, over trials, come to reflect
the statistical structure in the input data (Kachergis et al., 2012;
Räsänen & Rasilo, 2015; see Table 1). Most AL models, however,
bias this statistical accumulation over trials using cognitive con-
straints of attention, memory, prior knowledge, and so on (Table 1).
For example, a very successful biased AL model proposed by
Kachergis et al. (2012, 2013, 2017) distributes attention among
possible associations in a trial based on a competition between a bias
toward known associations (prior knowledge) and a bias toward
unknown stimuli (novelty). This allows the learning of multiple
associations for each word (or object). These associations are also
modified by memory decay that diminishes highly infrequent
associations over trials. Together these computations enable the
model to retain the “essential” statistical structure in the input. This
constrained associative learning allows the model to capture, for
example, the role of sensitivity to variance in CSWL input frequency
(Kachergis et al., 2017) and relaxing of mutual exclusivity
(Kachergis et al., 2012) seen in adult studies of CSWL.
Some AL models have been formulated with reference to psy-

chological processes of attention and memory, such as Kachergis
et al. (2012) and Nematzadeh et al. (2012; see Table 1). Another
strength is that AL models preserve multiple associations to learn
homophones and even show the emergence of constrains like mutual
exclusivity (Fazly et al., 2010; Kachergis et al., 2012; Yurovsky
et al., 2014). However, AL models lack any form of selection
process which is necessary to unpack how decision making unfolds
during learning. Furthermore, like HT models of CSWL, the
majority of AL models have been developed in the context of,
and applied to, single empirical studies (see Yu & Ballard, 2007;
Yurovsky et al., 2014 in Table 1) or limited sets of data such as
small utterance corpuses rather than the results of empirical studies
(see Fazly et al., 2010; Yu & Smith, 2011; Nematzadeh et al., 2012
in Table 1). A few AL models have captured data from multiple
studies (Bassani & Araujo, 2019; Kachergis et al., 2012, 2013,
2017; Räsänen & Rasilo, 2015), suggesting that they are better able
to generalize across specific CSWL paradigms. Yet, although
promising, no AL model has been applied to the full range of
CSWL studies from infants to adults, and thus, no AL account has
explained changes in CSWL over development.

Mixed Hypothesis Testing/Associative Learning Models

Several recent models bridge the HT and AL distinction by
combining aspects of AL with constraints on how candidate re-
ferents are selected (see Mixed Models in Table 1). For example,
Stevens et al. (2017) proposed a HT model that uses an AL

mechanism to weigh the different hypotheses at each instance of
the word-learning task. In this model, a word is only added to the
model’s lexicon if the conditional probability of its hypothesized
referent exceeds a threshold value. As a second example, Kachergis
and Yu (2018) extended their biased AL model (Kachergis et al.,
2012) with a probabilistic selection computation that makes uncer-
tain responses at every word learning instance. This allows the
model to capture participant accuracy and uncertainty on learning
trials which is not possible with the original AL model. Similarly,
Yurovsky and Frank’s (2015) model incorporates a parameter to
control how attention (or intention) is distributed across associa-
tions. At one extreme of this parameter, this model can focus
attention narrowly and behave in an HT fashion. At the other, it
can distribute attention and behave more like an ALmodel; although
a midrange value of this parameter fit participant data best
(Yurovsky & Frank, 2015).

Similar to HT and AL models, a number of mixed models have
been applied to small artificial data sets (see Fontanari et al., 2009;
Taniguchi et al., 2017 in Table 1), or single empirical studies (Smith
et al., 2011; Kachergis & Yu, 2018, Yurovsky & Frank, 2015 in
Table 1). Nevertheless, some models that bridge HT and AL, such
as Stevens et al. (2017), provide more coverage of the literature,
suggesting the possibility that the full breadth of CSWL findings
might only be captured by an approach that blends aspects of HT
and AL.

But are mixedmodels the best way forward? Yu and Smith (2012)
demonstrated that depending on the specific information selection
and decision computations employed, a model with an AL core can
perform strict HT and vice versa. Yu and Smith (2012) concluded
that the debate between HT and AL in the context of statistical word
learning is not well formed because accounts to date have been
proposed at what Marr (1982) called the “‘computational”’ level—
dealing only with the nature of the information available to the
learner—and not at the “algorithmic” level (or below) to explicitly
specify the (neural) representations and psychological processes used
to build and manipulate those representations (Smith et al., 2014).

Beyond Hypothesis Testing and Associative Learning:
Implementing a Different Approach

Inspired by Yu and Smith (2012), the overarching goal of the
present article is to propose an implementation-level theory that is
comprehensive and takes time seriously—real time (millisecond by
millisecond), learning time (trial to trial), and developmental time
(from infancy into adulthood). This goal is motivated by prior
empirical work showing that time matters for what is learned at
the level of real-time looking behaviors, trial-to-trial task structure,
and over the longer timescale of development. We are also motivated
by the fact that although there are numerous models of CSWL, the
field lacks a consistent narrative linking the influence of cognitive
processes across CSWL tasks, behaviors, and participant populations.

A growing body of data demonstrate that real-time selection and
visual exploration matter for learning in CSWL. We seek to explain
why and to unpack the processes involved. For example, we know
that infant learning in CSWL tasks is affected by the patterns of
looking demonstrated during training: Strong learners tend to have
fewer longer looks while weak learners have more shorter looks
(Colosimo et al., 2020; Yu & Smith, 2011). No models explain how
these looking patterns—these real-time shifts of attention—are
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generated or provide a mechanistic account of how they influence
learning.
The literature also demonstrates that the order of training trial

matters for what is learned. If trials are structured such that objects
repeat from trial to trial, 12- to 14-month-old infants habituate to
repeating items and learn less (Smith & Yu, 2013). Furthermore,
studies examining the influence of massed versus interleaved pre-
sentation show differential effects over learning. Vlach and collea-
gues have found that 16-month-old toddlers learn best when there is
little delay between the presentations of a word-object pair in a
CSWL task, while 20 month old’s learn best with more delay
(Vlach & DeBrock, 2017, 2019; Vlach & Johnson, 2013).
Benitez et al. (2020) found that 4- to 7-year-old children learned
equally successfully with massed or interleaved presentation while
adults benefited substantially from massed object presentation (see
also, Kachergis et al., 2009; Smith et al., 2011; Yurovsky & Frank,
2015). In all of these cases, what people learn over time is affected
by the trial sequence because the sequence of trials changes what
learners do over time on each trial.
This creates an important distinction because many models in the

literature conceptualize each trial in a “one-shot” manner. For
example, in Kachergis et al.’s (2012) model, attention is distributed
via normalization across a set of stimuli. This requires that the
learner knows the set of objects and words to be presented up front
so the model can make a single computation over these stimuli on
each trial. If real-time processes constrain what is learned, theories
that simplify these processes into a single “shot” are limited.
We also seek to capture developmental differences in CSWL.

Although few studies directly compare the performance of adults
and children in the same task (see Benitez et al., 2020; Bunce &
Scott, 2017; Fitneva & Christiansen, 2017, for exceptions), it is clear
from the literature that there are developmental differences in
CSWL. In addition to the example of massed or interleaved
presentation above, adults and children differ in the influence of
initial accuracy on final learning outcome. Fitneva and Christiansen
(2017) found that 4-year-old children’s learning outcome was best
when their initial accuracy on a subset of word–referent pairings was
high, 10-year-old children’s outcome was similar when initial
accuracy was high or low, and adults did best when initial accuracy
was low. As a second example, Vlach and DeBrock (2017) have
related differences in CSWL performance in a group of 2.5- to
6-year-old children to differences in memory abilities. No current
models have explained these developmental effects. It is certainly
fine for theories to focus only on adult (or child) data, but if a theory
can reach into development and offer a systematic account of such
differences, such a theory would be notable in moving beyond
current accounts.
Finally, we seek to provide a comprehensive theory of CSWL that

explains multiple findings from multiple paradigms/tasks. Most
prior models reproduce only a handful of empirical results from
the CSWL domain (see Table 1). Furthermore, previous models fit
parameters to each task or condition individually without any
restrictions as to how parameter changes are made from report to
report (Fazly et al., 2010; Kachergis et al., 2012). Thus, there is
currently little theoretical specification of why parameter values
change across tasks, even for the same group of participants. In this
context, our goal is to test a theoretical account of CSWL
by simulating data from 12 experiments including data from
infants, young children, and adults across a variety of task

procedures—ideally with a constrained parameter set. We also
seek a theory that compares favorably to current models. Thus,
in addition to simulating our own model, we fit the same data with
two other models from the literature, comparing results using
multiple metrics including mean absolute percentage error
(MAPE), the Akaike Information Criterion (AIC), and the Bayesian
Information Criterion (BIC). These latter two criteria penalize more
complex models such as ours. We also probe the generalizability of
the models using the generalization criterion methodology (GNCM)
proposed by Busemeyer and Wang (2000).

Because we seek to ground our understanding of CSWL in terms
of the real-time processes that underlie memory, attention, and the
building of word-object associations, our model—Word-Object
Learning via Visual Exploration in Space (WOLVES)—is built
from two previously established process models: one on word-
object association mapping (Samuelson et al., 2011, 2013) and the
other on visual attention and memory (Johnson, Spencer, Luck, &
Schöner, 2009; Perone & Spencer, 2013a, 2013b; Schneegans,
Spencer, & Schöner, 2016). As we will demonstrate, the integration
of these models provides a process-level account of CSWL that
simulates in-the-moment visual behaviors and trial-by-trial looking
and learning, mechanistically explaining differences across tasks
and over development. Furthermore, the theoretical framework
WOLVES is embedded within—Dynamic Field Theory (DFT)—
offers a neurally grounded set of concepts for understanding the
emergence of cognition in embodied systems (Schöner et al.,
2016), and provides direct connections to related processes such
as visual working memory (VWM), visual search, visual explora-
tion, and word-learning biases.

We start the present report by introducing WOLVES via an
overview of the two prior models upon which it is based (a more
detailed introduction to the core concepts of DFT is provided in
Appendix A). We then detail the WOLVES architecture, stepping
through how the model captures the cycles of autonomous looking
in real time (millisecond by millisecond), and how these cycles map
words and object features together from trial to trial over learning.
This includes a discussion of both bottom-up and top-down influ-
ences in the model, that is, how looking structures word-object
learning (WOL) and how WOL influences looking. Simulations of
the model show how the time-extended nature of learning in CSWL
tasks has implications for both the AL versus HT debate and our
understanding of how contextual factors and individual differences
shape performance in the task.

We then establish that WOLVES is a comprehensive theory of
CSWL via quantitative simulations of data from 12 studies of
CSWL. This includes adult studies purported to support both sides
of the AL versus HT debate, as well as developmental studies which
have not been the focus of prior modeling work. We show that
WOLVES compares favorably to two other models by simulating the
same set of experiments with models from Kachergis et al. (2012)
and Stevens et al. (2017). This model comparison highlights that
WOLVES captures more data from the literature (132 data values vs.
69 for the comparator models), captures the same data more accu-
rately (i.e., lower percent error scores in 12 of 17 conditions),
generalizes more accurately to 3 “held out” experiments, and pro-
vides the only systematic account of development. In terms of overall
model evaluation metrics (AIC/BIC), however, the Kachergis et al.’s
model fares better.We conclude with a discussion of the key findings
from the model comparison exercise as well as broader implications
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of WOLVES, highlighting several future directions for this line of
work including the tests of novel predictions.

Word-Object Learning via Visual Exploration in Space

DFT is a framework that provides an embodied, dynamic systems
approach to understanding and modeling cognitive-level processes
and their interaction with the external world via sensorimotor
systems (Schöner et al., 2016; Spencer & Schöner, 2003). DFT
has been used to test predictions about early visual processing,
attention, working memory, response selection, spatial cognition,
and word learning (Erlhagen & Schöner, 2002; Johnson, Spencer, &
Schöner, 2009; Samuelson et al., 2009, 2011; Schutte & Spencer,
2009) at behavioral and brain levels using multiple neuroscience
technologies (Bastian et al., 2003; Buss et al., 2021; Erlhagen et al.,
1999; Markounikau et al., 2010; McDowell et al., 2002). Because
learning in CSWL scenarios is directly related to these cognitive
processes, DFT offers a good framework for understanding how
these processes come together in the CSWL task.
Figure 1 shows a schematic of WOLVES. The model integrates

the –WOL model shown in green (Samuelson et al., 2011, 2013)
with a model of visual exploration in space (VES) shown in red
(Schneegans, Spencer, & Schöner, 2016). These two models share the
common elements in the overlapping shaded boxes (aspects of spatial
working memory [SWM] and a scene representation). Note that the
VES model is also an integrative model in its own right, bringing
together earlier models of the neural processes that operate in early
visual processing (Jancke et al., 1999; Markounikau et al., 2008),
models of spatial attention (Schneegans et al., 2014; Wilimzig et al.,
2006), a model of VWM (Johnson, Spencer, Luck, & Schöner, 2009;
Perone & Spencer, 2013a, 2013b), and a model of SWM (Schutte
et al., 2003; Schutte&Spencer, 2009). Thesemodels are integrated in a
way that is consistent with neural evidence for dorsal (“where” or
“how”) and ventral (“what”) pathways in the brain (Deco et al., 2004;
Hickok & Poeppel, 2004; Schneegans, Spencer, & Schöner, 2016).
To make our discussion of WOLVES as simple as possible we

first describe the architecture and functionality of the two compo-
nent models—WOL and VES—before discussing their integration.
We keep this discussion brief as these models have been presented

elsewhere (Johnson, Spencer, Luck, & Schöner, 2009; Perone &
Spencer, 2013a, 2013b; Schneegans, Spencer, & Schöner, 2016;
Samuelson et al., 2011, 2013). Readers unfamiliar with DFT may
find the primer in Appendix A to be a useful starting point.

The Word-Object Learning (WOL) Model

The core elements of the WOL model are shown in the top panel
of Figure 2; two one-dimensional (1D) dynamic fields (DFs)—word
and spatial attention (part of a SWMmodel, see Schutte & Spencer,
2009)—and two two-dimensional (2D) fields—a scene representa-
tion field (aka scene attention) and a word–feature binding field. The
final layer is the memory trace of word–feature associations which is
the primary contributor to word learning over trials.

The word field captures the representation of external word input,
that is, which word is presented to the model. Note that words in this
model are represented as abstract units (a layer of discrete nodes as
in many connectionist models) rather than as a sequence of auditory
inputs. The activation peak shown in the field (blue line) indicates
that the “dax” (arbitrarily assigned to Unit 12) has been activated in
response to input. Note that the red line indicates which unit is above
a threshold value (activation = 0). Only neurons that are above
threshold contribute to neural interactions within and between layers
(see Appendix A for overview and sigmoid function in Appendix B
for details).

Visual stimuli are input to the scene attention field. Here, each
field site is “tuned” to a particular object feature (color in Figure 2)
at a specific location in the scene (e.g., left or right in horizontal
space). Thus, each neuron in the 2D scene attention field has a
predefined tuning curve, and the neurons are arranged such that
neurons with similar tuning curves are near one another. Concretely,
neurons that “prefer” orange items on the left will be nearby neurons
that “prefer” red items on the far left. Activation in the 2D field is
captured by the color scale with “hotter” colors indicating more
intense activation. The red hot spot in the scene attention field
indicates that a peak has formed from the detection of the blue item
to the right. The scene attention field also has activation on the left
caused by the red item, but this activation profile is weaker/less
intense.
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Figure 1
Schematic of WOLVES

Note. WOLVES integrates two previous models: The Word-Object Learning (WOL; Green Box) model and the Visual
Exploration in Space (VES; Red Box) model. The VES model is also an integration of earlier models of visual processing,
including models of the neural dynamics in early visual fields, spatial attention, visual working memory (VWM) and spatial
working memory (SWM). WOLVES Word-Object Learning via Visual Exploration in Space. See the online article for the
color version of this figure.

8 BHAT, SPENCER, AND SAMUELSON



T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Figure 2
Operation of the WOL Part of the Model

Note. In the top panel, input from the word field and scene attention field intersect in the word–feature field and form a new memory trace
(indicated by the yellow arrow) in the memory trace field. The bottom panel shows a later time point when the word corresponding to this trace is
again presented to the model. The word input activates the trace forming a peak that signifies a recall of the encoded association and drives
attention to the corresponding object. WOL = word-object learning. See the online article for the color version of this figure.

A NEURAL PROCESS MODEL OF CSWL 9



The reason that the activation associated with the blue item is more
intense is that the scene attention field is reciprocally coupled to the
spatial attention field. This is a “winner-take-all” field, that is, there
can only be one focus of attention (one peak) at any moment in time.
Here, “winner-take-all” refers to the “rule” governing how neural
activation changes from millisecond-to-millisecond. In particular,
above-threshold neurons that are close to one another are mutually
excitatory, while above-threshold neurons that are far apart are
mutually inhibitory. In some fields, inhibition follows a Gaussian
rule, so there is an inhibitory trough around each excitation peak. In a
“winner-take-all” field, inhibition is global; this suppresses activation
everywhere except at the center of excitation, ensuring, for instance,
that there is only one attentional focus at each moment in time.
As seen in the spatial attention field, the model is currently

attending to the right item (see blue activation curve). Consequently,
the spatial attention field passes a “ridge” of activation into the scene
attention field at the right location. This vertical ridge (the blurry
blue line in the scene attention field) boosts the activation of the blue
item, leading to selection of this item in scene attention. That is, as
excitation was approaching threshold in the attention layer, random
fluctuations caused some neurons to go above threshold, engaging
local excitation and causing a peak to emerge. Thus, there is nothing
special about the blue item in this example; rather, neural noise
helped the model select the blue item in spatial attention.
Object selection in the scene attention field causes a horizontal

ridge of activation at the feature value of the attended object (blue in
this case) to be passed to the 2D word–feature field (see leftward
green arrow). The word–feature field also receives vertical ridge
input from the 1D word field after it has detected the presence of the
word input (“dax”; see downward green arrow). If ridges from the
scene attention field and the word field overlap through time, their
intersection will form a peak in the word–feature field (red dot in the
word–feature field).
The word–feature peak engages the last piece of the

architecture—the memory trace layer (see yellow arrow). In partic-
ular, when a peak goes above threshold in the word–feature field, it
leaves a trace at the associated position in the memory layer.
Memory traces are association strengths that vary between 0 and
1, much like a connection weight in a connectionist model. This
enables learning of word–feature mappings, that is, which object
features go with each word. Note that there are many localized
memory traces in the word–feature memory trace layer as this
exemplary simulation is multiple trials into a word-learning para-
digm. To anticipate the discussion below, it is useful to highlight
here that many of the words have memory traces for multiple object
features. Similarly, the same object features have memory traces
linked to multiple words.
What is the function of these memory traces? Because the

memory trace layer and the word–feature field are bidirectionally
coupled, the memory trace can impact real-time “decisions” in the
word–feature field. This is evident if we run the simulation in a
different scenario. Rather than starting with a visual input and an
auditory word, we can present a word and ask the model to pick from
one of two objects in the task space. This is shown in the lower panel
of Figure 2. Here, we present a word (again, the “dax” or Unit 12);
we also boost the resting level of the word–feature field to bring the
influence of the memory traces closer to threshold (activation = 0).
Consequently, the strongest memory trace associated with the
word pierces threshold (see yellow arrow), forming a peak in the

word–feature field. This sends a horizontal ridge to the scene
attention field (see rightward green arrow), amplifying the feature
that matches the recalled item. This causes the model to form a peak
in the scene attention field and drives attention to the right item,
effectively choosing this item as the object that matches the word.

Note that associations in the memory trace layer build over a
slow, learning timescale that is typically several times slower than
the “real” or millisecond timescale of the activation dynamics in the
neural fields. In addition, memory traces decay over a very long
timescale. For a detailed overview of these memory trace dynamics,
see Appendix A.

The Visual Exploration in Space (VES) Model

The four panels of Figure 3 show the architecture and function-
ality of the VES model. As shown in the schematic of WOLVES in
Figure 1, VES shares two fields with the WOL model—the scene
attention field and the spatial attention field. The other parts of this
model capture how visually presented items become part of a scene
representation, that is, how lower-level features are perceived in a
retinal frame of reference and become “bound” together in a scene
representation. The model also captures the reverse operation—how
items at the level of the scene representation are selected such that an
eye movement can be directed to the item’s location in the world.

In the top-left panel, stimuli (see visual display) are input to the
VES model via a 2D visual field that responds to the presence of
visual features (e.g., color) at particular locations on the retina. The
two ovals in the visual field show the activation produced by the
visual display after the first few milliseconds when the display is
turned “on.” The visual field passes activity to a retinal spatial
attention field, as well as three 1D fields along a feature (e.g., wm f,
con f, and atn f) and a spatial (wm s, con s, and atn s) pathway.
Attention Fields (atn s and atn f) represent what object the model is
currently attending to in terms of its spatial position (atn s) and its
feature (atn f). Working Memory Fields (wm s and wm f) maintain
short-term memories of the spatial locations and features of objects
the model has recently attended.Contrast Fields (con s, con f) detect
novelty in the scene where novelty is defined as locations and
features in the scene that are not currently maintained in Working
Memory.

