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ICDL Tutorial – WELCOME!
ª09:00-11:00: Primer on DFT
ª11:00-11:30: coffee break
ª11:30-13:30: Hands-on session 1 (CEDAR)
ª13:00-14:00: lunch
ª14:00-15:00: Case study 1: VWM

ªHands-on session 2 (COSIVINA)
ª15:00-16:00: Case study 2: IOWA

ªHands-on session 3 (simulating empirical data)
ª16:00-16:30: coffee break
ª16:30-18:00: Case study 3: WOLVES

ªHands-on session 4 (simulating complex architectures / data)
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Primer on DFT
John P. Spencer
Professor
School of Psychology
University of East Anglia
Norwich, UK
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www.dynamicfieldtheory.org
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The Big Picture
ªWhat is a theory?
ªWhat is a model?
ªWhat is the relation between the two?
ªWhat function do theories/models serve?

4



9/11/22

3

Formal theories are essential
Creates challenges…
ªNot everyone understands models

ªSummer schools and primer events!
ªWhich modeling approaches should be taught as part of 

graduate training?
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DFT
ª29 years old (first conference proceedings paper 

published in 1993; the neural dynamics of saccadic eye 
movements)

ªOver 100 papers since 2001
ªTopics:

ªWorking memory; spatial categorization; word learning; executive 
function; imitation; robotics; visual scene representation; 
habituation; behavioral organization; object recognition and 
representation; spatial memory; spatial language; saccadic eye 
movements; spatial attention; feature-based attention; visual 
working memory; dual-task performance; hierarchical word 
learning; motor planning; reaching; multi-object tracking; model-
based fMRI

ªAnd the development of all this stuff…

6
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Where does DFT fit in?
Many classes of models…
ªCognitive models (prototype models; Bayesian models)
ªProcess models (multivariate time series models; 

SUSTAIN)
ªHybrid and production models (ACT-R)
ªNeural process models: do process in a neural way…
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Classes of neural process models
ªBiophysical models
ªDFT
ªConnectionism

Two key dimensions…
ªHow neural are they?
ªHow are they linked to behavior?

DFT tries to find the Goldilock’s zone: just the right amount 
of neural to be grounded; just the right amount of behavior 
to be testable and integrative

8
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DFT

DFT provide a framework for formalizing dynamic thinking…
ªA Thought: a pattern of local decisions
ªThinking: movement from one pattern to another
ªBehaving: connecting these patterns to sensorimotor systems
ªDeveloping: shaping these patterns step-by-step through hours, 

days, weeks, and years of generalized experience
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DFT: Neural reality
The reality of neural systems
ªThe neural system is densely interconnected; massively 

recurrent
ªCan go from any neuron in the brain to any other neuron in the 

brain in 5-8 steps.
ªThe vast majority of cells are part of recurrent loops rather than 

feed-forward pathways
ªThe creates a stability problem: how do neural systems 

maintain a stable pattern of activation in the presence of 
massive interactivity

10
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Dynamical Systems Theory
The solution: neural dynamics
ªDynamical systems theory gives us the concepts we need 

to understand how neural populations can form neural 
attractor states…stable patterns of activation

What kind of attractors?
ªStable when at rest (no seizures)
ªWhen system detects an input, it ‘represents’ that the 

input is present (turns ‘on’)
ªWe also want a system that can maintain a working 

memory of the input when it disappears

11

Linear dynamical systems
ªAttractor (rate of change = 0)
ªExponential relaxation to fixed point
ªInput shifts the location of the 

attractor in phase space
ª[simulator]
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Non-linear dynamical systems
ªMake neuronal activation non-linear
ªSystem can be bi-stable (‘off’ and 

‘on’ attractors)—current state 
determines where the system travels

ªInput shifts the attractors [simulator]
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Strongly non-linear systems show 
self-sustaining activation

[simulator]
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Dynamical coupling
ªWe can couple multiple dynamical nodes together to 

capture system interactions (excitatory, inhibitory)
ª[simulator]
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Summary: Neural Dynamics
ªFixed point attractor = special place in a stable system 

(negative slope) where rate of change is zero
ªBifurcation = a shift in the number or quality of attractor 

states (happens in non-linear systems)
ªInstability = a shift from one attractor to another

ªDetection instability
ªMemory instability

ªHysteresis