Neural activity flows through VES in a four-stage cycle as
follows:

1. Input and Novelty Detection, top-left panel: The model
receives two localized inputs to the visual field, detecting
the red item on the left and the blue item on the right.
Output from the visual field is input to the feature-
contrast field (green arrow from visual field to con f)
which builds multiple peaks. This signifies detection of
two novel colors in the scene. Similarly, the spatial-
contrast field (con s) detects the positions of these objects.

2. Object Attention, top-right panel: After the model has
detected the novel objects, the contrast fields pass activa-
tion to the 1D attention fields. The attention fields are
winner-take-all (WTA) fields that allow the model to
attend to only one object at a given time. As peaks
form in the attention fields, this results in selection of
the corresponding object in the 2D visual field through
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reciprocal connectivity (see red hot spot in visual field).
The attention peaks also project ridges of activation into
the scene attention field.

3. Consolidation in working memory (WM) and binding in
an allocentric scene representation, bottom-left panel:
Attention to features and locations passes activation to
the 1D working memory fields and results in consolida-
tion, indicated by peaks in these fields (wm f, wm s). These
1D WM fields forward their output to a 2D WM field (not
shown). The 2D WM field forms a robust scene-level
working memory of what is where in the world, passing its
activation to the scene attention field. The convergence of
inputs from the attention fields as well as input from the 2D
WM field forms peaks in the scene attention field, binding

the feature and the location of the attended object into a
unified allocentric representation (red peak in scene attention).

4. Release of Attention, bottom-right panel: Peaks in the
scene attention field are detected by the Inhibition of
Return (IOR) field via input to an IOR detector node.
Once activation of the IOR detector node goes above
threshold, this boosts the resting level of the IOR field,
allowing input from the retinal spatial attention field to
build a peak at the currently attended location in the IOR
field. The peak in the IOR field then inhibits the attentional
peak. In addition, a global inhibitory signal is sent to the
other attentional fields (see red arrows). These inhibitory
influences release the model from its current atten-
tional focus.
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Figure 3
Visual Exploration in Space Model in Four Stages of an Autonomous Looking Cycle

Note. The top-left panel shows the model detecting novel objects in the scene. The top-right panel shows the model attending to one object. The bottom-left
panel shows the model having consolidated the object in working memory. The bottom-right panel shows model releasing attention to begin a new looking
cycle. VES= visual exploration in space. See the online article for the color version of this figure.

A NEURAL PROCESS MODEL OF CSWL 11



The sequence of events in Figure 3 capture how the model
consolidates one object (blue star) in working memory; once this
is complete, the system is ready to explore another item in the visual
scene. Note that the WM layers in VES have memory traces
(Perone & Spencer, 2013a, 2013b). These traces influence the cycle
of visual exploration by speeding consolidation in working memory
over learning. This, in turn, speeds the release from fixation for
familiar items, leading to habituation (Perone & Spencer, 2013b).
Prior work shows that these dynamics capture the details of habitu-
ation and preferential looking performance across a variety of
paradigms (Perone et al., 2011; Perone & Spencer, 2013a,
2013b, 2014).
One additional feature of the VES model is that it specifies the

neural mechanisms that transform between retinal and allocentric
space (see Lipinski et al., 2012; Sandamirskaya et al., 2013;
Schneegans & Schöner, 2012). To simplify the presentation of
the model here, we treat shifts of attention in space as shifts of
covert, rather than overt, attention. Many adult experiments mod-
eled using VES are covert attention tasks with gaze fixed at a central
location (Johnson, Spencer, Luck, Schöner, 2009; Johnson,
Spencer, & Schöner, 2009; Schneegans, Spencer, & Schöner,
2016); thus, this simplification maps onto simplifications used in
the adult literature.

Integration via WOLVES

The integration of these models into a single architecture,
WOLVES (see Figure 4), is straightforward because both WOL
and VES models share both scene attention and spatial attention. To
enable information flow between the two component models in
WOLVES, we first add a bottom-up connection from the feature

attention field (atn f) in VES to the word–feature field of WOL
(green arrow). In addition, word–feature associations must also be
able to drive looking. Thus, we add a top-down connection from the
word–feature field to the feature contrast field (con f) in VES.
Through these bottom-up and top-down connections, looking can
influence what the model learns about word–feature mappings and
this learning can influence what the model finds “interesting/novel”
and, consequently, where the model looks. This means that proces-
sing in the full model evolves over two cycles and two timescales: a
real-time cycle of autonomous looking and a learning-based cycle of
word-driven attention.

Cycle of Autonomous Looking: VES → WOL

During an individual trial of a CSWL task, WOLVES cycles
through a regular set of processes. First, the 2D visual field responds
to the presence of feature inputs at particular locations in the visual
scene. This field passes feature-specific activation along the feature
pathway and location-specific activation along the spatial pathway
to the contrast fields (con s and con f). Activity in the contrast fields
project activation to the 1D attention fields (atn s and atn f). Objects
that build peaks first in theseWTA fields will be attended, leading to
the consolidation of these features in the 1D working memory fields
(wm s and wm f) and at the level of the 2D scene representation.
Following object consolidation in WM, peaks in the scene attention
fields drive release from fixation and the autonomous cycle of input
detection, novelty detection, attention, consolidation, and release
can start again. Over repeated trials, this cycle becomes more
efficient as the memory traces of the working memory layers speed
up consolidation, leading to habituation. In addition, this cycle
becomes increasingly influenced by a cycle of word-driven attention
happening over the longer timescale of learning.
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Figure 4
The Overall Architecture of WOLVES

Note. Scene WMs and memory traces are not shown for representational simplicity. Arrows represent uni/bidirectional (green: excitatory, red: inhibitory)
connectivity in the model. See text for additional details. WOLVES = word-object learning via visual exploration in space. See the online article for the color
version of this figure.

12 BHAT, SPENCER, AND SAMUELSON



Cycle of Word-Driven Attention: WOL → VES

In a CSWL task, as objects are presented on individual trials,
words are presented as well. The word field sends an activation ridge
into the word–feature field that intersects with a ridge sent simulta-
neously along the feature pathway as a feature is attended. This
intersection of activation ridges results in the formation of peaks in
the word–feature field and the build-up of memory traces at
associated sites in the memory trace layer. Over the course of
multiple trials in a CSWL task, the same objects are presented
along with the same words. Thus, memory traces of the same word–
feature mappings are repeatedly strengthened, resulting in a pre-
shaping of the activity in the word–feature field. This preshaping
leads to the formation of a peak in the word–feature field when a
feature ridge hits strong memory traces. Therefore, in later training
trials, the presentation of a previously encountered word can cause
the formation of a peak at the corresponding word–feature mapping
in the word–feature field. Such peaks can then send top-down
activation to the 1D feature contrast field and bias the model to
selectively attend to the associated object.
Critically, the details of how accumulated word-object mappings

drive attention depend on the current state of the attentional system. If
WOLVES is not currently attending to any object, the top-down input
from word–feature fields will bias attentional selection to the object
features associated with a presented word. Likewise, if WOLVES is
already looking at the associated object, once consolidation and release
of attention occurs, the top-down influence of words will again bias
attention to the associated object, effectively creating two bouts of
sustained attention to the same object. However, if WOLVES is
looking at an object not associated with the word, strong associations
in the word–feature fields can only push the next look once the current
object is consolidated and released from attention.
Note that—as we discuss in greater detail below—we operate the

word–feature fields in a competitive WTAmode. Consequently, the
model will only form a single peak in each word–feature field at any
moment in time. Although this has important consequences for
CSWL that we discuss below, it is important to emphasize that this is
about the real-time dynamics of the word–feature fields—only one
peak at any moment—and not a statement about how peaks evolve
on the trial-to-trial timescale typically emphasized in CSWL.

In What Sense Are These Cycles “Autonomous?”

By “autonomous” behavior, we literallymean that themodel does its
own thing on the millisecond timescale. Our job when running a
simulation experiment is to turn inputs on and off to reproduce the
timing of external events in the task.We then just track what the model
does through time. Critically, every object it attends to and every
association and decision it makes happen “internally” without any
intervention from us (beyond “tuning” parameters; see discussion
below). Thus, if the model is a good model with all of the necessary
processes in place, it shouldmimic or reproduce patterns of looking and
learning in detail. This would give us confidence that the autonomous
model we have created can faithfully reproduce all the behaviors of the
autonomous system we are trying to model—the participant.
Interestingly, autonomy also means that from trial-to-trial, the

model “behaves” differently, that is, it can show a different pattern
of looking and learning as events unfold during a trial and over the
course of the task. This is because all the fields operate with a small

amount of noise that can change how they respond to the same stimuli
from run to run. This means we have to run many simulations to track
what the model does and why. We discuss this in greater detail below
where we embed the model in a CSWL paradigm. In particular, the
next section presents simulated data from two of the first studies to use
the canonical CSWL paradigm—Smith and Yu (2008) and Yu and
Smith (2011). Later in the article, we demonstrate that WOLVES is a
comprehensive model of CSWL by simulating results from five
canonical studies with adults and five additional developmental
studies. Note that in all simulations below, we used a model with
two feature pathways in the ventral stream—one set of fields for
colors and one set of fields for shapes. Although this makes the model
more complex, it allows us to capture the details of object features in
the different experiments. Critically, the dynamics we summarize
above operate comparably in this larger model.

Experiments 1 and 2: Simulations of Infant CSWL

In their canonical examination of infant CSWL, Smith and Yu
(2008) used preferential looking to ask whether 12- and 14-month-
old infants could learn words from a series of naming events that
provided ambiguous information about mappings in the moment,
but correct pairings via co-occurrences over time. Infants saw 30 4-s
training slides that each presented 2 novel objects and were accom-
panied by 2 novel words. Across the training slides, six word-object
pairs were presented. Immediately after training, word-object map-
pings were tested by presenting two objects for 8 s along with a
single word repeated four times. Greater looking to the labeled
object (the target) was taken to indicate learning. Each mapping was
tested twice across 12 test trials.

As summarized in Table 2, infants lookedmore to the targets than
distracters and learned about four of the six words. In a follow-up
study, Yu and Smith (2011) used an eye tracker in the same task to
explore the relationship between selective attention and learning in
infants. Individual infants who looked more to target objects than
distracters at test were classified as “strong” learners and infants who
looked more to distracters were “weak” learners. Yu and Smith (2011)
reported that strong learners tended to have fewer, longer looks during
training whereas weak learners had more, shorter looks (see Table 2).

We situated WOLVES in Smith and Yu’s task—the same 30
training slides and 12 test slides presented for the same durations. On
each trial, WOLVES was allowed to autonomously explore the two
presented objects in the context of two words (training) or one word
(test). Each object was represented as two Gaussian inputs, one for
each feature, that were spatially co-located but presented to the two
different visual feature fields (color, shape). The model then auton-
omously cycled through bouts of detecting novelty, attending to one
object, consolidating that object in a scene representation, and
releasing attention.

Importantly, as the model attended to a feature pair, ridges were
projected horizontally along the feature pathway to the word–feature
fields. WOLVES was also presented with words with timing
matching the experiment. The word field sent activity ridges along
the word dimension of the word–feature fields (top panel Figure 5,
see vertical blurry blue line in scene attention). As the feature
(horizontal) and word (vertical) ridges crossed each other, a peak
built in each word–feature field corresponding to a potential
word-object mapping. These peaks laid down memory traces at
the site corresponding to the word–feature association. Critically,
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the associations formed may be correct, if the model happened to be
attending to the right object, or incorrect, if the model happened to be
attending to the “distractor” object. For instance, the top panel of
Figure 5 shows the model attending to the red object (the “blicket”—
Word 4) while hearing the name for the blue object (the “bosa”—
Word 1). Because this is early in learning, there is nothing to stop the
model from forming an incorrect association. Thus, the model lays
down an incorrect association between red and “bosa.”
Over training, however, correct associations tend to form because

the statistics of the input reinforce the correct mappings most often.
This is shown in the middle panel of Figure 5 which plots the
memory trace layer for Feature 1 (color) after every batch of five
training trials. Notice that early in learning there are many feature
associations for each word (i.e., faint memory traces aligned verti-
cally) and some features are associated with multiple words (i.e.,
faint memory traces aligned horizontally). By the 30th trial, how-
ever, most words have a single, strong word–feature memory trace
along the diagonal (which are all correct mappings in this example).
Critically, these memory traces exert a strong influence on the

behavior of the model. The bottom panel of Figure 5 shows the
model later in training again attending to the red object while hearing
the name for the blue object (“bosa”). Notice how the model late in
learning does not form an association between red and “bosa”; rather,
when the model heard “bosa” a vertical ridge was sent down into the
word–feature field, and this ridge intersected a strong memory trace
indicating that blue is associated with “bosa.” This formed a word–
feature peak at the intersection of “bosa” and blue (see peak in word–
feature field) that blocked the formation of a peak at “bosa” and red
(empty red oval). This “blocking” occurs due to the WTA dynamics
in the word–feature fields—in the moment, only one peak can form,
and the strongest activation occurred at the intersection of blue and
“bosa.” Once formed, the blue-“bosa” peak can then influence the
model’s looking behavior, quickly driving attention to the blue object
once attention has been released from the red item.
Such top-down influences are necessary to direct looking at test.

Specifically, during a test trial, the model is presented with a word
and two objects (a target and a distracter). Each time the word is
presented, the word field sends down a ridge to the word–feature
fields. If the ridge encounters memory traces of word–features

associations, a peak will form, sending top-down activation to
the contrast fields and biasing the system to look more to the
corresponding object (the target).

As in the empirical study, we can calculate the proportion of time
the model spends looking at the target, divided by the total overall
looking. Likewise, we can record the moment-to-moment history of
looking during training trials and can, thus, extract the same measures
reported by Yu and Smith (2011). This allowed us to quantitatively
compare the model’s performance to the empirical findings in Table 2.
It also gives us the opportunity to use WOLVES to understand why
strong learners have different fixation dynamics than weak learners.

Simulation Methods

Simulations were conducted in MATLAB 2016b via the COSI-
VINA framework, a modeling package for designing DF models
(Schneegans, 2012; Schöner et al., 2016). Note that all of our code is
available on www.dynamicfieldtheory.org along with tutorial vi-
deos explaining how to run WOLVES in both interactive mode
using a graphic user interface (GUI) and in batches of simulations
required to quantitatively fit data.

Two machines both using Intel i5 processors were used to run all
the simulations: a PC with 36 parallel processing cores and a High-
Performance Cluster with 28 parallel processing cores. Gaussian
inputs were used to represent the words and the color and shape
features of the novel objects. Based on the stimuli used by Smith and
Yu (2008), we assumed the objects and words were all distinct and
evenly spaced across the shape, color, and word fields. Although
Smith and Yu (2008) included attention getters between some trials,
our simulations use a 1-s gap between every two trials for simplicity.
The timing between the model and experiment time was scaled such
that each simulation step equals eight real-time milliseconds. Simula-
tion results for each experiment were aggregated over 300 runs
(i.e., 300 individuals). To evaluate the model’s performance, we
computed the root mean squared error (RMSE) and mean absolute
percentage error (MAPE) between the simulated and empirical data,
two common metrics used to quantitatively evaluate the quality of
model fits to data. Additional simulation method details are discussed
in the Quantitative Simulations section below and in Appendix C.
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Table 2
Summary of Infant and WOLVES Model Performance in a Canonical CSWL Task

Measure
Smith and
Yu (2008)

Yu and Smith
(2011) Range WOLVES RMSE MAPE

Test trials
Mean looking time per 8 s trial 6.10 5.92 5.92–6.10 6.26 0.26 4.22
Preferential looking time ratio 0.60 0.54 0.54–0.60 0.54 0.04 6.10
Mean words learned (of 6) 4.0 3.5 3.5–4 4.0 0.35 7.14
Proportion of strong (S) versus weak (W)

learners
N/A 0.67 N/A 0.74 0.07 10.45

Mean looking per trial to target 3.6 3.25 3.25–3.6 3.36 0.19 5.03
Mean looking per trial to distracter 2.5 2.67 2.5–2.67 2.89 0.32 11.92

Training trials S W
Mean looking time per 4 s trial 3.04 2.96 3.07 2.96–3.07 3.01 0.02 0.71
Mean fixations per trial N/A 2.75 3.82 2.75–3.82 2.89 0.22 6.98
Mean fixation duration N/A 1.69 1.21 1.21–1.69 1.31 0.22 14.38

Note. WOLVES = Word-Object Learning via Visual Exploration in Space; CSWL = cross-situational word learning; RMSE = root mean squared error;
MAPE = mean absolute percentage error.
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Figure 5
Processing in WOLVES During Smith and Yu's (2008) Cross-Situational Word Learning Task
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Results

Smith and Yu (2008) and Yu and Smith (2011) found that 12- to
14-month-old infants looked more to the target than the distracter
at test, suggesting they had learned the word-object mappings.
WOLVES shows a preference for the target within the range found
in Smith and Yu’s studies and has a low MAPE and RMSE (see
Table 2). Individual runs of WOLVES can be classified as strong
and weak learners as in Yu and Smith (2011). Doing so reveals a
similar, although somewhat higher, proportion of strong learning
models compared to infants. WOLVES also matches the infant data
on a range of other measures (Table 2) with low RMSEs and MAPEs.
Table 2 shows that WOLVES reproduces key indices of performance

in the CSWL task, including a lower number of fixations and longer-
duration fixations for strong learners. But why does this happen, that is,
why domodelswith fewer, longer-durationfixations during training learn
more? The advantage of having a model like WOLVES is that we can
manipulate the fixation dynamics artificially—by changing key model
parameters—to create models that tend to have more fixations per trial or
fewer fixations per trial. We can then probe why these models learn
different numbers of words. This accomplishes two things: It establishes
that fixation dynamics are lawfully related to learning in the model and it
helps us understand why this might be the case with participants in
CSWL, that is, why real-time visual exploration in CSWL affects trial-to-
trial learning.
Spatial processing is one of the key features ofWOLVES, affecting

how the model attends to objects on the retina and binds object
features together at the level of the scene representation. Critically, the
details of how the spatial pathway is “tuned” modulate visual
exploration. For example, strengthening spatial attention by increas-
ing the input from the spatial attention fields into scene attention fields
helps the model build scene representations faster and release atten-
tion from the current object more quickly. This decreases the duration
of each look and increases fixation counts per trial. Note that more
switching back-and-forth between objects also affects total looking
because there are more “off-looking” gaps between the looks.
Given that the strength of input from spatial attention to scene

attention can modulate fixation dynamics, we set up batches of
simulations where we ran Yu and Smith’s (2011) CSWL paradigm
and varied the strength of this parameter across 5 steps (5 spatial
attention strengths by 300 runs each = 1,500 simulations). Note that
all other parameter values were held constant. This should yieldmodels
that vary in the number of fixations during training. We can then ask if
these variations are lawfully related to learning at test and, if so, why.
Manipulating spatial attention in WOLVES did indeed create

large variations in fixation dynamics during training across the 1,500
models, and these differences in looking dynamics had an impact on
performance during test. To illustrate this in a way that allows for
direct comparisons to data from Yu and Smith, we sorted the 1,500
models into strong and weak learners based on test performance.
Figure 6 shows that weak learning models have more fixations (and
shorter look durations) than strong learning models. This replicates
findings from Yu and Smith (2011) but extends this pattern over a
broader range of looking dynamics so we can explore why this
relationship holds. Note that Yu and Smith did not report an increase
in number of fixations over trials, although previous studies with
infants have shown such effects (see, e.g., Rose et al., 2002).
We first looked at how differences in fixation dynamics were related

to the buildup of word–feature associations during training. The left

panel of Figure 7 shows that as stronger spatial attention increased the
number of fixations (see fixation count on x axis), the strength of word–
feature associations decreased. Conversely, the right panel shows that
as the number of fixations WOLVES made during training increased,
the number of incorrect word–feature associations increased. This
makes intuitive sense as follows: If WOLVES makes a single fixation
per training trial, it is likely to form only one or two associations on that
trial (roughly, one per word presented). If the model makes two
fixations per training trial, it is likely to form between two and four
associations. Clearly then, fixation dynamics should be a critical
determinant of learning; this is indeed the case in WOLVES.

Interestingly, when we look at how differences in fixation
dynamics were related to performance during test, we see a more
nuanced relationship. The left panel of Figure 8 plots the mean
proportion of looking to the target at test against the average number
of fixations per model during training. The data are best fit with a
quadratic curve, indicating that 2.25 to 3 fixations per training trial
results in the best test performance compared to higher or lower
numbers of fixations. A similar relationship is seen between fixation
dynamics and the number of words learned (right panel).

Discussion

Overall, WOLVES fits multiple measures of the empirical data
from Smith and Yu’s experiments quite well with low MAPEs. To
our knowledge, this is the first process model to reproduce the
looking measures reported from these canonical CSWL studies. A
strength of the model is that it generates real-time looking behavior;
consequently, all the measures reported by Smith and Yu can be
calculated for the model as well. This provides strong constraints on
modeling as parameter changes necessarily impact how the entire
pattern of looking cascades over trials.

A fascinating finding from this initial simulation experiment is that
we reproduced the empirical patterns for strong and weak learners from
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Figure 6
The Effect of Spatial Attention on Fixation Dynamics During Smith &
Yu’s CSWL Task

Note. We varied the strength of spatial attention which increased the number
of looks made by the model thereby changing how many words were learned.
After classifying models as strong (red) and weak (blue) learners as Yu and
Smith (2011) did in their experiment, we see that these models have different
numbers of fixations per training trial. CSWL = cross-situational word learn-
ing. See the online article for the color version of this figure.
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models that were all identical at the start of the experiment (i.e., identical
parameters). This arises in the model because each model is autono-
mous. Every field has internal noise that affects the decisions the model
makes as activation grows toward threshold. Critically, looking beha-
viors early in learning lay down associations that can bias attention on
subsequent trials. Consequently, each model follows its own trajectory
of looking and learning. This is true even when noise is very weak. For
instance, Figure 9 shows two runs of the model with the same
parameters and a very tiny amount of noise (our canonical noise value
in all simulations = 1.0; here we used 0.125).We gave bothmodels the
same order of object–word presentations. The panels on the left plot
looking to the object on the left side (blue bars) and right side (yellow
bars) of the scene on the first three trials of training. The panels on the

right side show looking behavior for the final three training trials.
Although looking across both runs during the first two trials was similar,
looking during the last three trials is very different. Performance of the
two runs at test was also different: Run 1 was a strong learner, while
Run 2was aweak learner. Thus, learning trajectories initially directed by
noise will quickly be influenced by other factors as memory traces build,
leading to emergent differences. This suggests that the “strong” and
“weak” learning effects found in prior studies could arise via learning
in the experiment rather than due to individual differences in infants.

These findings of emergent individual differences without param-
eter changes on one hand, and that a parameter change can create the
best learning by generating a “sweet spot” of 2.25–3 fixations per
training trial, on the other, have critical implications for empirical
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Figure 7
The Relation Between Fixation Dynamics and Building Word-Feature Associations During Training

Note. Left: Relation between the number of fixations amodelmakes during a training trial and the average strength of the word–feature
associations formed by the model. The blue line shows a linear fit of the data with an root mean squared error (RMSE) = 0.11. Right:
Growth of the average number of erroneous associations formedwith increasing fixations at training. The red line shows a linear fit of the
data with an RMSE = 0.16. Other statistical measures are indicated in both plots. Note that each value plotted on the y axis is averaged
(after binning) over models within a bin width of 0.03 in fixation counts. See the online article for the color version of this figure.

Figure 8
Relation Between Mean Proportion of Preferential Looking to the Target at Test (Left Panel), Mean Proportion of Words
Learned (Right Panel), and the Number of Fixations During Training

Note. Each value plotted on y axes is averaged (after binning) over models within a bin width of 0.03 in fixation counts. See the online article for
the color version of this figure.
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work. First, WOLVES predicts that individual differences in spatial
attention and fixation dynamics should manifest in differential
learning, such that participants with stronger spatial attention/faster
visual processing learn less in CSWL. This could be tested by first
assessing individual differences in a spatial attention/visual proces-
sing task and then running participants in the Yu and Smith (2011)
CSWL task. WOLVES also predicts that direct manipulations of
fixation dynamics during training should yield a curvilinear relation
between fixation dynamics during training and learning at test. This
could be tested empirically by, for instance, inserting attentional
cues during training in CSWL to manipulate fixation switching.
Cuing attention in a manner consistent with the “sweet spot” for
fixations should lead to good learning. Cuing attention outside of
this “sweet spot” should lead to less learning at test.

Interim Summary: IsWOLVES anHypothesis Testing or
Associative Learning Model?

WOLVES captures the infant data from Smith and Yu’s studies
well, showing similar looking dynamics during training and similar
proportions of strong and weak learners. Now that we have embed-
ded the model in a canonical task and demonstrated that the model
provides a good, quantitative mapping to empirical data, it is useful
to reflect back on the key theoretical debate in the CSWL literature
and ask: Is WOLVES an HT or AL model and what does WOLVES
contribute to this theoretical debate?
Recall that the HT versusAL debate is about what happenswithin a

trial. At issue is whether people form one hypothesis/association per
word-object mapping versus potentially forming multiple word-
object mappings on a given trial. On this front, WOLVES clearly
operates like an AL model in that it typically forms multiple word-
object associations per trial. As the model looks back-and-forth on
each trial early in learning, it will form associations between the word
being presented in the moment andwhat it is looking at. In short, there
is nothing preventing themodel from forming amapping between one
word and two objects provided time and context allow this to happen.
We emphasize here that WOLVES can form multiple associa-

tions over learning even when the dynamics in the word–feature
fields are WTA. The WTA dynamics dictate that only one peak is

ever formed in the moment, but it is still possible to form different
peaks over the timecourse of a single trial. So, in the moment,
WOLVES will only map one word to one object, but over a trial,
that one word can become associated with multiple objects, con-
sistent with AL accounts.

Note that it is possible to relax the “winner-take-all” constraint
and allow formation of multiple peaks in the word–feature field
simultaneously. In particular, instead of using strong global inhibi-
tion (“winner-take-all”), we can set global inhibition to be weak and
lateral or “surround” inhibition be strong. In this case, the word–
feature field can form multiple peaks from incoming ridges when
multiple sites in the field are sufficiently active (red circles in
Figure 10a). Consequently, the model can associate a word with
multiple object features. For instance, in Figure 10a, one of the
word–feature peaks is driven by the intersection of a word ridge
(vertical) and a feature ridge (horizontal), and one peak is driven by
the intersection a word ridge and a strong memory trace.

Critically, these dynamics have consequences for learning. If
word–feature fields are configured to theWTAmode and a “correct”
association is hit upon a few times, the association trace can become
strong enough to be activated by the word input alone. Once this
occurs, the presentation of the word will block any new associations
from forming, a form of mutual exclusivity (Markman, 1990). Note
that this type of mutual exclusivity in the model is dynamic and
depends on the strength of the memory trace. If, for instance, the
memory trace decays sufficiently, the model will be open to forming
new associations again. We highlight this later when simulating
results from Kachergis et al. (2012).

Figure 10c shows how the real-time dynamics in the word–
feature fields impacts looking at test and, ultimately, word learning.
The left two bars show the model’s looking to the target at test. As
shown in the figure, the WTA model shows better learning, with a
higher proportion looking to the target at test. The second set of bars
shows a different index of learning—the number of incorrect
associations in the memory trace after training. The WTA model
has fewer incorrect associations. The final bars show the overall
memory trace strength after training. Interestingly, the multipeak
model shows stronger memory traces overall. This helps explain
why both models do relatively well in looking performance at
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Figure 9
Model Looking Trial by Trial Over the Course of Training

Note. Each row shows the looking patterns of a particular run of the model; blue indicates looks to the left and yellow to the right of the scene.
White indicates off/center looking. Both runs included the same model parameters and the same fixed order of object presentations. Differences
arise due to noise in the system and the autonomous learning of the model. See the online article for the color version of this figure.
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test—the stronger memory traces help the multipeak model par-
tially overcome the large number of incorrect associations formed
during learning.
There are two key take-home messages from these simulations:

(a) WOLVES is like an AL model in that it can form multiple word–
feature associations on a single trial and (b) WOLVES learns best
with “winner-take-all” constraints on the real-time dynamics in the
word–feature fields. This latter point highlights how WOLVES is
not a simple associative learner: Learning in WOLVES is competi-
tive in that strong associations can “block” the formation of new
associations. Moreover, the VES part of the model structures what
will be associated through time based on the dynamics of visual
exploration. Because these dynamics are influenced by multiple
factors such as the strength of spatial attention, the model is not
simply counting co-occurrences.
Interestingly, because the memory trace strength is affected by

which words and objects are presented over trials, the model can
show relearning. If, for instance, there is a delay between word-
object presentations, the memory trace can decay and allow a new
association to form. We show this later by simulating data from
Kachergis et al. (2012). Critically, as the model updates its word-
object mappings, it does not eliminate the old association—it does
not reject the old “hypothesis”—rather, it retains multiple associa-
tions. Thus, the same dynamics in WOLVES that learn words in the
first place also contribute to the unlearning/remapping of words.
In summary, WOLVES operates by forming word-object asso-

ciations, but WOLVES is a nonstandard associative learner in that
what is learned is shaped by its visual dynamics, theWTA dynamics
of the word–feature fields, and the build and decay dynamics of the
memory traces. In this sense, WOLVES is not a simple AL model,
nor is it an HT model. Rather, WOLVES benefits from having
elements of both in that it can form multiple associations to
maximize what is learned from the available statistical structure

but still makes real-time, autonomous, selection decisions that shape
future learning. Importantly, we show below that WOLVES can
explain data purported to support both perspectives; thus, a single
model can integrate findings from both camps.

Quantitative Simulations

We have presented an implementation-level theory that grounds
the understanding of CSWL in processes of memory, attention, and
word-object association as they unfold in real time and over
learning. Our model quantitatively simulates infants’ real-time
autonomous looking behavior and provides insight into both how
looking influences learning during training and how learning influ-
ences looking at test. Here, we demonstrate that this is a compre-
hensive model of CSWL by capturing a range of findings from the
CSWL literature. We start with five simulations from the adult
CSWL literature, including studies designed to contribute to both
sides of the HT versus AL debate. We then simulate findings from
five additional developmental studies of CSWL. Importantly,
WOLVES offers the first developmental account of CSWL, provid-
ing insights into what might be changing from infancy through
childhood.

WOLVES Simulation Methods

Selection of Model Parameters

WOLVES has many parameters. Each field has neural interaction
strength and width parameters that determine how quickly neural
interactions fall off between neighboring units for self-excitation
and lateral inhibition. There is also a global inhibition strength
parameter per field. Critically, these parameters all interact with one
another: increase excitation strength too much and the field will have
a seizure; increase inhibition strengths too much and no peaks will
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Figure 10
The Relation Between Strong Global Inhibition (“Winner-Take-All”) and Word-Object Associations

Note. The left panel shows a snapshot of the memory trace laid down in the word–feature field in two different parametric settings: (a) multipeak and (b)
winner-take-all. Panel (c) shows the proportion looking to target, incorrect associations in memory traces, and overall memory trace strengths laid down by the
word–feature fields when they are configured to work as a multipeak field (blue bars) versus a winner-take-all fashion (yellow bars). Models run with a winner-
take-all word–feature field show better performance. See the online article for the color version of this figure.
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ever form. Moreover, the connections between fields in each direc-
tion have strength and width parameters. Inputs to the model have
strength and width parameters. There are also global parameters for
noise and relaxation times over multiple timescales (e.g., tau for
excitation, tau for inhibition, and tau for memory trace build and
decay rates).
Although all of these parameters are free to vary in principle, in

practice, many model parameters were constrained. In particular, we
allowed 64 parameters to vary freely in arriving at the final
parameter values; the rest were held constant, either by keeping
them fixed at values from the WOL and VES predecessor models or
setting them to be equivalent to other values in the final model (see
Appendix C for details).
How did we arrive at these final parameters? Many models in the

CSWL literature can be optimized using data-fitting procedures. Alter-
native procedures—for instance, Markov Chain Monte Carlo methods
(MCMC; see Valderrama-Bahamóndez & Fröhlich, 2019)—have been
successfully used to optimize the parameters of some classes of
dynamicalmodels (e.g., ordinary differential equations). Unfortunately,
there are no established methods to apply such approaches to the family
of integro-differential equations that contain DF models.
Given this, the tuning of WOLVES was done “by hand.” This

works because DF models are highly constrained. For example,
appropriate values for excitation and inhibition to build a peak given
an input of a particular strength and width can be readily determined
using an interactive simulator with a (GUI). With additional param-
eter adjustments, this peak can be tuned to be an “input-driven” peak
that relaxes back to the neural resting level when the input is
removed (weak excitation strength), or a “self-sustaining” peak
that is actively maintained during a memory delay (strong excitation
strength, see https://dynamicfieldtheory.org/ for an interactive sim-
ulator that demonstrates this). Next, coupling strengths can be tuned,
that is, how a peak in one field sends activation to another field, and
vice versa. Once cross-field interactions are set, then one can start
looking at slower timescales, such as how peaks build memory
traces and how memory traces impact the formation of peaks in real

time. Finally, one can embed the model in a particular paradigm—

for instance, the CSWL paradigm from Yu and Smith (2011)—and
start probing whether the model looks back and forth appropriately
given the timing of inputs, whether the word input is strong enough
to build peaks in the word–feature fields, and so on.

Once basic parameter adjustments have been made using a GUI
and the model appears to be operating as hypothesized for a given
paradigm, quantitative measurements can be made on the model.
Here, one can measure how much the model looks to each item on
each trial, calculating fixation durations and fixation rates. One can
also measure the proportion looking to the target at test to probe
whether the model looks more to the target when each target word is
presented as participants often do. Then, parameters can be varied
across batches of simulations to improve the quantitative fit to data.
For instance, the strength of the projection from the word field to the
word–feature fields (word→wf) modulates looking and learning by
influencing how strongly the model “attends” to the words. As is
shown in the left panel of Figure 11 (yellow curve), we can vary this
parameter across many simulations (300 for each triangle symbol)
and look at how many words the model learns for each value of the
“word attention” parameter. Results reveal that this parameter
operates like a step function. If “word attention” is too weak, words
presented to the model may not be able to activate previously
learned associations strongly enough to generate peaks in the
word–feature fields. Consequently, the model performs poorly at
test. At higher “word attention” strengths, word inputs generate
peaks in the word–feature fields and drive good learning at test.
Similarly, the strength of top-down attention, that is, the strength of
input from the word–feature fields to the contrast layers (wf→ conf)
operates like a step function over learning. The left panel of
Figure 11 (red curve) shows that below a value of about 3, the
top-down affect is marginal, and the model learns poorly; above a
value of about 4, the top-down affect is robust, and the model
learns well.

Other parameters show a more complex pattern as they are
systematically varied. For instance, the strength of the memory
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Figure 11
The Relation Between Words Learned and The Word Attention and Top-Down Attention Parameters

Note. Left panel: Proportion of words classified as learned at test as the strengths of words on word feature fields (word -> wf,
yellow curve) and top-down attention (wf -> con_f, red curve) are varied. Right panel: The influence of the strength of the memory
trace input (hwf) to word–feature fields (wf) on proportion of words learned. See the online article for the color version of this figure.
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trace input into the word–feature fields influences how prior asso-
ciations shape looking at test. Weak input from the memory traces to
the word–feature fields (i.e., weak hwf -> wf) does not allow
previously formed associations to influence decisions in the
word–feature fields. As shown in the right panel of Figure 11,
this leads to poor performance at test. Interestingly, very strong
memory trace strengths are also bad for learning because all traces,
including erroneous ones, are strong enough to create peaks on
every trial. Thus, there is a sweet spot for learning that balances peak
formation based on word-object input and peak formation driven by
word-object associations.
In summary, tuning a DF model “by hand” follows a particular

logic. One starts with real-time interactions visualized in a GUI,
making sure the model builds, for instance, peaks in response to
visual stimuli. Next, quantitative measures are calculated on the
model’s performance to enable direct comparisons to data. Then,
parameters can be tuned in batches to reduce goodness-of-fit
measures to target values (e.g., MAPE lower than 20). Finally,
parameters can be modified to see if one can get good performance
across multiple CSWL paradigms, all with a single parameter
setting. In the next section, we describe how this last step unfolded
across the CSWL paradigms we simulated.

Tuning Parameters Iteratively Across CSWL Paradigms

After iteratively tuning WOLVES “by hand,” we started evaluat-
ing the model fits using the Yu and Smith tasks described in
Experiments 1 and 2 (see Appendix C for additional description).
This was useful to fine-tune the looking and learning dynamics in
the model to approximate empirical values from these studies. We
then took these parameters and modified them to capture key effects
in Smith and Yu (2013), including visual habituation (which we
describe in detail below).
At this point, we ran several batches of simulations to explore

how the memory build and decay timescales impacted learning as
this was central to our account of development. Memory traces laid
down by word–feature peaks have their own growth and decay
dynamics. DFT assigns two timescales as follows: tau_Build defines
how fast a memory trace grows and tau_Decay defines how fast it
deteriorates (with smaller time values producing faster decay).
Therefore, if tau_Build is set to low values, strong associations
will build quickly. Likewise, smaller values of tau_Decay lead to
quick decay, while larger values slow down forgetting of both
correct and incorrect associations. Hence, moderate values of both
parameters allow the model to remember repeated associations
while also not making them so strong that they cannot be forgotten
if they are later found to be incorrect. Figure 12 plots the proportion
of correct word-object mappings learned by the model as the two
memory timescales vary. The tau_Build curve shows good learning
around a moderate value, while the tau_Decay curve suggests higher
values are better.
Based on this understanding of the memory-related tau parame-

ters, we modified parameters to capture the Vlach and Johnson
(2013) task. We then used these same parameters and tested Yu and
Smith (2007), tuning the tau build and decay parameters until we got
close to the empirical data. This established our first “adult”
parameter settings. We then tested the model on the Yurovsky,
Yu, and Smith (2013) task and tuned the tau build and decay
parameters further. At this point, we found a parameter setting

that worked well for all tasks thus far with tau_Build and tau_Decay
settings that were distinctive over development—one set for the
“child” studies and one set for the “adult” studies.

Next, we tested Kachergis et al. (2012) and tuned parameters
again until we got close to empirical data for the “adult” tasks
including Yu and Smith (2007), Yurovsky, Yu, &Smith (2013), and
Kachergis et al. (2012). We then tested Suanda et al. (2014), tuning
the developmental parameters to get a good quantitative fit to this
study as well as Vlach and DeBrock (2019) where we fully
implemented the idea of scaling tau_Decay systematically to capture
developmental differences.

At this point, we arrived at the final model parameters. We then ran
final simulations of all 12 experiments with this final set of parameters
(32 conditions × 300 simulations in all), computing RMSE/MAPE
estimates for all experiments. For studies that used forced choice tests,
the model was credited with knowing a word if it looked more to the
target than to the distracter(s) during the first 1,000 ms time window
of word and object presentation. Critically, in this final simulation
step, data from three “held out” tasks were captured without any
direct parameter tuning: Trueswell et al. (2013); Yu et al. (2012), and
Vlach and DeBrock (2017). We simulated these tasks last as they
were the most different from the original Yu and Smith tasks. In
particular, the Trueswell et al. task does not use any separate test trials
(inconsistent with the other tasks we were modeling), Yu et al. (2012)
used pretrained words, and Vlach and DeBrock (2017) required
implementing a separate word-object binding experiment in parallel
to the CSWL task across a large age range.

Because parameters for these tasks were not directly optimized,
this gave us an opportunity to probe the generality of WOLVES
using the GNCM proposed by Busemeyer and Wang (2000). This
method was designed to compare complex and nonnested models
that may differ in terms of numbers of parameters. GNCM differs
from the more widely used cross-validation criterion in that cross-
validation employs a replication sample from the same design for
the validation stage, whereas GNCM employs a new design—the
design from the held-out experiments—for this stage. The basic
approach is to fit parameters based on a subset of “calibration”

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Figure 12
The Effect of Parameters Controlling Memory Build and Decay on
the Proportion of Words Learned

Note. See the online article for the color version of this figure.
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experiments, and then apply the same parameters to fit data from an
independent set of “generalization” experiments that were held out.
Comparisons can be made using any discrepancy metric, with the
most generalizable model showing the least discrepancy between
the predicted data and the actual data in the generalization phase.
Discrepancy is the sole metric because neither model has any free
parameters at this stage. Thus, GNCM probes the extrapolation to
new conditions—a key hallmark of a good scientific theory.

Simulation Methods for Two Comparator Models

We compared WOLVES to two established models in the litera-
ture, Kachergis et al.’s (2012, 2013, 2017) biased associative model
and Stevens et al.’s (2017) Pursuit model. As described in the
Introduction, the former model aligns with the AL camp while the
latter involves HT. Kachergis et al.’s model has been validated on
the largest range of experiments to date, accounting for a range of
adult CSWL behaviors such as the role of prior knowledge, order
effects, remapping, and mutual exclusivity. Pursuit is another
excellent model that has recently been shown to capture data
from multiple canonical CSWL studies with adults (Yu & Smith,
2007; Trueswell et al., 2013) and the Human Simulation Paradigm
of infant word learning (Cartmill et al., 2013). The code implemen-
tation for both models was taken from GitHub repositories made
available by the authors. To hold both models to the same evaluation
criteria asWOLVES, a single optimized parameter set was identified
for the adult tasks and a separate optimized set was identified for the
developmental tasks. During optimization, we held three experiments
out so we could probe generalizability using the GNCM approach.
To optimize the Pursuit model, we followed a grid search

optimization process utilized in the original article by Stevens
et al. (2017). First, we optimized Pursuit to each adult data set
separately (two total experiments holding two out). We then ran the
resultant sets of optimized parameters on the other data set, selecting
the parameter set that yielded the lowest AIC/BIC values. Next, we
repeated this process on six developmental studies (holding one
out), optimizing each one separately, running the resultant set on the
remaining studies, and selecting the parameters yielding the lowest
AIC/BIC values. The “adult” parameters proved to be optimal for
the developmental studies, so we used a single set of values for all
experiments for this model, γ (learning rate) = 0.02; θ (threshold) =
0.79; and λ (smoothing factor) = 0.001. The one exception was in
simulations of Vlach and DeBrock (2017) where we manipulated
the “remember” parameter in Pursuit to examine whether this might
capture the range of developmental performance in this study (much
like manipulating tau_Decay over development in WOLVES).
For the Kachergis et al. model, we used the built-in optimization

functionality to optimize this model’s three parameters. In a first
step, we optimized the model to two adult data sets separately
(holding two out), and then ran the resultant parameters on the
other data set. We selected the parameters that yielded the lowest
AIC/BIC values across the adult experiments (χ = 0.12, λ = 1.13,
α = 0.999). Next, we repeated this process on six developmental
studies (holding one out). This yielded three parameter sets with
comparably low AIC/BIC values; however, two of these parameter
sets had an α value of 1.0. α is a forgetting parameter; thus, we
expected α to be lower (more forgetting) for children than adults.
One of the three optimized developmental parameter sets—the
parameters optimized to Vlach and Johnson (2013)—had an α

lower than 1.0, so we selected this parameter set as our “base”
developmental set (χ = 0.001, λ = 0.152, α = 0.993).

Next, we examined whether it was possible to scale a parameter
over development to fit data from different age groups as we did for
WOLVES. α seemed the most sensible parameter to explore as there
is evidence that forgetting changes over development. We simulated
Vlach and Johnson (2013), varying α from 0.96 to 1.0 (note that the
model performs quite poorly at values lower than .96). Values greater
than 0.98 produced the best fit to data; however, as we discuss below,
varying α failed to explain key patterns in the developmental data.
We also explored α variations as a developmental account for data
from Vlach and DeBrock (2019). As we show below, variations in α
once again failed to capture the developmental data. Thus, for the
remaining developmental studies, we used the “base” optimized
developmental parameters listed above.

Note that one task that we simulated with WOLVES could not be
implemented with these models: Yurovsky, Yu, & Smith, (2013)
could not be simulated because the test involves multiple sequential
selections in time on the same test trial. Neither of the two models
can make a different second guess on a test trial.

Overview of Quantitative Simulation Results

In the sections that follow, we report simulation results from
the adult and developmental studies simulated with WOLVES and
the two comparator models. In each case, we describe the empiri-
cal data and use WOLVES to shed light on the processes that
contribute to the pattern of data. We also compare the explanation
offered by WOLVES to explanations offered by the comparator
models.

Models were evaluated on the basis of RMSE and MAPE. We
focus primarily on MAPE as this normalizes across differences in
measurement scales. We used MAPE as our discrepancy metric for
the held-out studies used in the GNCM comparison. In addition, we
compare the overall model performance using the AIC and BIC—
two standard metrics that trade off model performance against free
parameters, derived using frequentist and Bayesian probabilities,
respectively. In particular, AIC and BIC scores were calculated
using Gaussian Likelihood as follows:

AIC = N�logðMSEÞ + 2�k; and

BIC = N�logðMSEÞ + k� logðNÞ,

where N is the number of common data points simulated (69) and k
is the number of free parameters (64 for WOLVES; 3 for Kachergis
et al.; 3 for Pursuit). The mean squared error (MSE) was calculated
from the data in Table 3. We computed a weighted MSE over all
experiments given variation in the number of data points fit per
experiment.

A summary of the model fits to all experiments is shown in
Table 3. Because WOLVES is able to simulate both patterns of
visual exploration central to CSWL and test performance,
WOLVES captures nearly twice as much data as the comparator
models (132 vs. 69 data values). Myung et al. (2005) suggest that
models should account for more data than free parameters, which is
the case here: WOLVES captures 132 data values with 64 free
parameters (ratio = 2.06). Critically, WOLVES generally outper-
formed both comparator models on MAPE scores, capturing data
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from 12 of 17 conditions more accurately than these models (all 5
higher MAPE conditions were from the same study—Kachergis
et al., 2012). This includes lower MAPE values in all three held-out
experiments used in the GNCM approach to probe generalizability.
Indeed, WOLVES has a lower overall grand average MAPE score
across 132 data points than the grand average MAPE scores for the
comparator models across 69 data points. Nevertheless, on the other
measures of fit/generalizability (i.e., AIC/BIC scores) compared
across the 69 common data points, the Kachergis et al.’s model
fares best. WOLVES has the second lowest AIC score, but Pursuit
has the second lowest BIC score. This discrepancy reflects the
stronger penalty for free parameters with the BIC. In the sections
that follow, we focus on simulation results for both WOLVES and
the Kachergis et al.’s model to evaluate which model provides a
more comprehensive account of CSWL data, including data from

development.We also highlight several findings from simulations of
Pursuit.

Experiment 3: Trueswell et al. (2013), Experiment 1

To test the “propose but verify” account of CSWL, Trueswell
et al. (2013) presented adults 12 word-object pairs to learn in 5
cycles of 12 trials. On each trial within a cycle, participants heard
one word and saw five objects, one correct referent and four random
distracters. Participants were instructed to select the referent of the
word on each trial. According to Propose but Verify, when a word is
presented, participants hypothesize a referent and select that object
but do not learn any of the alternative word–referent associations.
Thus, if their initial selection is incorrect, on the next presentation of
the same word, participants should select randomly among the
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Table 3
Summary of Model Fits to Empirical Data

Exp. no.

DP

WOLVES Kachergis et al. Pursuit

Measure RMSE MAPE RMSE MAPE RMSE MAPE

1,2: Smith and Yu (2008); Yu and Smith (2011)
Proportion correct 2 0.04 6.10 0.09 11.84 0.37 59.97
Miscellaneous (see Table 1) 15 0.18 7.32 — — — —

3: Trueswell et al. (2013)
Prop. correct at a learning instance 5 0.01 1.86 0.19 69.73 0.09 31.34
Prop. correct at current versus previous

learning instance
2 0.03 3.81 0.22 80.90 0.26 45.22

4: Yu and Smith (2007)
Proportion correct 3 0.05 4.20 0.08 9.43 0.17 24.38
5: Yu et al. (2012)
Proportion correct 2 0.03 5.44 0.18 24.32 0.16 22.61
Prop. of time on target 18 0.13 17.00 — — — —

6: Yurovsky, Yu, &Smith. (2013)
Proportion correct 3 0.03 6.71 — — — —

7: Kachergis et al. (2012)
Prop. correct: Within-stage (3-Late) 6 0.01 1.33 0.03 4.38 0.28 38.98
Prop. correct: Within-stage (6-Late) 6 0.06 8.16 0.03 4.59 0.25 33.93
Prop. correct: Within-stage (9-Late) 6 0.15 17.88 0.02 1.94 0.15 17.99
Prop. correct: Cross-stage (3-Late) 6 0.11 71.91 0.06 41.12 0.05 35.05
Prop. correct: Cross-stage (6-Late) 6 0.04 13.26 0.02 5.85 0.18 64.36
Prop. correct: Cross-stage (9-Late) 6 0.03 9.99 0.02 6.60 0.24 70.56
Prop. correct: No-early stage 3 0.01 3.11 0.09 19.47 0.02 4.87
8: Smith and Yu (2013)
Prop. correct 1 0.01 1.07 0.08 12.87 0.37 58.42
Proportion looking to varying and repeated 24 0.15 24.85 — — — —

9: Vlach and Johnson (2013)
Prop. correct (looking): 16 month olds 2 0.02 3.98 0.03 6.27 0.48 94.80
Prop. correct (looking): 20 month olds 2 0.02 2.58 0.02 3.92 0.45 83.26

10: Vlach and DeBrock (2019)
Prop. correct: 47–58 month olds 2 0.03 3.46 0.13 17.57 0.36 57.14

11: Vlach and DeBrock (2017)
Prop. correct (against scatter fit) 6 0.06 5.49 0.23 25.37 0.10 11.06

12: Suanda et al. (2014)
Proportion correct 3 0.14 27.07 0.15 33.30 0.36 82.58
Prop. of subjects looking correctly 3 0.29 40.44 — — — —

Grand mean 11 exp 69 0.05 13.51 0.08 19.95 0.20 42.13
Standard deviations 11 exp 69 0.04 15.79 0.07 21.99 0.13 25.52
Grand mean 3 gen exp* 15 0.03 4.05 0.21 47.42 0.13 23.91
Overall AIC 69 −239.67 −295.78 −193.32
Overall BIC 69 −96.69 −289.08 −186.62
Grand mean all 12 exp 132 0.10 15.80 — — — —

Note. WOLVES = Word-Object Learning via Visual Exploration in Space; RMSE = root mean squared error; MAPE = mean absolute percentage error;
AIC = Akaike information criterion; BIC=Bayesian information criterion. #DP Indicates Number of Data Points.
* Generalization exps = Trueswell et al. (2013), Vlach and DeBrock (2017) and Yu et al. (2012).

A NEURAL PROCESS MODEL OF CSWL 23



objects, even though one of the alternatives, the correct referent,
appeared on a prior trial. If, on the other hand, the participant tracks
alternative hypotheses, then (s)he should be above chance at
selecting the correct referent on this second learning instance,
drawing on the memory of past (nonselected) alternatives. Trueswell
and colleagues found that adults learned some word–referent pairs
despite the high ambiguity and that learning increased as the task
progressed to be well above chance by the end of the 60 trials
(Figure 13 left). We situated WOLVES in the exact task and found
nearly identical results despite the fact that parameters were not
specifically “tuned” for this task (Figure 13 left). The Kachergis et
al.’s model simulated with the optimal adult parameter set shows a
generally increasing trend over learning instances, but with a
consistently higher proportion correct relative to the data.
To examine participants’ use of HT versus AL, Trueswell et al.

looked at participants’ accuracy on a given trial (n) as a function of
their accuracy in the prior trial with that word (n − 1), collapsed
across 2–5 instances. The right panel of Figure 13 shows that if the
participants were correct on the previous learning cycle (right blue
bar), accuracy on subsequent trials was well above chance. How-
ever, if participants were incorrect on prior trials (left blue bar),
accuracy on subsequent trials was at chance indicating no memory
of alternate possible associations from the previous learning cycles.
WOLVES shows a comparable behavioral pattern, exhibiting above
chance accuracy in the case of previously correct responses (0.51)
and random guessing in the case of previously incorrect responses
(0.19). The Kachergis et al.’s model does not reproduce this pattern
and shows above chance and somewhat similar accuracy in both
previously correct (0.58) and previously incorrect responses (0.48).
Pursuit reproduces chance level behavior in the case of previously
incorrect responses (0.18) but shows too much learning in the case
of previously correct responses (0.83).
Trueswell et al. (2013) also used an eye tracker to examine

whether participants’ eye movements revealed any implicit memory
of alternate hypotheses not signified in the explicit response behav-
ior. In particular, if participants had stored alternative mappings on
prior trials, looks to the Target on subsequent trials should exceed

looks to a randomly selected competitor, even when the participant
chose incorrectly at the previous learning instance. Looking to the
target and competitor was similar when participants had been
incorrect on the previous trial (Figure 14A); however, when they
had been correct, looks to target exceeded looks to the competitor.
Likewise, target advantage scores (TASs)—the proportion of looks
to the target minus the proportion of looks to the competitor—were
positive in cases where participants were previously correct, indi-
cating a preference for the target. This was not the case when
participants were incorrect (Figure 14B). WOLVES captures these
looking patterns well (Figures 14C & D).

Trueswell et al. (2013) argued that these data confirmed the use of
HT in CSWL. However, WOLVES suggest an alternative. An
analysis of the model’s memory traces revealed that it typically
only formed one association on each trial due to the short exposure
time that allowed for only one look on average. Therefore, if the
model had formed a wrong association/hypothesis for a word, it
selected objects at chance in a subsequent trial with that word. We
therefore predict that if Trueswell and colleagues had allowed the
participants to look at objects long enough to register multiple
associations or modified the paradigm to allow participants to
make more than one choice on each trial (or both), participants
would have shown a different behavioral pattern. We ran a simula-
tion of WOLVES with a trial duration of 6 s instead of 2 s and five
presentations of a word within a trial. As is shown by the bars on the
left in Figure 15a, WOLVES predicts that the proportion of correct
responses would be above chance even in the case of previously
incorrect instances. We are currently testing these predictions (Bhat
et al., 2020a). Note that this prediction is unique to WOLVES as it is
the only model to implement time in a real way. The Kachergis et
al.’s model, for example, treats attention as a quantity rather than a
temporally unfolding process and must distribute this quantity of
attention among all word-object pairs on a trial. This leads it to
update multiple associations for a word on every trial, resulting in
above chance accuracy even for previously incorrect responses. This
example reinforces the need for models like WOLVES that can
simulate attention and other processes in real time.
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Figure 13
Data from Trueswell et al. and the WOLVES and Kachergis Models

Note. Average proportion of correct responses by adult participants (left, blue), WOLVES (left, red), and Kachergis
model (left, green) as a function of learning instance and (right) as a function of whether the participant/model had been
correct or incorrect on the previous learning instance for that word. Error bars indicate ±95% confidence interval and black;
dashed lines indicate the chance level of performance. WOLVES = word-object learning via visual exploration in space.
See the online article for the color version of this figure.
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Interestingly, WOLVES also clarifies an aspect of Trueswell
et al.’s (2013) data as follows: When participants guessed correctly
on a previous instance, they were not 100% accurate on subsequent
trials with that word. Trueswell et al. (2013) suggested that this
might be because participants failed to recall their own hypotheses.
In WOLVES, this effect arises because associations formed on early
trials are weaker and thus not always able to direct attention on
subsequent trials. Critically, as associations build over training, they
direct attention more effectively. As shown in Figure 15b, this leads
to a steady improvement in performance accuracy on “correct” trials
over training.
In summary, data from Trueswell et al. (2013) are consistent with

simulated data fromWOLVES despite the fact that WOLVES is not

a HT model and does not implement a “propose but verify” process.
Furthermore, the model explains why the form of competitive AL in
WOLVES is sufficient to capture the data—the short trial durations
and single response required limit the formation of multiple word-
object associations on each trial. Finally, these results shed light on
why participants fail to recall hypotheses on correct trials—a finding
that does not follow naturally from HT-style models like PbV or
Pursuit.

Experiment 4: Yu and Smith (2007), Experiment 1

This seminal study focused on two specific questions: (a) Can
participants keep track of the simultaneous co-occurrences of many
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Figure 14
Timecourse Data from Trueswell et al. (2013)

Note. Panels A and B adapted from Trueswell et al. (2013): (A) Average proportion of adult looks to the target referent (triangles) and a
randomly selected competitor referent (circles) plotted over time from word onset. Curves with dark filled symbols represent instances on which
the participant had been correct on the previous instance. Curves with light filled symbols represent instances on which the participant had been
incorrect on the previous instance. (B) Target Advantage Scores (TASs): Proportion of participant looks to the target minus proportion of looks to
the competitor. Right Panels (C and D) show corresponding looking trajectories (C -> A and D -> B) of the WOLVES model over time.
WOLVES = word-object learning via visual exploration in space. See the online article for the color version of this figure.
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labels and referents across trials to learn mappings and (b) How
is learning performance affected by varying the ambiguity and
duration of object presentations? Adults were taught 18 word-
object mappings in three conditions that differed in the number
of words and objects presented on a trial, 2 × 2, 3 × 3, or 4 × 4.
Across conditions, the number of possible associations formed
on a trial increased from 4 to 9 to 16. Each mapping was
presented six times regardless of condition, but the number of
trials and their duration varied across conditions to keep the total
training time consistent. A four-alternative forced-choice test
was used to assess learning in all conditions. As shown in
Figure 16a, although learning was above chance in all condi-
tions, it declined with increased ambiguity. Yu and Smith (2007)
concluded that the real-time processing demands of attending to
and remembering many words and referents caused the decline in
performance.
WOLVES and the Kachergis et al.’s model show the same

downward trend of decreasing word-learning performance with
increasing within-trial ambiguity (Figure 16a), with a good
quantitative fit to the data (although WOLVES provides a
more accurate fit; see Table 3). WOLVES also provides mech-
anistic details of how within-trial uncertainty affects learning.
Because completion of each fixation in the model takes time, the
model generates about four looks per 6 s trial in the 2 × 2
condition, six looks per 9 s trial in the 3 × 3 condition, and
eight looks per 12 s trial in the 4 × 4 condition. This means that
the number of associations that the model can form on each trial
varies by condition from four in the 2 × 2 condition, to six in
3 × 3, to eight in 4 × 4. This increasing ambiguity means that
the likelihood of missing a correct association grows across
conditions from 0% to 34% to 50%. Likewise, the number of
incorrect associations the model is exposed to grows from 2 to

12. This is reflected in the number of incorrect associations that
the model has in memory at the completion of the learning
phase for the three conditions (Figure 16b). Furthermore, with
increasing ambiguity, the number of times each correct associ-
ation is reinforced decreases proportionally. This reduces the
strength of correct associations across conditions (Figure 16c).
Note that Pursuit also replicates results from Yu and Smith
although WOLVES shows better performance in the task (see
Table 3).

Interestingly, we can carry forward insights from the simulations
of Trueswell et al. (2013) and ask how the model’s performance
would vary in the Yu and Smith (2007) task if we reduced the trial
duration to limit fixation counts per trial. Accordingly, we down-
sized trial durations and word presentations in Yu and Smith (2007)
task to one-third and asked the model to make a forced-choice
response on every test trial. Figure 16d (blue bars) shows the
predicted results. Learning drops significantly but is still above
chance in all conditions. The drop is because associations are
revisited/reinforced far fewer times (Figure 16e). The number of
incorrect associations is nearly equal to those in Smith and Yu
(2008; Figure 16f) because the likelihood of missing on both correct
and incorrect associations grows proportionally. We are currently
testing these model predictions. Note that, again, this prediction is
unique to WOLVES as it is not possible to reduce the trial durations
in either the Kachergis et al.’s model or Pursuit, or, in fact, any
previous model of CSWL.

Experiment 5: Yu et al. (2012), Experiment 1

This study used eye tracking to examine whether adults’ gaze
patterns during training are indicative of learning performance.
Yu et al. (2012) hypothesized that as learning progresses, learners
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Figure 15
Average Proportion Correct Responses as a Function of Whether the Prior Choice for That Word
Had Been Correct or Incorrect for Instances 2–5 Separately (Both Panels)

Note. Error bars indicate ±95% confidence interval; dashed lines indicate chance level. (a) WOLVES
predictions in a modified version of Trueswell et al. task with longer trial durations (6 s). WOLVES predicts
that participants will be above chance even in case of previously incorrect instances. (b) WOLVES accuracy
measures in the original Trueswell et al. task showing chance-level accuracy for previously incorrect responses
and steady improvement for previously correct responses. WOLVES = word-object learning via visual
exploration in space. See the online article for the color version of this figure.
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are increasingly successful in selectively directing their attention
to the correct target after hearing object-associated words. Parti-
cipants were pretrained on 3 of 18 novel word pairings before
completing the 4 × 4 condition of Yu and Smith (2007) with all
18 pairs. An 18-alternative forced-choice (18-AFC) task was used
to test learning of all 18 words. Adults’ proportion correct
response was 91.87% for the three pretrained words and
58.12% for the other 15 words, both significantly above chance
(Figure 17a). However, because there was high variability
between adults, Yu et al. (2012) divided participants into groups
of strong, average, and weak learners based on their performance
at test. As shown in Figure 17b, all learners started by randomly

looking at any of the four objects on the screen after hearing a
word. Over the course of training, however, their attention became
more selective, with more time spent looking at the target,
particularly for strong learners (Figure 17b).

To simulate the first phase of this experiment, WOLVES was
presented with each of the three words and its referent for 5,000 ms,
long enough to form strong associations. Simulations of the training
and test phases were then identical to the corresponding condition of
Yu and Smith (2007).

As is shown in Figure 17a, WOLVES matched adults’ perfor-
mance with a low MAPE (5.44) even though model parameters
were not adjusted for this experiment. Both the Kachergis et al.’s
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Figure 16
Data from Yu and Smith (2007) and the WOLVES and Kachergis Models

Note. (a) Mean proportion of words learned by adults in Yu and Smith (2007; yellow bars), byWOLVES (blue bars), and by the Kachergis model (green bars).
The black dotted line shows the chance level. (b) Mean number of incorrect associations WOLVES remembers at the end of training in different conditions of
training. (c) Average strength of associations in WOLVES’s memory at the end of training for three different conditions. (d) WOLVES prediction in a modified
version of Smith and Yu task where trial durations are reduced to one third. (e) Mean number of incorrect associations WOLVES and (f) Average strength of
associations inWOLVES’s memory at the end of training in the modified task.WOLVES = word-object learning via visual exploration in space. See the online
article for the color version of this figure.
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model (Figure 17a) and Pursuit reproduce the results, although
WOLVES’ proportion correct is the closest match to participants.
As in the experiment, we sorted individual model runs from
WOLVES into strong, average, and weak learners. Figure 17c
shows that strong learning models formed fewer incorrect asso-
ciations over learning. This is because the runs that end up being
strong learners hit upon the right associations early and kept
revisiting those associations; this limits the formation of incorrect
associations. Consequently, these models spent more time looking
at the target over training (Figure 17d). Thus, like adults,
WOLVES selectively attends more to the target as it learns
over training.
It is important to emphasize that we used the same parameters

for all WOLVES simulations. Thus, differences in strong versus
weak learners emerged from the model’s own autonomous visual
exploration and learning rather than individual differences per se.

We note that the model underpredicted differences in looking to
the target for strong learners (see Figure 17d). It is possible that
this reflects real individual differences that participants brought
to the experiment that we failed to capture via, for instance,
parameter differences in groups of WOLVES simulations. This
could be addressed in future work by explicitly assessing indi-
vidual differences among participants prior to the word learn-
ing task.

Experiment 6: Yurovsky, Yu, et al. (2013), Experiment 1

This study explored the role of competitive processes in CSWL.
The authors hypothesized that local competition between word
and object mappings would make it difficult to learn multiple
referents for a single word. Adults were presented 18 word-object
mappings to learn but 6 were single words that each mapped to a
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Figure 17
Data from Yu et al. (2012) and the WOLVES and Kachergis Models

(a) (b)

(c) (d)

Note. (a) Mean proportion correct responses at test by adults (blue bars), by WOLVES (yellow bars), and by the Kachergis model
(green bars) for the three pretrained words and the other 15 to-be-learned words. (b and d): Proportion looking time to target after word
presentation by adults and (d) the WOLVES model against word occurrence as each word appeared six times throughout training. (c)
Number of incorrect associations per word for the different types of learners. Weak learners have the maximum number of incorrect
associations indicating greater uncertainty in their word knowledge. WOLVES = word-object learning via visual exploration in space.
See the online article for the color version of this figure.
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single referent on a trial, 6 were double words that each mapped to
2 different referents on a trial and always co-occurred, and 6 were
noise words that did not map consistently onto any referent (see
Figure 18). Each of the 27 training trials presented 4 words, in
sequence, and 4 objects on the screen such that each of the 18
words and objects appeared 6 times.
On each testing trial, participants heard one of the words and

clicked the four presented objects to rank their likelihood of being
the referent. Participants were credited with knowing the correct
referent for a single word if it was their first guess (“single” bars in
Figure 19A). Participants were credited with knowing either
referent of a double word if they selected either of the correct
referents as a first guess (“either” bars in Figure 19A). If parti-
cipants selected both the referents as first and second guesses, they
were credited with knowing both referents of the double word
(“both” bars in Figure 19A). Adults showed better than chance
accuracy for single and double words (i.e., all bars in Figure 19A
were above chance levels). Nevertheless, they showed signifi-
cantly less learning of both referents of a double word than one
referent of a single word (i.e., both <single in Figure 19A). This
indicates that there was competition between the two mappings of
a double word that resulted in adults mostly learning one of the
two mappings.
WOLVES was credited with knowing the correct referent for

a double word if it looked at either of the correct referents more
than the other three objects. If looking time to both the
referents was more than looking time to the two distracters,
the model was credited with knowing both the correct referents
of the double word. Note because the model had to make at
least two looks—one after the other—to attend both referent
objects, we calculated looking at test over 3,000 ms instead of
1,000 ms as in other simulations to allow the model to generate
two or more looks. The model showed the same learning trend
for the different word types with accuracy at rates comparable

to adult performance (Figure 19A). Model comparison is not
included for this task because implementing multiple selections
over time within a trial was not possible in either of the
comparator models.

Yurovsky, Yu, Smith, (2013) concluded that competition is
involved on every trial with a double word because referents
inhibit one another, and learners divide attention between the two
referents. WOLVES shows this competition effect; however,
WOLVES also reveals that competition evolves over the course
of learning. The model makes around 5–6 looks during each
learning trial. Thus, on a trial with a double word, it is relatively
unlikely that the model will look at both referents when the double
word is “on” because the word is only presented once. If one of the
double word’s referents is well attended on early trials, the
memory trace of this referent–word pair will begin directing
attention selectively to this referent whenever the word is pre-
sented on later trials. This will inhibit the formation of a strong
mapping between the double word and its second referent. In
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Figure 19
Data from Yurovsky, Yu, and Smith (2013) and the WOLVES Model

(A) (B)

Note. (A) Adult and model accuracy at test for each word type. Both Adults and WOLVES learned not only the
referents of single words but also both referents for double words, although the two referents of double words are learned
significantly less well than the single referents of single words. Dotted lines indicate chance levels and error bars are SE.
(B) Average strength of correct association traces of the single and double words laid down by the word–feature field at
the end of the learning phase. WOLVES = word-object learning via visual exploration in space. See the online article for
the color version of this figure.

Figure 18
The Trial Structure for Yurovsky, Yu, and Smith, (2013; Adapted)

Note. On each trial, participants encountered four words and four referents,
but the number of correct mappings for each word varied by type. Capital
letters indicate words and lowercase letters indicate referents. Single words
each had one correct mapping per trial (e.g., B–b, C–c), double words each
had two correct mappings per trial (e.g., A–a1 and A–a2, F–f1 and F–f2) and
noise words were not mapped to any referent (e.g., D, G). Single words and
their referents are depicted in black, double words and referents in gray, and
noise words in white.
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comparison, no such dynamic competition occurs for single
words. This is reflected in the memory traces laid down at the
end of training: The average association strength of double words
(averaged over two associations) is weaker than that of single
words (Figure 19B). Thus, WOLVES reveals how selective atten-
tion and memory interact online to give rise to less learning of one-
to-two mappings in the experiment.

Experiment 7: Kachergis et al. (2012), Experiment 1

This study explored the role of mutual exclusivity (ME)—a bias
to map novel words to unnamed referents (Markman, 1990)—in
the learning of new word-object associations, and how ME is
employed and relaxed in CSWL tasks that present objects with
multiple associated words. In an early training stage, participants
saw 6 out of 12 word-object mappings (early pairs) with the
number of presentations of each varying across 4 within-subject
conditions: 0, 3, 6, or 9. Thus, in the three-presentation condition,
Word 1 and Object 1 (w1–o1) were presented three times. During
the late training stage, each early pair (e.g., w1–o1) was matched
with one of the remaining six word-object pairs (late pairs; for
instance, w7–o7) and always presented together—for instance,
Word 1 was presented with Object 7 (w1–o7), and Object 1 was
presented with Word 7 (w7–o1). Three between-subjects condi-
tions manipulated the number of times each late pair appeared as
follows: 3-Late, 6-Late, and 9-Late. A control condition did not
include the early training stage. By comparing performance across
early and late stages, Kachergis and colleagues could probe
whether early learning “blocked” later learning, as well as how
much learning was required to “relax” mutual exclusivity and
allow a new word-object mapping.
Learning was tested in an 11-AFC test with one word. Each word

(e.g., w1) was tested once with its corresponding referent (o1) but
without the next best match (o7), and once without its correct
referent (o1) but with the next best match (o7) to allowmeasurement
of the strength of both associations. Note that the within-stage
associations (w1–o1 and w7–o7) were compatible with ME,
whereas the across-stage associations (w1–o7 and w7–o1) should
not be learned under strict versions of ME.
Participants showed a ME bias (Figure 20 top panels), as accu-

racy for cross-stage (w1–o7, w7–o1) pairings was less than within-
stage pairings (w1–o1, w7–o7). However, all learning was above
chance (gray line in Figure 20 top panels). Moreover, in the face of
additional co-occurrences in late trials (i.e., across 3-Late, 6-Late,
and 9-Late conditions), participants adaptively relaxed ME to learn
cross-stage mappings. In the condition with no early trials, perfor-
mance was between the within-stage and cross-stage performance
levels.
We used the same training procedure with WOLVES; however,

we had to increase the spatial dimension from 100 units to 300
units to fit 11 objects into the visual scene. Critically, WOLVES
showed similar learning patterns as adults (Figure 20 bottom
panels), although WOLVES shows a much stronger effect of
early repetitions. By contrast, early learning curves are basically
flat in the empirical data. Thus, clearly participants learned faster
than WOLVES in this task. We note that we tuned the parameters
for this task using a 4 alterative forced-choice procedure as
running WOLVES with 300 spatial units takes about a week of

simulation time. Clearly, the parameters of the model are not yet
optimal for the 11-AFC version of this experiment.

As expected, the Kachergis et al.’s model performs well (see
Table 3), outperforming WOLVES in five of seven conditions
(Pursuit also has a low MAPE score in one condition). In the
Kachergis et al.’s model, prior knowledge biases attention to
previously observed early word-object pairs, which competes
with the high uncertainty of late pairs, quantified by the entropy
of the new stimuli. Thus, attention is mostly divided between the
early and late within-stage pairs leading to mutual exclusivity-
like learning of late pairs. WOLVES also operates via the
modulation of attention but does not add in any uncertainty
biases; rather, effects of uncertainty are emergent from the
memory trace dynamics. As the model learns the early pairs,
it lays down word-object memory traces. As these memory traces
strengthen with increased early repetitions, performance im-
proves. Moreover, these traces can block the formation of
cross-stage associations. However, word-object pairs that are
introduced late are not blocked because there are no prior
associations for these items and increases in late repetitions
systematically improve performance. The learning of cross stage
associations is above chance because the memory and attention
constraints can limit the strength of learning for early pairs.
Furthermore, as the number of late trials is increased, there is
increased opportunity to register cross-stage associations as
previously formed memory traces decay and become too weak
to block the formation of new peaks in the word–feature fields.
Thus, the build dynamics of the memory traces contribute to the
formation of word-object associations, while the decay dynamics
help facilitate remapping, provided the context is supportive of
new associations.

These decay dynamics also help WOLVES outperform Pursuit
in this task. In particular, for the cross-stage associations that
require relaxing ME to improve learning, we see that as the
number of late repetitions increases, WOLVES’ test performance
also increases but Pursuit’s performance decreases (see Table 3).
This is due to the unique format of the test used to assess cross-
stage associations during which it is not the correct target that is
presented but the next-best match. With increasing late repeti-
tions, Pursuit keeps reinforcing the correct hypothesis only,
causing performance at test to go down. In contrast, these rival
mappings decay in WOLVES enabling it to overcome the influ-
ence of early training and improve performance.

Developmental Studies of CSWL

Earlier in this report, we modeled data from two CSWL studies
with infants (Smith & Yu, 2008; Yu & Smith, 2011). Here, we
simulate data from five additional developmental studies with
children between 12 months and 8 years of age and, thus, a wide
range of cognitive and language abilities. To date, there have been
no efforts to explain developmental variations in CSWL perfor-
mance. We show below that WOLVES captures developmental
changes in CSWL behaviors via manipulations to only two param-
eters: tau_Build, which specifies the timescale of memory trace
formation and tau_Decay, which specifies the timescale of memory
trace forgetting. As shown in Table 4, tau_Build was initially set to
1,200 and only decreased (accelerating memory formation) for the
adult simulations reported in the previous section. By contrast,
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tau_Decay was systematically increased over age, making the
memory trace dynamics more resistant to decay. Thus, relatively
modest parameter changes were required to capture a host of
developmental findings.

Experiment 8: Smith and Yu (2013)

To investigate the role of novelty/familiarity in CSWL, training
trials from Yu and Smith (2011) were rearranged into six blocks of
five trials in which one of the two presented objects repeated trial-

after-trial before changing to another repeating object in the next
block. Test trials followed the same structure used in Yu and Smith
(2011). Compared to Yu and Smith (2011), infants showed less
learning, that is, fewer infants looked reliably longer at the target
than the distracter at test. These 19 infants were classified as learners
and the remaining 29 as nonlearners. Smith and Yu (2013) then
examined looking to the target and distracter following word
presentation during test trials and found that learners’ visual attention
was strongly cued to target objects after word onset (Figures 21a, 21b
dark line). Nonlearners, by contrast, looked nearly equally to the
target and distracter. During training, all infants looked equally often
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Figure 20
Data from Kachergis et al. (2012) Experiment 1 and the WOLVES Model

Note. Top panels: Learning performance at test for adults in the 3-Late, 6-Late, and 9-Late pairs conditions. Data subdivided according to the four early
conditions with 0, 3, 6, or 9 presentations of the early pairs. Lines represent data for each type of pairing tested (i.e., the correct early pairings w1–w1). The
single dot shows the performance for the condition with no early-stage pairs. Bottom panels: Data from word-object learning via visual exploration in space
(WOLVES). See the online article for the color version of this figure.
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to both objects on the first trial of each block but looked increasingly
more to the varying object on the successive trials within a block
(Figures 21c, 21d). Thus, both groups habituated to the repeating
objects over training.
Visuospatial WM is a core component of WOLVES and mod-

ulates its performance in CSWL. As the model explores its visual
environment over trials, it holds objects in working memory for a
short period of time. If an object is maintained in WM, the model
will divert its attention to objects not currently in WM, producing a

novelty bias. Memory traces associated with the WM layers
support this process, increasing the excitability of WM peaks,
making them more stable (i.e., less likely to lose stability due to
competition with other WM peaks). Furthermore, if the model
happens to attend to an item already in WM, consolidation is fast
and the model quickly releases attention. As shown in previous
studies using VES (Perone & Spencer, 2013a, 2013b, 2014), these
processes conspire to cause the model to habituate over trials (see
Figure 22 and Bulf et al., 2011; Taga et al., 2002; Wetherford &
Cohen, 1973 on habituation process).

We embedded WOLVES in the task used by Smith and Yu
(2013). Like infants, WOLVES learned less in the Smith and Yu
(2013) task compared to the Yu and Smith (2011) task in terms of
proportion looking to the target (Figure 23A, left bars), proportion
of words learned (middle bars), and proportion of learners (right
bars). Simulations of the Kachergis et al.’s model (see Figure 23A,
middle green bar) and Pursuit show the same performance (in terms
of proportion words learned) in both the Smith and Yu (2011) and
Smith and Yu (2013) tasks, contrary to infant behaviors. Note that
the Kachergis et al.’s model does capture the effects from both
studies using separate parameter sets. Interestingly, when we
optimize the parameters to just the Smith and Yu (2013) task,
the optimal parameters have a high lambda value (12.23) indicating
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Table 4
Age-Specific Variation for the Memory Timescale Parameters

Experiment Age tau_Build tau_Decay

Smith and Yu (2008, 2013) 12 m 1,200 700
Smith and Yu (2008, 2013);
Yu and Smith (2011)

14 m 1,200 800

Vlach and Johnson (2013) 16 m 1,200 1,000
Vlach and Johnson (2013) 20 m 1,200 1,500
Vlach and DeBrock (2017) 22–68 m 1,200 800–5,000
Vlach and DeBrock (2019) 47–58 m 1,200 3,000
Suanda et al. (2014) 57–95 m 1,200 3,100
Adults — 1,000 15,000

Figure 21
Data from Smith and Yu (2013; Adapted)

Note. Proportion of 14-month-old infants in Smith and Yu (2013) looking at the target (dark line) and distracter following
word presentation during test for learners (a) and nonlearners (b). Learners looked more to the target after the word, whereas
nonlearners looked slightly more to distracter. Mean proportion of looking (and standard deviations) to the varying objects and
the repeated object in each block for the learners (c) and nonlearners (d). Both groups lookedmore to the nonrepeating (varying)
object and showed habituation, although habituation was less for the nonlearners.
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strong weighting of entropy (novelty) in this task. This makes good
sense as children show strong attention to novelty due to the
presentation of repeated items on successive trials. However, the
optimized parameters also have an α parameter of 1.0, indicating a
model with no forgetting. Thus, when parameters are allowed to
vary, the Kachergis et al.’s model trades off the entropy/novelty
effects for changes over blocks.
By contrast, WOLVES captured infants’ within-block habituation

expected from the repetition structure of the blocks. Looking to the
varying object (Figure 23B, green line) grew progressively within each
training block (shaded regions) and dropped down when a new
repeating object was presented at the start of each block. Like infants,
model runs classified as learners looked to the target following word
presentation at test, whereas nonlearning models did not (Figures 23c,
23d). Finally, WOLVES captured habituation across training: overall,
learner, and nonlearner runs looked more to the varying than repeated
objects. In summary, our simulations affirm that when attention is
strongly driven by contextual novelty (and away from familiarity), this
competes with, rather than supports, statistical learning.
Simulations of Smith and Yu (2013) revealed another factor that

impacts performance in the preferential-looking version of the
CSWL task—the oscillatory nature of looking relative to the timing
of word presentations. As reviewed above, VES cycles through
novelty detection, attention, consolidation, and release as it autono-
mously explores the visual display. When two stimuli are present
and there are no words to bias attentional selection, this results in
oscillations of looking to one object and then the other. This can be
seen in the red line plotted in Figure 24 which shows strong learning
models situated in an 8 s test trial without words. As shown, the
proportion of model runs looking to the target oscillates around .50
and attention is roughly evenly distributed between the objects. In
contrast, the green line shows what happens when the same model is
placed in the task with a word “on” continuously. Here, the word
biases attention to the target. This effect is particularly strong at the
start of the trial because top-down influences are able to direct the
model’s very first look to the target. Looking to the target continues
to be high over the remainder of the trial but decreases somewhat.
This decline occurs because as the model looks to the target object it

forms a working memory of the object causing it to be less novel
compared to the distracter. Thus, the growing working memory for
the target provides a push to look at the distracter that counters the
top-down influence of the learned word associations.

The blue line in Figure 24 shows the case of the same models
situated in the Smith and Yu’s (2008) test where a single word is
presented four times as indicated by the gray vertical shading. As
shown, a greater proportion of model runs with learned associa-
tions look to the target object compared to the case when no
words are presented (red line). Thus, the model demonstrates
learning. However, target looking is not as high as in the case of
continuous word presentation. This is not simply the case of more
word input leading to more target looking. Rather, the timing of
the word presentation also plays a role. In particular, in the Smith
and Yu’s (2008) test, the model’s greatest proportion of looking
to the target happens during the second looking oscillation. This
is because the model has generated its first look before the word
has come on and must finish its cycle of looking before the word
can direct attention to the target. Thus, demonstrations of learning
at test do not just depend on the accumulated memories of what
words are associated with what objects, but also on the dynamics
of VES.

This is evident in the simulations of Smith and Yu (2013). In
particular, Yu and Smith (2011) used an 8-s test that included four
presentations of the word, while Smith and Yu (2013) employed a
same duration test but presented the word five times. Importantly,
the two tests differ in the onset timing of the words as shown in
Figure 25 (left panel). To probe whether these test differences
matter, we trained models using the Smith and Yu’s (2011) para-
digm and then tested the models using the two test trial formats
shown in Figure 25 (left panel). As shown in the figure (right panel),
WOLVES demonstrates more learning in the Smith and Yu’s (2013)
test than in the Yu and Smith’s (2011) test. This is surprising in that
infants showed less learning in Smith andYu (2013) and emphasizes
that habituation severely hindered learning in this study.

Experiments 9 and 10: Vlach and Johnson (2013) and
Vlach and DeBrock (2019)

These studies explored the role of developing memory abilities in
CSWL. Sixteen and 20-month-old (Vlach & Johnson, 2013) and 47-
to 58-month-old children (Vlach & DeBrock, 2019) were presented
with a CSWL task in which presentations of 12 word-object mappings
were either grouped together (Massed Condition) or distributed
(Interleaved Condition, see Figure 26). Vlach and Johnson (2013)
found that 16-month-old infants learned the massed object–label
pairings but not the interleaved pairings (Figure 27a, blue bars).
Twenty-month-olds showed roughly equal learning in the two con-
ditions (Figure 27b, blue bars). Interestingly, Vlach and DeBrock
(2019) found that older children showed better learning in the Inter-
leaved condition (Figure 27c, blue bars). Vlach and Johnson (2013)
suggested that 16-month-old infants had trouble learning from the
interleaved pairings because of limits in aggregation and retrieval of
pairings from memory. This idea suggests that older infants and
children do better in this condition because their memory system
has improved. However, it does not explain why older infants and
children no longer learn well in the massed condition.

We situated WOLVES in the training phase of this task and
measured preferential looking at test in both experiments for
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Figure 22
Habituation in WOLVES as Training Progresses

Note. The mean length of looks decreases as traces created by the
working memory peaks grow. See the online article for the color version
of this figure.
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consistency. To make data comparable to the choice task of Vlach
and DeBrock (2019), WOLVES was credited with knowing the
word if it looked more to the target than the distracter in the first

1,000 ms following word presentation. The only changes to the
parameters were to tau_Decay to simulate development, as re-
viewed above.
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Figure 23
Data from Smith and Yu (2013), and the WOLVES and Kachergis Models

Note. (A) Comparison of WOLVES learning in Smith and Yu (2013, yellow bars) and Yu and Smith (2011, blue bars) in terms of proportion
of time looking to the target (left bars), proportion of words learned (middle bars), and proportion of models classified as learners. Green bar
shows identical proportion of words learned for the Kachergis model in both experiments. (B) Proportion looking to varying object versus the
repeated objects over the 30 training trials of Smith and Yu (2013). The training trials are split into six blocks shaded with different colors.
Looking to the repeating objects (blue line) drops within each training block and jumps up when a new repeating object is presented at the start
of each block. (C and D) Proportion looking to target (blue) versus distracter (red) following word presentation at test for WOLVES model runs
classified as learners (C) and nonlearners (D). (E and F) Mean proportion of looking (and standard deviations) to the varying and repeated object as a
function of block for the learner and nonlearner models.WOLVES = word-object learning via visual exploration in space. See the online article for the
color version of this figure.
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WOLVES was successful in capturing the developmental differ-
ences seen in these studies (yellow bars in Figure 27). With
fast memory decay (tau_Decay = 1,000), WOLVES captured the
16-month-old infants’ above-chance preferential looking to massed
objects and chance-level looking to interleaved objects. With mod-
erate memory decay (tau_Decay = 1,500), WOLVES captured 20-
month-old infants’ nearly equal learning in the massed and inter-
leaved conditions. With slower memory decay (tau_Decay = 3,000),
WOLVES performed above chance in both conditions and showed
better learning of interleaved pairings than massed pairings.
Furthermore, as shown in Figure 27d, WOLVES learns propor-
tionally more pairings in the massed condition when tau_Decay is
lower but begins to show better performance in the interleaved
condition as tau_Decay increases. We explored whether the
Kachergis et al.’s model could capture the difference in perfor-
mance across these conditions, starting with the “base” optimized
developmental parameters and scaling α (the forgetting parame-
ter). Simulations in the α range 0.98–1.0 showed the best perfor-
mance. As shown in Figure 27e, performance improves in the
interleaved condition with increases in α, but the interleaved
condition never outperforms the massed condition.

Further examination of the association strengths of WOLVES as
it enters the test phase provides a unifying developmental account of
the results observed in these studies. Figure 28 plots the strength of
association traces for the massed and interleaved pairings at the end
of training for each age group. In all three panels, the dashed red
curve showing the memory strength of the massed objects is very
steep; thus, massed pairings presented in later trials have strong trace
strengths while massed pairings presented early on are mostly
forgotten. The blue curve shows the interleaved pairings. Here,
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Figure 24
WOLVES Proportion of Looking to the Target Under Different
Testing Conditions

Note. The time course plot shows the proportion of looking to target for
WOLVES over the 8 s of the test trial for three different conditions: when no
word was presented during the tests (red curve); when the word was
presented as per the Smith and Yu (2011) task (blue curve); and when
the word was presented for the full duration of the test (green curve). The
gray rectangular columns specify time windows during which word was
presented according to the Smith and Yu (2011) test paradigm. WOLVES =
word-object learning via visual exploration in space. See the online article for
the color version of this figure.

Figure 25
Comparison of WOLVES Performance Under The Testing Conditions of the Yu and Smith (2011) and Smith
and Yu (2013) Tests

Preferen�al Looking to Target 

Note. (Left panel): Time course plots showing proportion of looking to target for WOLVES over the 8 s of the test trial
using test formats of Yu and Smith (2011) task (blue curve) and that of Smith and Yu (2013) task (red curve). The gray
rectangular columns specify time windows during which word was presented in each test paradigm. (Right panel): Average
proportion looking to target in the two test paradigms. WOLVES = word-object learning via visual exploration in space.
See the online article for the color version of this figure.
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learning is much less steep because these pairings decay and then are
rebuilt every six trials. This pattern emerges from the interaction of
memory trace decay and how often a particular word-object pairing
is revisited (which stops decay for that pairing). For example, in the
task, the massed pairing presented in the first block is never
presented again in the five following blocks (30 trials) and therefore
its memory trace decays continuously to a very low strength by test.
In contrast, the massed pairing presented in the final block gets
almost no time to decay before test.
The task structure therefore interacts with the slowing of memory

decay used to simulate development such that the association strength
curves for both the massed and interleaved pairings are relatively
higher across age (Figure 28). If we assume that a tracemust be above
some rough threshold to produce word-driven attentional selection at
test, say 0.12 in Figure 28, we see that only one of the massed
pairings meets this threshold in the left panel with tau_Decay =
1,000 corresponding to 16-month-old infants. For slightly better
memory (middle panel) corresponding to 20 month olds, however,
trace strength for an equal number of massed and interleaved pairings

is above threshold and, thus, WOLVES shows equal learning in the
conditions. Finally, in the right panel for tau_Decay = 3,000 corre-
sponding to the older children, three massed and all interleaved
pairings are above threshold, resulting in better performance on the
interleaved condition. Note, that Figure 28 plots trace strengths of
correct associations only;WOLVESwill have formed some incorrect
associations as well that will affect test performance. Thus, older
children are unlikely to have complete knowledge of all interleaved
pairings. Interestingly, the model does predict that 16 month olds
should show a recency effect of remembering the sixth massed
pairing better than the other pairings.

Experiment 11: Vlach and DeBrock (2017), Experiment 2

To investigate the role of the development of different memory
subsystems in CSWL, children between 22 and 66 months of age
were tested in Vlach and DeBrock’s (2019) CSWL task andmultiple
other memory tasks. The hypothesis was that performance in the
memory tasks would strongly predict CSWL performance. In
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Figure 26
The Design of Vlach and Johnson (2013, Adapted)

Note. Toddlers were presented with a cross-situational word learning (CSWL) in which presentations
of 12 word-object mappings were either grouped together (Massed Condition) or distributed (Inter-
leaved Condition). In the Massed Condition, all six trials in a block included one of the six pairings. In
the Interleaved Condition, a particular pairing was presented in the same ordinal position in every block
(i.e., second trial in block). Thus, massed pairings were presented in immediate succession within
blocks while each interleaved pairing had an equal amount of delay (26 s) between presentations. The
12 test trials presented a word, its target object, and a distracter randomly chosen from the other objects.
Vlach and Johnson (2013) measured preferential looking to the target over an 8-s duration for each test
trial during which each word was presented four times as in Smith and Yu (2008). Vlach and DeBrock
(2019) used forced-choice responses as a measure of children’s’ learning and also introduced a 5-min
delay period between the training and the test phase during which children participated in a task-
unrelated play activity. See the online article for the color version of this figure.

36 BHAT, SPENCER, AND SAMUELSON



particular, children’s recognition memory for novel word-object
pairings was tested by presenting 12 ostensive learning trials with
one novel object and one novel word and immediately testing
memory by presenting two objects and asking the child to point to
the target by name. Vlach and DeBrock (2017) found that children’s
correct responses were higher than chance levels in both tasks. They
used a regression to examine the relationship between performance in
the tasks and found a strong positive relation between memories for
word-object mappings and CSWL (Figure 29, red line).
WOLVES was situated in each task. To simulate developmental

changes in memory retention, we varied tau_Decay from 800 to
5,000 to estimate five intermediate points corresponding to the age
range of 22–68 months. As the blue line in Figure 29a shows,
WOLVES follows the same upward trend observed in the data from
Vlach and DeBrock (2017). These results are in line with the studies
discussed above and confirm that the development of the memory
subsystem specific toword-object binding plays a critical role inCSWL.
Figure 29b shows our attempts to simulate these data using the two
comparator models. For the Kachergis et al.’s model, we varied α over
the range from 0.96 to 1.0 as withVlach and Johnson (2013). As shown
in the figure, this model showed very little change in performance

across this range. Interestingly, when we varied the “remember”
parameter in Pursuit, the model simulated the data fairly well.

Experiment 12: Suanda et al. (2014), Experiment 1

This study investigated the role that contextual diversity (CD) –
defined as the degree to which multiple word-object mappings
tend to co-occur–plays in 5- to 7-year-old children’s word
learning in a CSWL task. The experimental hypothesis was
that if children learn word-object mappings by tracking the
co-occurrences of words and objects, they should be less success-
ful in situations with lower contextual diversity, and thus higher
cross-correlations between words and objects, than in situations
with higher contextual diversity. To examine this, Suanda et al.
(2014) presented children eight word-object mappings to learn in
conditions of either high, medium, or low contextual diversity (see
Figure 30 for task details). Figure 31a shows the mean proportion of
correct responses by children across the levels of contextual diversity.
Suanda et al. (2014) reported that children’s learning was signifi-
cantly higher than chance in all three conditions. This suggests that
school-age children can learn word-object mappings using cross-
situational learning from only a handful of ambiguous naming events.

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Figure 27
Data from Vlach and Johnson (2013) and the WOLVES and Kachergis Models

(a) (b) (c)

(d) (e)

Note. (a) and (b): Learning performance of 16- and 20-month-old infants (blue bars) and WOLVES (yellow bars; tau_Decay=1,000 and 1,500) in Vlach
et al. in terms of proportion looking time to the target at test. Panel (c): The number of correct responses of 47–58 months (blue bars) against WOLVES’
performance (yellow bars; tau_Decay=3,000). The model results closely match the empirical data. Panel (d): Relationship between memory decay timescale
and learning of massed and interleaved pairings. Error bars indicate SE. (e) Simulations of the Kachergis model showing the proportion correct in the massed
and interleaved conditions as the α (forgetting) parameter is manipulated over “development.” WOLVES = word-object learning via visual exploration in
space. See the online article for the color version of this figure.
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However, children’s performance decreased with decreasing contex-
tual diversity (Figure 31a, yellow bars). At the group level, the
proportion of children responding correctly also goes down with
less diversity (Figure 31b). WOLVES shows the same downward

trend in mean proportion correct responses and proportion of subjects
responding correctly across conditions as children (Figure 31, blue
bars). By contrast, the Kachergis et al.’s model shows the same
performance across all conditions (Figure 31, green bars).
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Figure 28
The Relation Between Word-Object Association Strength and Values of the Memory Decay Parameter in WOLVES for the Vlach
and Johnson (2013) Task

Note. The three panels show results from simulations with three different values (1,000, 1,500, 3,000) of memory decay parameter (tau_Decay)
corresponding to the three different age groups—16 month, 20 month, and 47–58 month olds, respectively. The massed/interleaved pairings in
the temporal order of their presentation during the training phase are on the x axis. See the online article for the color version of this figure.

Figure 29
The Relationship Between CSWL Performance andWord-Object BindingMemory in Vlach and DeBrock (2017) and
the WOLVES, Kachergis, and Pursuit Models

(a) (b)

Note. (a) Relationship between performance in cross-situational word learning (CSWL) and a word-object binding task via a
regression fit (red line) on empirical data from 22- to 68-month-old children Vlach and DeBrock (2017). The blue dotted line plots
the same relationship from word-object learning via visual exploration in space (WOLVES) simulations of the two tasks under a
steady parametric change in the memory decay timescale from 800 to 5,000. The model data follow the same systemic upward trend
as suggested by the empirical data fit. (b) Comparable simulations of the Kachergis model (green) and Pursuit (cyan) showing how
model performance varies as a candidate developmental parameter is changed (α in the Kachergis model; the “remember” parameter
in Pursuit). See the online article for the color version of this figure.
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Suanda et al. (2014) suggested several possible reasons why
children’s performance was higher with more diversity: (a) increased
variability of learning instances (i.e., increased diversity) creates
more decontextualized representations, (b) variability creates a
greater number of potential retrieval cues, or (c) variability
initially creates “desirable difficulties” in learning that boosts
the strength of learning in the long run. WOLVES offers a
different account: These effects emerge from the real-time inter-
actions between the formation of word-object memory traces and
the selective attention these memories capture. During the learn-
ing phase of the High CD condition, the model explores both
objects and encodes about two word-object mappings, one per
object. Over the four presentations of a word-object pairing, only
the memory trace for the correct mapping will be reinforced after
every exposure to a highly diverse context because it is the only
consistent word-object pairing repeatedly presented. This creates
a relatively large difference in the strength of correct and incorrect
mappings andmeans correct mappings are more likely to drive looking
to the target at test. In the Low CD condition, memories for both
incorrect and correct mappings are reinforced on every exposure to the
less diverse context resulting in relatively small differences between
their strengths (almost half of those in case of High CD). Thus, at test
both correct and incorrect associations are nearly equally as strong and
word-driven selective attention gets misdirected to incorrect referents
more often.

General Discussion

The goal of this report was to propose an implementation-level
theory of CSWL that is comprehensive and takes time seriously.
The extensive literature on CSWL shows that learning in this task
is critically influenced by processes operating at multiple
timescales—from visual exploration and selection in real time,
to competition from growing word-object associations over learn-
ing, to the build and decay of memories from trial-to-trial, to
changes in memory dynamics over development. Critically, no
prior models incorporated real-time processing, instead treating
time as “one-shot.” Similarly, no prior models have addressed

changes in CSWL over development. In contrast, we combined a
model of autonomous visual exploration based on real-time
processes of visual selection and attention with a model of
word-object association to capture fixation data as well as selec-
tion responses at test and simulate data from a wide range of
CSWL tasks. Furthermore, changes in memory parameters in
WOLVES provided the first account of developmental differences
in CSWL.

A primary goal of the current article was to evaluate whether
WOLVES offers a comprehensive account of CSWL in the
context of two comparator models. By capturing important mea-
sures of performance including visual exploratory measures,
WOLVES explained nearly twice as many observations as the
comparator models (132 vs. 69 data values). WOLVES also
captured the head-to-head comparison data set more accurately,
with lower MAPE scores in 12 of 17 conditions. Notably, the five
cases where the comparator models fit the data more accurately
were all from the same study (Kachergis et al., 2012). Next, the
GNCM revealed that WOLVES generalized more accurately to
three held-out experiments. Finally, WOLVES provided the only
systematic account of development, with the comparator models
generally failing to capture developmental differences across
studies.

Although WOLVES fared well in the model comparison exer-
cise, the Kachergis et al.’s model showed the lowest AIC/BIC
scores. Thus, based on this commonly used metric, the Kachergis
et al.’s model provides the best overall fit to the subset of data
compared head to head. Nevertheless, simulation results showed
multiple cases where this model failed to capture the right
qualitative results. For instance, although this model provided
a robust account of multiple adult experiments, it failed to capture
the qualitative pattern from Trueswell et al. (2013) across “incor-
rect” versus “correct” learning instances. This model also failed to
capture the qualitative data patterns from multiple developmental
studies. Based on this, we conclude that WOLVES is a very good
model of CSWL. The Kachergis et al.’s model is also a good
model of adults’ CSWL performance. Pursuit generally compared
less favorably to the other models, although simulations of Vlach
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Figure 30
Design of Suanda et al. (2014; Adapted)

Note. Total frequencies of word (columns) co-occurrences with pictures (rows) in each condition of Suanda et al. (2014) E1. For example, in the High
CD condition, Word 1 (W1) co-occurred with its referent (P1) on all four trials in which it occurred. W1–P1 was accompanied by W2–P2 on one of
those trials, W3–P3 on a different trial, W4–P4 on another trial, andW5–P5 on yet another trial, resulting in maximal contextual diversity. After the 16
learning trials childrenwere tested on eight four-alternative force-choice test trials, one per target word. On each test trial, a target referent was presented
along with three foils randomly selected from the set of objects that had never co-occurred with the target during the learning phase. Children were
presented with a word and were asked to indicate which of the four pictures the word referred to.

A NEURAL PROCESS MODEL OF CSWL 39



and DeBrock (2017) suggest this model might have some good
developmental potential.

Implications for CSWL: Component Processes

Our goal of developing the first implementation-level theory of
CSWL was motivated by Yu and Smith’s (2012) analysis of this
CSWL literature. Yu and Smith (2012) demonstrated that variations in
information selection, learning machinery, and the decision processes
employed in CSWL can have a major impact on the conclusions
reached regarding findings from the extant literature. Here, we review
insights from WOLVES regarding these core component processes.

Information Selection

Consistent with empirical data, WOLVES reveals that mere
exposure to statistical regularities does not offer a sufficient expla-
nation for WOL in CSWL as suggested by early AL accounts
(Smith, 2000; Yu, 2008; Yu & Smith, 2006). This is because
information selection during CSWL is grounded in time-extended
visual exploratory processes like novelty detection, habituation,
object recognition, and selective top-down and bottom-up attention
to objects. These processes work together to create cycles of
attention, allowing a learner to selectively attend to objects in the
scene one by one. Although the simulations of Yu and Smith (2011)
and Yu et al. (2012) suggest that word-object mappings selectively
guide attention, in the simulations of Smith and Yu (2013), novelty and
working memory processes drove the model’s attention more
strongly than emerging word-object mappings. Thus, consistent
with empirical data, the model shows that moment-by-moment
selective attention in CSWL tasks is both dependent on and
indicative of learning.
Two key implications follow from this. First, because informa-

tion selection in the model is determined by the cycles of attention,

varying the number of fixations possible per trial affects how
much information a learner takes in. More visual sampling,
however, does not necessarily lead to better learning. For exam-
ple, in the simulations of Smith and Yu (2011), we found faster
oscillation cycles, that lead to more fixations per trial, resulted in
less learning. This is because learning in CSWL is also governed
by when words are input to the model and, thus, it is the
information selected via real-time synchrony of word presenta-
tions and fixations that drives learning. Gaze patterns that are time
locked with word onset lead to more robust memory traces. A
second key implication fromWOLVES is that bottom-up and top-
down attention processes active in CSWL work in a competitive
manner. Object-based visual attentional drives looking to novelty
while word-based associative processes drive looking to the
referents of presented words. In this way, then, looking is multiply
determined and as Smith and Yu (2013) suggested, looking should
be treated as an indicative, but not a perfect, measure of learning in
infants and adults.

Learning Machinery

Memory lies at the core of the learning machinery necessary
for registering and updating word-object mappings. This is seen
in the recent studies of CSWL (Vlach & DeBrock, 2017, 2019;
Vlach & Johnson, 2013; Vlach & Sandhofer, 2014) but more
generally in work that relates memory development to vocabu-
lary growth (Dapretto & Bjork, 2000; Gershkoff-Stowe, 2002).
Some studies have also highlighted multiple significant memory-
based constraints on learning such as memory consolidation,
forgetting, and recall that directly regulate word learning and
language acquisition (Adams & Gathercole, 2000; Barr, 2013;
Endress et al., 2009; Horst & Samuelson, 2008; Vlach &
Johnson, 2013).

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Figure 31
Data from Suanda et al. (2014) and the WOLVES and Kachergis Models

(a) (b)

Note. (a) Accuracy of children (yellow bars), WOLVES (blue bars), and the Kachergis model (green bars) in the three
different conditions of Suanda et al. (2014). (b) The proportion of children (and model runs) that performed at above-chance
across levels of contextual diversity. The figures show that performance ofWOLVES and the children in the task is comparable,
with both showing a descending pattern across levels of contextual diversity. Error bars indicate SE. WOLVES = word-object
learning via visual exploration in space. See the online article for the color version of this figure.
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Our simulations demonstrate that both memory formation and
decay parameters play a key role in flexible learning. Very fast
values of the parameter regulating memory formation (tau_Build)
can cause encoding of too many incorrect associations, while fast
values of the decay parameter (tau_Decay) can cause quick for-
getting. This is consistent with recent arguments by Vlach (2019)
that forgetting and other memory constraints can simultaneously
hinder and promote word learning. Likewise, we used changes in
forgetting to simulate the developmental trajectory of learning
during infancy and childhood, which fits with Vlach’s arguments
that changes to memory systems are the key driver of CSWL in the
toddler and preschool years.
More generally, WOLVES provides the opportunity to look at

how different memory processes (working memory, recall, for-
getting) that operate over different timescales (real time, the time-
scale of working memory, and the timescale of long-term learning)
might constrain word learning. Studies have indicated that early
VWM strength in children between 2 and 4 years of age is strongly
correlated with later expressive and receptive language (Archibald,
2017; Newbury et al., 2015; Vales & Smith, 2015). Novel word
learning abilities in children with specific language impairment and
in children with hearing impairment are also strongly predicted by
complex working memory capacities (Hansson et al., 2004). This is
because working memory only holds a limited number of items at
any onemoment (Baddeley, 2012, 2017), placing an upper bound on
the number of words, objects, and associations a learner can process
in a moment.
A recent study showed that a working memory intervention

program for children with language disorders significantly
increased performance in various memory and lexical-semantic
processing tasks (Acosta et al., 2019). However, limits on work-
ing memory have also been shown to be beneficial in adults
(DeCaro et al., 2008; Gaissmaier et al., 2006). WOLVES pro-
vides a means to explore the complex relationships between
working memory and word learning. For example, although
increasing working memory might initially be thought to have
a positive effect on CSWL, the fact that increases in working
memory cause object consolidation to occur faster means it can
subsequently change looking dynamics in ways that are not
conducive to learning (as we saw in Smith & Yu, 2013).

Decision Making

Simulations of the canonical infant CSWL task showed that the
structure of the test trials has a significant impact on performance.
Recall that the model showed better performance at test with
continuous word presentation or early word presentation that pre-
ceded the first look. Thus, constraints on the processes of visual
exploration—time to initiate an eye movement, the cycle of looking,
novelty biases, habituation—affect test performance, suggesting
that conclusions about what was learned during training that are
drawn from test performance need to be considered very carefully.
Indeed, the model continues to learn at test because the mappings
presented—two objects but only one word—are less ambiguous
than those presented during training. Such learning during test could
act to overcome incorrect mappings formed during training. We
think it is likely that this would apply to infants as well. These
observations fit with prior studies that highlight the possibility of

learning on test trials in other infant looking paradigms (e.g.,
Schöner & Thelen, 2006).

Additional Implications for CSWL

Hypothesis Testing Versus Associative Learning Debate

Our simulations of adult data from Yu et al. (2012), Yu and Smith,
2007, and Trueswell et al. (2013) suggest that the number of
hypotheses/associations created in a CSWL task is governed by
the number of fixations made on learning trials. On trials with longer
durations, more fixations result in the formation of more hypotheses/
associations. Whether learners (adults or infants) form a single
hypothesis or multiple associationswill, thus, depend on the structure
of the task. In a task environment like Trueswell et al. (2013) with
forced-choice selections and short trial durations, learners typically
form one association and learning appears in line with HT accounts.
In contrast, in experiments like that of Yu and Smith (2007) andYu et
al. (2012), with longer trial lengths, multiple associations are typi-
cally formed, consistent with AL accounts. Evidence of multiple
mappings is also more likely to be seen in studies withmore trials that
examine performance during training (e.g., Roembke & McMurray,
2016), as opposed to only probing mappings at test.

Critically, the strength of associations in WOLVES is also
influenced by attentional and memory constraints; objects that
are not attended long enough create weaker traces. For instance,
in simulations of Smith and Yu (2011), infant models that produced
fewer fixations registered around two (strong) associations per trial
and turned out to be strong learners. Those that fixated more formed
around four associations that were weak and possibly erroneous and
turned out to be weak learners. This suggests that there is likely an
optimal setting for learning in the experiment that balances atten-
tional and memory constraints. However, this setting might differ
for individuals and over the course of the experiment as learning
builds representations and changes the looking dynamics.

Mutual Exclusivity and Competition

Our simulations of Yurovsky, Yu, and Smith (2013) showed that
multiple competitive processes influence CSWL, some occurring
within trials and some across trials. Yurovsky et al. ascribe these
competitive processes to mutual exclusivity constraints. WOLVES
exhibits a form of mutual exclusivity in that strong word-object
memory traces can effectively “block” new associations due to the
WTA dynamics in the word–feature fields. This forms the main
mechanism underlying global competition (i.e., competition
between mappings for the same word presented on different trials)
as reported in Yurovsky, Yu, & Smith (2013). Similarly, in the
simulations of Kachergis et al. (2012), this global competition resists
the formation of cross-stage associations during the latter part of the
task. On the other hand, the attentional system in VES leads to
selective (one-by-one) attention to objects and this restricts the
number of associations formed for each object within a trial. Along
with top-down influences, selective attention therefore becomes the
basis of local competition between referents for a word within a trial.

WOLVES also shows how these forms of competition emerge at
multiple timescales (see also Bhat et al., 2011; Bhat &Mehta, 2012;
McMurray et al., 2012). Local competition for attention to objects
occurs on the short timescale of individual trials, while global
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competition is a consequence of a buildingmemories over the longer
timescale of multiple trials. In this sense, one could see the global
versus local competition as a competition for memory versus
attention in the model. In line with this idea, Benitez et al.
(2016) found that cross-trial competition is reduced as the separation
in time between trials containing competing associations is
increased. This is also consistent with WOLVES because time
gaps will cause weaker associations to fade away and provide
less competition to new associations (Benitez et al., 2016).

Exploring the Neural Bases of CSWL

Our use of WTA field dynamics may also be related to hippo-
campal systems that have been reported to form only one association
at a time in a recent CSWL task with adults (Berens et al., 2018).
Berens et al. reported that hippocampal activity of adults indicated
that they were storing only a single hypothesis at each instant.
However, Vlach (2019) has suggested that the brain might be using
different networks for storage and retrieval of information and
certain networks such as hippocampal networks may be less impor-
tant for immediate word binding but critical for long term retention
and recall. Because children’s hippocampal systems are still devel-
oping, this immaturity may be behind their failure to store associa-
tions for longer periods. More generally, our use of DFT opens up
avenues to explore the neural dynamics of CSWL directly. For
instance, we have recently developed methods to simulate hemo-
dynamics from DF models, opening the door to test predictions of
such models directly from functional magnetic resonance imaging
(fMRI) data (Buss et al., 2021; Buss & Spencer, 2018; Buss, Wifall,
et al., 2014; Wijeakumar et al., 2017).

Beyond CSWL: General Implications

Development

The simulations we presented captured data from seven CSWL
studies with children from 11 months to 8 years of age. We
accounted for this wide developmental age range with changes to
only two parameters related to the rate of memory formation and
decay. This is impressive coverage for such a simple account, but it
is almost certainly incomplete. We know that that there are substan-
tial changes in children’s cognitive systems in the age range
subsumed by the current work, and some of these are changes to
processes instantiated in the model. For instance, we know that the
number of items children can hold in working memory grows from 1
or 2 in infancy to 3 or 4 in the preschool years (Buss, Fox, et al.,
2014; Simmering, 2016). Prior DF models have captured these
changes with changes in the strength of excitation and inhibition in
WM fields. However, we did not need to impose these changes to
WOLVES to capture a substantial number of studies in the devel-
opmental CSWL literature. This indicates that the current data do
not provide sufficient constraints to necessitate additional changes to
the model. Future work will be needed to explicitly examine how,
for instance, changes in VWM capacity impact CSWL.
Likewise, as development progresses, learners may employ

their growing semantic and causal knowledge to support learning
via multiple cognitive strategies. However, it is also possible that
growing semantic networks can result in interference and
retrieval issues, particularly when the lexicon is growing rapidly

(Gershkoff-Stowe, 2001). Furthermore, the context of language
learning changes dramatically from early to middle childhood and
adulthood (Anglin et al., 1993; Karmiloff-Smith, 1986; Nippold,
2000). Thus, it is clear that more work needs to be done to understand
how the word learning system is influenced by changes in component
processes and the context in which word learning occurs. This
provides an opportunity to use WOLVES in a predictive manner
by implementing parameter changes related to known changes in
component processes and making predictions of how these changes
will influence performance in CSWL-type tasks.

Autonomy and Individual Differences

Prior CSWL studies have revealed individual differences in looking
behavior during training that are strongly related to individuals’
learning performance. For instance, infants who look longer (Yu &
Smith, 2011) or suppress novelty effects (Smith & Yu, 2013) during
training are more likely to be classified as strong learners at test.
Similarly, adults who show word-cuing effects during training show
better performance at test (Yu et al., 2012). Simulations of WOLVES
revealed some of these same effects even from models that were not
parametrically different. Rather, individual differences emerged from
autonomous visual exploration and learning. Thus, it is possible that
some of the effects reported in empirical studies may be emergent
differences rather than individual differences between subjects.

This poses a challenge for experiments in that it is critical to
distinguish between emergent and individual differences. We con-
tend that WOLVES can help in this regard, predicting behavioral
patterns of infants and adults that should arise from parametric
differences between individuals. For instance, we could simulate
how individual differences in, say, working memory capacity
should influence CSWL, and predict cross-task within-subject
correlations that should emerge when individuals are put in multiple
tasks (similar to the simulations of Vlach & DeBrock, 2017). This
approach might reveal empirical patterns reflective of stable indi-
vidual differences versus emergent variations.

Generalizing to Other Phenomena via the Predecessor
Models

Because WOLVES reflects the integration of prior models, in
theory, all of the phenomena captured by these predecessor models
should “live” in WOLVES; however, this remains to be demon-
strated. Specifically, the WOL part of WOLVES has captured
multiple word learning behaviors such as comprehension, produc-
tion, referent selection, and both forced-choice and yes/no novel
noun generalization including children’s performance in these tasks
(Samuelson et al., 2013). The model also captures children’s gen-
eralization in hierarchical naming tasks (Jenkins et al., 2015;
Samuelson et al., 2013, 2017; Spencer et al., 2011) and the devel-
opment of selective attention (Perry, 2012; Perry & Samuelson,
2013). The model has been used to examine the influence of long-
term learning on in-the-moment mapping of novel names to novel
objects and on the generalization of names to new instances (Horst &
Samuelson, 2008; Perry et al., 2014; Samuelson & Smith, 1999).
Through memory-trace bindings of space–feature fields, the model
can emulate the children’s use of memories to bind novel names to
novel objects (Samuelson et al., 2011). Finally, the model captures
the development of the shape bias (Samuelson & Faubel, 2016;
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Samuelson et al., 2013). All of these phenomena should be within the
purview of WOLVES.
The VES part of WOLVES has previously been used to simulate

looking dynamics in adults (Schneegans et al. 2014, 2016) and has
also captured the measures of infant visual exploration including
habituation, fixation dynamics, shift rates, recognition performance,
and looking times in preferential looking and habituation paradigms
(Perone et al., 2011; Perone & Spencer, 2013a, 2013b, 2014). VES
has made novel predictions regarding the shared neurocognitive
basis of looking dynamics and discrimination, and their correlation
within individuals (Perone et al., 2011; Perone & Spencer, 2013b,
2014). The model also captures individual differences in looking
dynamics (Perone & Spencer, 2013a, 2013b) and shows how minor
differences in autonomous visual exploration early in development
can cascade forward to create change over time in both typical and
atypical populations (Perone & Spencer, 2013a). Relatedly, situating
versions of a “preterm” model in an intervention context have raised
the possibility that we can use the model as a clinical tool, predicting
the effectiveness of interventions (Perone & Spencer, 2013a).
Furthermore, WOLVES readily generalized to other paradigms

that examine the relationship between word learning and visual
exploration. For example, we have recently applied WOLVES to
three more empirical tasks that examine infants’ preference to look
at novel objects and how this can be manipulated by the presence of
words (Bhat et al., 2021). Consistent with empirical data,
WOLVES explains how familiar objects attract less attention
than novel ones (Mather & Plunkett, 2012) but how introducing
a familiar word to a looking task can reduce infants’ bias to look at
novel objects (Mather et al., 2011). It also shows how novel words
can drive attention to novel objects (Mather, 2013; Mather &
Plunkett, 2012) and how looking and learning are affected by
the relative novelty of an object (Mather & Plunkett, 2010, 2012).

Future Directions

What WOLVES Does and Does Not Predict

In the present report, we showed how WOLVES can be used to
generate novel predictions—a key metric in model evaluation.
WOLVES predicts that there is a sweet spot in the number of
fixations on individual training trials that maximizes infant learning
(see Simulations 1 & 2). Next, adult learning should be significantly
reduced in the Yu and Smith (2007) task by reducing the trial length
by 1/3rd. WOLVES also predicts that extending the trial time and
number of word repetitions in the Trueswell et al.’s (2013) task
would help participants remember prior incorrect hypotheses. These
three predictions stem from the real-time visual attention and
fixation dynamics in the model, dynamics that are not captured
by “one-shot” CSWL models (see Table 1).
Another unique feature of WOLVES is its use of metric feature

and space dimensions. This too can yield unique predictions. For
instance, the use of varying spatial locations or small changes in
object features should help infants overcome the “novelty trap” of
repeated objects in the Smith and Yu’s (2013) task. Likewise,
WOLVES makes the counterintuitive prediction that adult learning
performance could be improved via the use of metric variations that
create highly similar stimuli (Bhat et al., 2020b).
Importantly, there are also things WOLVES does not predict. For

example, we tested WOLVES in a pair of studies by Fitneva and

Christiansen (2011, 2017) that explore the role of accuracy in initial
learning of word-object associations on later learning of same/
different associations (see Appendix D for task details and simula-
tion results). Although intuitively, initial accuracy of word-object
pairings should be positively correlated with learning performance
in later pairs, Fitneva and Christiansen (2017) reported a complex
developmental pattern in that initial accuracy was positively related
to learning outcomes in 4 year olds, had no effect on 10-year-olds’
learning, and was inversely related to learning outcomes in adults.
Although WOLVES replicates the findings that performance im-
proves with age significantly, it fails to reproduce the developmental
reversal on the impact of initial accuracy. This suggests that memory
mechanisms beyond those explored here may act in CSWL. That
makes sense because developmental changes occur in multiple
cognitive systems including working memory. For instance,
Fitneva and Christiansen (2017) have suggested that cognitive
control mechanisms related to error control and feedback may be
involved in their findings, a potential future direction for WOLVES.

Limitations

Testing novel predictions is a key part of theory development; given
that we did not test novel predictions here,WOLVES has not yet proven
its full potential as a theory of CSWL. This is important, particularly
given the complexity of the model. It will be important to show in future
work that themodel is not too flexible. That is, themodel should rule out
specific patterns of results as well as ruling in specific findings.

Another key limitation with WOLVES is that the model parame-
ters had to be “tuned” by hand instead of using an optimization
procedure. The limits of this approach were evident with the
relatively high MAPE scores for simulations of data from
Kachergis et al. (2012). We suspect the parameters of WOLVES
could be optimized to better capture data from this experiment, but
with a week of simulation time per run it was not feasible to do this
work by hand. Clearly, it will be important to develop optimization
methods for this class of models in future work, both to speed up
simulation work and to ensure that optimized parameter values are
reproducible regardless of who does the optimizing.

Conclusions

Considered together, empirical and modeling work suggests that
neither AL norHT accounts provide a comprehensive understanding of
how infants, children, and adults track and use co-occurrence statistics
in the service of novel word learning. WOLVES provides a formal
implementation-level account of the real-time processes of attention
and memory and how these processes evolve over learning. We have
shown thatWOLVES is a comprehensive theoretical account of CSWL
by capturing data from multiple studies and tasks. Furthermore, we
have provided the first developmental account that captures changes in
CSWL from infancy to toddlerhood, childhood, and adulthood.
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Appendix A

An Introduction to Dynamic Field Theory

Dynamic Field Theory (DFT) is a framework that provides an
embodied, dynamic systems approach to understanding andmodeling
cognitive-level processes and their interaction with the external world
via sensorimotor systems (Schöner et al., 2016; Spencer & Schöner,
2003). In the sections below, we provide a primer on the key concepts
that underlie DFT (see Appendix B for mathematical formulations).

Dynamic Fields

DFT is grounded in the idea of neuronal population coding—that
perception, cognition, and action reflect the combined activation of
populations of neurons moving into and out of stable activation

patterns through time (Erlhagen et al., 1999; Georgopoulos et al.,
1986). Neuro-computations within such populations can be mod-
eled using dynamic fields (DFs; Amari, 1977). In a DF, activation
evolves continuously over time as a function of the extrinsic signals
input to the population as well as the intrinsic dynamic neural
interactions within the population. Neurons within the population
with activations above a certain threshold level transmit their activation
“laterally” to their neighbors in the population as well as to neurons in
other populations to which they are recurrently coupled. Through
these recurrent interactions, the DF autonomously creates evolving
patterns of activation within and between neural populations.
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Within DFT, neural populations are distributed over metric features
spaces and organized such that neurons that “code” for similar features
are close together in the neural field. This creates a functional topogra-
phy where neighboring neurons coexcite one another (local excitation)
and distant neighbors inhibit one another (surround inhibition). For
instance, dynamic fields can be defined over perceptual feature
dimensions like color, shape, or spatial location, or over the
metric dimensions of movement like heading direction, speed,
and so on. Note that some cortical fields in the brain retain this
functional topography on the anatomical surface (e.g., visual
cortex; see Jancke et al., 1999), while other cortical fields retain
this functional topography but are “scrambled” on the anatomical
surface (e.g., motor cortex; see Georgopoulos et al., 1986).
An example of a dynamic field is shown in panel A of Figure 1.

The blue line shows the pattern of activation across the cortical field
with a bump on the left side of the field reflecting a weak input

(green line) on that side of the feature space. This might reflect the
detection of a weak perceptual input on the left side of visual space.
The subpanel below it shows the lateral interaction function (inter-
action kernel) with local excitation and surround inhibition. In this
example, the weak input is not strong enough to activate any of the
neural sites above threshold (above 0). Consequently, none of the
neural sites in the population are generating output (red line).
Instead, the neural population remains stably near its “resting” level.

Peaks as the Unit of Representation-in-the-Moment

Strong stimulation to a local collection of neurons causes some
neurons to go above threshold (i.e., above 0). When this occurs,
they pass excitation to their local neighbors and inhibit neurons
far away (Amari, 1977; Dehghani et al., 2016; Fuster, 1973;
Jancke et al., 1999; Spencer et al., 2012). This results in a
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Figure A1
Neuronal Activation, Output and Input to a One-Dimensional DF (Upper Subpanel), and Interaction Kernel in the Field (Lower Subpanel)

Note. (A) DF with no neural peaks, (B) a self-stabilizing peak, (C) history of neural activity in the DF of panel B over time, (D) a self-sustaining peak, (E)
multipeak DF with two peaks, and (F) a winner-take-all DF. DF = dynamic fields. See the online article for the color version of this figure.
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localized peak of activation (also referred to as a “bump
attractor”; see Edin et al., 2007; Wei et al., 2012). Localized
peaks stably represent a type of neural decision in the field, for
instance, an estimate of the current spatial location of input to the
field. The local excitatory interaction stabilizes such peaks
against decay, while surround inhibition keeps excitation from
spreading laterally in the field.
Figure A1(B) shows the emergence of an activation peak at

location 25 in response to a boost in the input at this location.
The blue activation line shows strong excitation centered at this
location (see red “output” line), with strong inhibition extending to
sites 10 and 40. Panel C shows how activity in this field evolves over
time. The field stays at the resting level until a stimulus is applied
around the 40th time step. Thereafter, the activity at location 25
grows strongly to produce a peak that stably represents the location
of the input.

Peaks as Attractor States

Excitatory and inhibitory recurrent neural interactions in DFs give
rise to different types of stable states of activation. The resting state
is a stable nonpeak attractor state in a DF where the neural
population remains stably at rest in the absence of external inputs
(panel A). When the input is sufficiently strong, a self-stabilizing
peak is formed (panel B). A self-stabilizing peak is robust to noise
fluctuations but dies out after some time if the corresponding input to
the field is removed. If, however, the excitatory interactions between
the neurons are very strong (see interaction kernel in panel D),
strong recurrent activations help peaks sustain even if input is
removed. These self-sustaining peaks can therefore act as a form
of working memory to maintain recent information that is no longer
available as input to the field. Panel D shows a working memory

peak in a field surviving even after the input to the field has been
removed (see flat green input line).

In addition, multiple inputs can be presented to a single field,
resulting in the activation of multiple corresponding regions in a
field (panel E). Whether one or multiple peaks form in such a case
depends on the form of inhibitory interaction in the field. With the
type of surround inhibition shown in the subpanel below panel E,
multiple peaks can be stably activated in a field. These peaks will
compete if they are close enough to share surround inhibition. In
such cases, the competition between the sites will be decided by
differences in input strength, differences in the timing of the input, or
by noise in the field.

If inhibitory interactions also have a global component where
every site inhibits every other site in the field (see subpanel below
panel F), only one peak will win the competition and a single
stabilized peak of activation at that location will form (panel F).
Such fields are thus winner-take-all fields. Note that these different
peak attractor states are mutually exclusive and determined by the
structure of the interaction kernel.

Multidimensional DFs

All the above properties of one-dimensional fields can be
extended to multidimensional fields that enable integration of
multiple types of information. For example, Figure A2(A)
shows a 2D dynamic neural field (J) representing two different
metric dimensions, say color and space. Each location within
such a field responds to a particular color when detected at a
particular location. For example, the peak in Figure A2(A)
might represent the detection of a blue item (hue 75) at spatial
position 25. Peaks in 2D fields can enter the same collection
of attractor states discussed previously (e.g., self-stabilized vs.
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Figure A2
The Extension of Properties of One-Dimensional Fields to Multidimensional Fields

Note. (a) A 2DDF (J) representing color and spatial location of objects. A peak in J signifies detection of a blue item (hue 75) at spatial
position 25. A 1DDF (I) is coupled to J and activity across J is summed up and forwarded to I to select the color of the detected object.
(b) A 2D field F binds together information about color of an object in the field I (hue 50) and its spatial location in field B (location 50)
through excitatory projections (yellow arrows). DF = dynamic fields. See the online article for the color version of this figure.
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self-sustaining peaks) based on the properties of local excitation
and surround inhibition which now extend across both feature
dimensions.
The increase in the dimensionality of neural fields requires some

theoretical commitments. If we simply let dimensions increase to 3D,
4D, and 5D, we quickly run out of neurons in the brain! Thus, prior
work developing DFT—including work using the models we integrate
here—has proposed the use of common binding dimensions such as
space (Perone & Spencer, 2013a, 2013b) and words (Samuelson et al.,
2011). Thus, rather than representing individual objects via a 3D color–
shape–space representation, Word-Object Learning via Visual Explo-
ration in Space (WOLVES) uses two 2D representations, color–space
and shape–space, bound via a common 1D spatial field. This results in
substantial neural savings: If each field has 100 neural sites (i.e., 100
neurons in the population devoted to this neural representation), the 3D
field would have 1003 = 1 million neurons whereas the binding
solution has 1002 + 1002 + 100 = 20,100 neurons (see Schneegans,
Lins, & Spencer, 2016 for discussion).
Note that this binding solution works quite effectively in DFT

because higher-dimensional fields can be reciprocally coupled to
lower-dimensional fields to move “information” into and out of
different states. For instance, the 2D peak in Figure A2(a) represents
the blue item at position 25. We can select just the color of this peak
by coupling the 2D field to a 1D field (I). Thus, the creation of the 2D
peak via the detection of the blue item can give rise to activation in
the 1D field (I) at the associated color value (site 70 along the color
axis). This allows the neural system to simultaneously “represent”

that there is a blue item to the left, but also to selectively attend to the
color “blue” independent of its spatial position.

Binding of information across dynamic fields of different
dimensionality is done by connecting fields via excitatory projec-
tions. This is highlighted in Figure A2(b) which shows a top-down
view of a 2D color–space field coupled to two, 1D fields—one for
space (field B, top subpanel) and one for color (field I, right
subpanel). The yellow arrows highlight the vertical and horizontal
“ridges” that project activation between the 1D and 2D fields. For
instance, the detection of an item in the middle of the spatial field
(location 50) builds a peak of activation in the 1D field. This, in
turn, projects a vertical ridge of activation through the color–space
field at location 50. Similarly, detection of a red item (hue 50) in
the 1D color field projects a horizontal ridge of activation through
the color–space field at this hue value. The figure shows that at the
intersection of the two ridges in the 2D field (F), the field sites get
enough input to cross threshold resulting in the formation of a
peak. The 2D peak “binds” the information together, representing
that the red item is in the middle. Note that the strength of the
projections can be modulated to bias the formation of peaks based
on one type of information. For instance, the color ridge might be
stronger that the spatial ridge helping the model “attend” more to
color than to spatial position.

Memory Traces

Thus far, we have focused on the formation of peaks within
dynamic fields that represent real-time decision making—the
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Figure A3
Memory Trace Fields in DFT

Note. (Bottom-left /1st trial) A 1D field detects an input at a location on left; (middle-left /2nd trial) no input on left but a memory trace left and input detected at a
location on right; (top-left /3rd trial) input removed from right and presented at left location again. (Middle panel) shows the history of activations in thefield over time,
and (Rightmost panel) shows the changing strengths of memory traces on left and right over the three trials. See the online article for the color version of this figure.
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detection of the blue item to the left or the formation of a working
memory for the red item in the middle that is retained for, say,
10 s. Dynamic fields can also learn over a longer, trial-to-trial
timescale using a variant of Hebbian learning called memory
traces (e.g., Buss & Spencer, 2014; Lipinski et al., 2010; Perone
et al., 2011; Samuelson et al., 2015).
Memory traces in DFT have the same dimensionality as the fields

to which they are coupled, essentially adding a layer that captures
synaptic plasticity within the field. An example is shown in
Figure A3. Here, we show a 1D field, but now we are simulating
a sequence of three trials. In the first trial, we present an input on the
left (site 25) for 1,000 time steps (see bottom-left and center panels)
that builds a peak on the left. Next, we remove this input and after a
gap of 1,500 time steps we present an input to the right (site 75) for
2,000 time steps and build a peak there (left-middle panel). Finally,
after a gap of 1,000 time steps, we present an input on the left again
for the final 1,500 time steps (top-left panel). Note that the three red
hot spots of activation in the center panel show the building of peaks
in the 1D field when the input is “on”; the cyan “tails” show
activation relaxing back below threshold when the input is “off.”
The rightmost panel shows the memory trace dynamics. When-

ever a peak builds in the 1D field, this boosts the strength of the
memory trace at all memory trace sites associated with above-
threshold activity in the 1D field. The memory trace strengths can
vary between 0 and 1 (akin to weights in a connectionist network).
Memory traces build according to a build timescale (tau_Build) that

is typically much slower than the timescale of the activation
dynamics within the 1D field. For instance, in WOLVES, the
dynamic fields have an activation timescale of 5; by contrast, the
build timescale is usually 1,000. Thus, memory traces build 100
times slower than activation peaks. Memory traces also decay
whenever activation in a field is detected. This decay timescale is
typically slower than the build timescale (e.g., 15,000). Note that in
practice, these parameter values can be adjusted to fit empirical data
although it is good modeling practice to keep these timescales
comparable across different dynamic field architectures.

What is the function of memory traces? Memory traces boost
excitation locally in afield. Thus, in the sequence of trials in Figure A3,
the memory trace is boosting excitation around the left and right
locations as the field learns that these two spatial locations are the
ones used in this experiment. Memory traces reflect a form of
statistical learning; in particular, the field is learning the statistics
of its own decisions, that is, which peaks were formed and for how
long. The local boosts in excitation caused bymemory traces can lead
to priming effects, speeding up peak formation and, consequently,
faster reaction times for frequently visited sites in the field. It is also
possible to build peaks from memory traces by boosting the resting
level in a field, effectively recalling an item from memory. Finally,
memory traces can support working memory formation, effectively
moving a self-stabilized peak into the self-sustaining state by locally
boosting excitation (see Perone & Spencer, 2014 for discussion).

Appendix B

Mathematical Foundations of DFT

The text below provides the mathematical formulation of major
concepts used in DFT. Readers are referred to Schöner et al. (2016)
for a broader understanding of DFT concepts and applications.

Dynamic Neural Field

In DFT, activation fields are postulated to form dynamical
systems. Therefore, an activation field (x, t) defined over dimen-
sional vector, x, evolves in time t as described by a differential
equation. The general formulation for such a differential equation of
a dynamic field over a multidimensional space F is as follows:

τu̇ðx, tÞ = −uðx, tÞ + h + sðx, tÞ +
ð
F

cðx − x′Þgðuðx′, tÞÞdx′

+ qξðx, tÞ,

where τ is the relaxation timescale of the field dynamics, u̇ðx, tÞ is
the rate of change in activation at location vector x at time t, u(x, t) is
the current level of activation, h is the resting level of the field, s(x, t)
is the localized input at location x, c(x−x′) defines the interaction
kernel between location x and other sites x′ in the field, g is the
sigmoidal threshold function that regulates the contribution of other
sites, and ξ(x, t) is the Gaussian white noise added to the field with
variance q.

The above equation has the same form as for the one-dimensional
field, but the position in the field is now described by a vector x ∊ F.
If we break up this vector, we can describe the activation of a two-
dimensional field as a function of two scalar parameters x and y. This
yields a field equation of the form as follows:

τu̇ðx, yÞ = −uðx, yÞ + h + sðx, yÞ

+
ð ð

cðx − x′, y − y′Þgðuðx′, y′ÞÞdx′dy′+ qξðx, yÞ:

Interaction Kernel

A typical lateral interaction kernel (with a Mexican hat shape) in
two dimensions can be described as a difference of two Gaussians, a
narrow excitatory component and a wider inhibitory component,
with an optional global inhibition term:

cðx, yÞ = aexc · exp

�
−
1
2

�
x2

σ2x, exc
+

y2

σ2y, exc

��

− ainh · exp

�
−
1
2

�
x2

σ2x, inh
+

y2

σ2y, inh

��
− aglob:

Here, aexc is the strength of the lateral excitation, and σx,exc and
σy,exc are the width parameters along each dimension. Remember
that these width parameters may be chosen independently of each
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other—the interactions may be broad along one dimension, but
sharp along the other. The parameters ainh, σx,inh, and σy,inh analo-
gously describe the inhibitory Gaussian component, and aglob is the
strength of global inhibition.

External Input

The external input s(x, y) for such a field can in the simplest case
be specified using two-dimensional Gaussian patterns. For a single
localized stimulus at a location [px, py], the input can be given as
follows:

sðx, yÞ = as · exp

�
−
1
2

�ðx − pxÞ2
σ2s, x

+
ðy − pyÞ2

σ2s, y

��
,

with parameters σs,x and σs,y specifying the width of the stimulus and
as specifying stimulus strength.

Sigmoidal Function

The threshold function is given by the following:

gðuÞ = 1
1 + expð−βuÞ :

Memory Traces

Memory traces invoke a second layer of dynamics for activity
contribution to a field with memory traces. This dynamics is added

to the field as follows:

τu̇ðx, tÞ = −uðx, tÞ + h + sðx, tÞ +
ð
F

cðx − x′Þgðuðx′, tÞÞdx′

+
ð
F

cmemðx − x′Þumemðx, tÞdx′+ qξðx, tÞ:

Where cmem(x − x′) determines the strength and width of the
projection from the memory trace into the field. The dynamics of
memory trace is divided into two components that capture the build
and decay dynamics of the memory trace separately as following:

u̇memðx, tÞ = u̇buildðx, tÞ + u̇decayðx, tÞ
τbuildu̇buildðx, tÞ = ½−umemðx, tÞ + gðuðx, tÞÞ� · θðuðx, tÞÞ
τdecayu̇decayðx, tÞ = −umemðx, tÞ · ½1 − θðuðx, tÞÞ�:

The shunting term θ gates the activation from the field into the
memory trace (θ = 1 when u(x, t) > 0, and θ = 0 otherwise). Thus,
memory trace only builds at sites where there is suprathreshold
levels of activation (θ = 1) at a build timescale τbuild. By contrast, at
locations where θ = 0, the memory trace decays at decay timescale
of τdecay. Both τbuild and τdecay are significantly slower that the
relaxation timescale of the field dynamics, τ.

Appendix C

WOLVES Parameter Tuning

The final parameter values in Table C1 below were arrived at via
a process of iterative tuning starting from the word-object learning
(WOL) and visual exploration in space (VES) model parameters
from prior work (Samuelson et al., 2011; Schneegans, Spencer, &
Schöner, 2016). First, the feature dimensions of the fields were
increased from the 100 sites used in prior models to 306 sites to
allow simulation of up to 18 input stimuli that each generate a peak
about 17 sites wide, with a 17-site gap in between every two feature
values to prevent peaks from blending. The spatial dimension was
set to 100 sites to allow between 1 and 5 stable noncoalescing peaks
(corresponding to the object locations). A linear spatial dimension is
used for all simulations to keep the fields in two dimensions at
maximum; hence, objects presented in the model are all along a
single dimension. The word-field dimension was set to 20 sites to
keep the simulations tractable computationally, each site corre-
sponding to a word peak represented by a delta function. The
timescale dynamics was set to 5 (same as VES model) across all
fields to keep the simulation time tractable.
Various behavioral requirements impose constraints on the parame-

terization of the model. Parameters were modified in an iterative fashion
to get the different fields to desired states in cross-situational word
learning (CSWL) tasks (as inspected via a Graphical User Interface). As
described in themain text, we first startedwith the canonical CSWL task

(Yu&Smith, 2011) and tunedVES to hold at least one object in feature
and spatial working memory (SWM; to mimic the limited working
memory abilities of infants; see Simmering, 2016). This included
changes to the local excitation, local inhibition, and global inhibition
parameters in these fields. Too much excitation leads to uncontrolled
hyperactivity in a field (akin to a brain seizure) and too little excitation
leads to no or unstable peaks. The working memory parameters were
adjusted to allow peaks to form reliably in all WM fields. The dynamics
between the contrast, attention, and WM field were then tuned to allow
the model to shift looking to another object after having looked at one
object. Considering the looking dynamics from empirical infant data
(Smith & Yu, 2013; Yu & Smith, 2011), we then modulated the
parameters in the attention fields and the connectivity between them
such that the model generated a similar number of fixations and total
looking times as infants. We then increased local excitation and
decreased global inhibition in the 1D WM fields so that the model
could hold on to its working memories from one trial to another. This
also allowed the model to choose to look first at novel object on
subsequent trials. We adjusted the influence of the traces formed by
theseWMs to speed up the formation of working memories for familiar
objects in comparison to unfamiliar ones. We also balanced the
influence ofWM’s from spatial and feature pathways on scene working
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memory.We then strengthened the effect of scenememory traces on the
current scene WM activity, causing the model to show habituation in
looking over trials, as do infants (Buss et al., 2018; Schöner & Thelen,
2006; Simmering, 2016; Turk-Browne et al., 2008).

In theWOL part of the model, we regulated the activity in the word–
feature fields to arrive at two parameter sets; one in which the model
generates a winner-take-all (WTA) behavior and the other in which
multiple peaks can coexist in the field (see “Interim Summary” in main
text). The simulations reported in this article are conducted using the
WTA word–feature field settings. To stabilize peaks in word–feature
fields, the parameters controlling the influence of word input (word ->
wf) and feature input (atn_f ->wf) were modulated.We then fine-tuned
the front-end dynamics to make sure the autonomous looks generated
by the model were long enough to support the formation of stable peaks
in word–feature fields. We then set hwf -> wf controlling the influence
of word–feature traces such that memory traces have a moderate effect
on the reactivation of previously encoded associations. Preshaping of
the field activity due to these traces cannot be too strong as their
influence beyond a certain level can lead to hyperactivity in the field.

At this point the model explored objects in the scene and formed
memory traces reliably but looking was not influenced by word–
feature peaks and thus the model would not be able to demonstrate
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Table C1
WOLVES Elements and Parameter Value

Element Parameter values

Neural field τ h β
All 5 −5 4*

Memory traces τbuild τdecay θ
All 1,200** 5,500** 0.8

Lateral interactions
1D kernel

aexc ainh aglob

atn_sr -> atn_sr 11 0 −0.5
ior_s -> ior_s 16 15 0
atn_sa -> atn_sa 6 0 −0.5
con_s -> con_s 20 20 0
wm_s -> wm_s 20 8 −0.5
atn_f -> atn_f 8 0 −1
con_f -> con_f 8 0 0
wm_f -> wm_f 24 23 −0.125
word -> word 7 0 −3

Lateral
interactions
2D kernel

σx,exe σy,exe σx,inh σy,inh σaxe σglob

wf -> wf 0 10 4 4 33 −1.3

Gaussian kernel 1D α
atn_sr -> atn_sa 11
atn_sr -> vis_f 2.25
atn_sr -> ior_s 1.3
ior_s -> atn_sr −16
ior_s -> atn_sa −14
atn_sa -> atn_sr 4
atn_sa -> con_s 2.5
atn_sa -> wm_s 3.5
atn_sa -> wm_c 1
atn_sa -> atn_c 4.8
con_s -> atn_sa 3
wm_s -> con_s −10
wm_s -> wm_c 1.85
vis_f -> tn_sr 0.55
vis_f -> ior_s 0.125
vis_f -> con_s 0.625
vis_f -> wm_s 0.2
vis_f -> atn_f 0.8
vis_f -> con_f 2.5
vis_f -> wm_f 0.3
atn_f -> vis_f 1.25
atn_f -> con_f 4.7
atn_f -> wm_f 3.5
atn_f -> atn_c 1
atn_f -> wm_c 1.2
con_f -> atn_f 4
wm_f -> con_f −25
wm_f -> wm_c 1.75
atn_c -> atn_sa 0.75
atn_c -> con_s −0.375
atn_c -> wm_s 0.2
atn_c -> con_f −0.75
atn_c -> wm_f 0.4
wm_c -> wm_s 0.3
wm_c -> wm_f 0.3
word -> wf 4.25
atn_f -> wf 1
atn_c -> wf 0.25
wf -> word 0.05
wf -> con_f 15

Table C1 (continued)

Element Parameter values

Hebbians
(hword -> word;
hcon_s -> con_s;
hwm_s -> wm_s;
hcon_f -> con_f;
hwm_f -> wm_f)

0.1

Gaussian kernel 2D α
wm_c -> atn_c 5.5
vis_f -> vis_f (exc.) 6
vis_f -> vis_f (inh.) −7.5
atn_c -> atn_c (exc.) 2.5
wm_c -> wm_c (exc.) 14.5
wm_c -> wm_c (inh.) −16.5
hwm_c -> wm_c 1.5
hwf -> wf 4
noise kernels 1

Scale input factor α
cos -> cos 4
cos_m -> cos_m 4
wm_c -> wm_c −0.05
pd_c -> pd_c 2
scale atn_sr -> atn_sa 1
scale ior_s -> atn_sa 1
cos -> ior_s 3
cos -> atn_c −2
cos -> atn_f −7
scale atn_sa -> atn_sr 1
atn_c -> pd_c 0.035
pd_c -> cos 3
vis_f -> vis_f (global) −0.00025
atn_c -> atn_c (global) −0.0265

Note. WOLVES = word-object learning via visual exploration in space.
* Except for front-end fields atn_sr and vis_f where β = 2. ** See Table 4
in the article for developmental variations.
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what it had learned. To correct this, we modulated the top-down
connection from word–feature fields to feature contrast fields
(wf -> con_f). This was set so that initially, when the traces are
weak, the top-down influence is also weak and the model keeps
exploring but later, when strong associations have formed, traces are
able to direct attention to associated objects.
Once the right balance for the top-down attention was achieved,

the memory formation and decay timescale parameters were tuned
to quantitatively fit empirical data from the infant studies (Smith &
Yu, 2008, 2013; Yu & Smith, 2011). Following this, we applied this
parameter set to all developmental and adult studies to look for
memory parameters that would capture participant behaviors while
help conceive a consistent theory of development as discussed under
“Tuning parameters iteratively across CSWL paradigms” section.
These memory parameters are reported in Table 4 in the article.
These memory parameters differ slightly from those used to capture
the initial infant studies (Smith & Yu, 2008, 2013; Yu &
Smith, 2011).
We conducted all simulations at a consistent normal noise (noise

amplitude = 1) in allfields of themodel and ran each simulation that we
report in results for a minimum of 300 runs (=individuals). Looking
times are measured via activation in spatial attention field. Specifically,

we take total above-threshold activation in the spatial attention field
(atn_sr) convolved with a spatial template to distinguish looking at/
attending to different spatial positions. Finally, to evaluate the model’s
performance across all the data points we quantitatively fit, we com-
puted the root mean squared error (RMSE) between the simulated and
empirical data as well as the mean average percentage error (MAPE).
These accuracy measures are reported in the main text in Table 3.

Table C1 below lists the elements (left column) that WOLVES
model is composed of and details the final parameter set used in all
simulations. Readers are referred to COSIVINA documentation
(Schneegans, 2012) for details and implementations of these ele-
ments. Values for “free” parameters that we arrived at after tuning are
shown in red. Parameter values shown in black color were carried
over from VES model. Parameter values shown in blue color were
carried over from the WOL model. In addition, several values from
VES were applied uniformly, including all 1D kernel widths (σ = 4)
and 2D kernel widths, both excitatory (σexc = 4) and inhibitory
(σinh = 8). The one exception is for the word field (σexc = 0 and
σinh = 1) and associated 1D kernels (word -> wf, hword -> word,
hwf -> wf) which all had a width of 0 reflecting our use of a Dirac
function to create discrete word units. Finally, all noise kernels were
set to a constant amplitude strength (α = 1).

Appendix D

WOLVES Simulations of Fitneva and Christiansen (2017)

This study investigated how the accuracy of initial word–referent
mappings affected learning outcomes in CSWL tasks over the course
of development. Intuitively, initial accuracy of word-object pairings
should be positively correlated with learning performance; however,
an earlier study by the authors (Fitneva & Christiansen, 2011) showed
that greater accuracy in adults was associated with poorer final
performance. To examine this developmentally, 4- and 10-year-old
children and adults were presented with a familiarization phase that
exposed all the participants to 10 word-object pairings. Thereafter,
participants were randomly assigned to two conditions (6-Pairs
Changed and 4-Pairs Changed Conditions) that differed in the number
of changes made to the pairings to be learnt in the next learning phase.
For participants in the 4-Pairs Changed (high initial accuracy) Con-
dition, six of the initially familiarized pairings were included in the to-
be-learnt set. For the other four pairings, the words and pictures were
mismatched (4-Pairs Changed) and then added to the to-be-learnt set.
In the 6-Pairs Changed Condition, four pairs from the familiarization
phase were part of the to-be-learnt set and six were mismatched. The
new to-be-learnt pairings were presented during a learning phase. A
test phase followed in which participants were presented with a target
object and a foil object while the word was heard. Participants had to
select the object corresponding to the word. To ensure test trials were
independent, participants were tested on five objects only while the
other five objects served as foils. Each of the five tested objects was
tested three times, each time with a different foil.
As shown in Figure D1 (top panels), participants performed

better on word-object pairs that were initially accurate (unchanged),

in both conditions and overall performance got better with age.
However, there was a developmental trend such that 4-year-old
children performed better in the high initial accuracy condition, 10-
year-old children performed similarly in both conditions, and adults
were better in the 6-Pair changed condition.

WOLVES was situated in the same task using memory-related
parametric settings for the age groups consistent with other simula-
tions (for 4 year olds: tau_Build = 1,200 and tau_Decay = 3,000;
for 10 year olds: tau_Build = 1,200 and tau_Decay = 5,500; for
adults: tau_Build = 1,000 and tau_Decay = 15,000). The model
replicates the finding (see Figure D1 bottom panels) that the number
of correct responses improves with age, that is, each bar in the
bottom panel grows taller as we go from the left panel to the right
panel. Consistent with the empirical data, the model performs better
on unchanged pairs (initially accurate items) than the changed pairs
(initially inaccurate items). This is reflected in each panel with the
left-side bars always taller than the bars on the right side of each
panel. The model did not show any significant difference between
the high and low initial accuracy conditions, however.

Fitneva and Christiansen (2017) concluded that the improvement
in performance over age must be related to the role of gradually
growing memory as indicated by other CSWL studies on adults and
infants. Our simulation results confirm this hypothesis as the only
change made to capture age differences was to memory parameters.
Furthermore, the model consistently shows the more intuitive direct
effect of initial accuracy: The model learns the unchanged pairs
better than the changed pairs regardless of condition. This makes
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intuitive sense: The memory traces for the initially accurate pairs
learned before the CSWL task are reinforced in the learning phase of
CSWL, whereas there are no such traces to reinforce for the initially
inaccurate pairs. Fitneva and Christiansen found children’s perfor-
mance to be in line with this expectation; they learned best when
only four pairs changed. However, adults did not fit this expectation,
they learned best when six pairs changed. Fitneva and Christiansen
did not offer any direct evidence of the underlying mechanism for
this inverse effect of initial accuracy, but suggested that trial-by-trial
modeling may help understand it. Contrary to this expectation, our

trial-by-trial modeling does not reproduce the inverse effect. This
suggests that WOLVES may be missing some critical ingredient,
such as additional cognitive control mechanisms related to error
control and feedback (Boksman et al., 2005; Rushworth et al.,
2007). This is a direction for future empirical and modeling work.
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Figure D1
Data from Fitneva and Christiansen (2017) and the WOLVES model

Note. Top row (empirical data) plots the mean accuracy at test of 4 year olds (left panel), 10 year olds (middle panel), and adults (right panel) grouped by the
two change conditions (4-Pairs, 6-Pairs) and pair category (changed, unchanged). The bottom panel shows the corresponding WOLVES simulation results for
the three different age groups. WOLVES = word-object learning via visual exploration in space. See the online article for the color version of this figure.
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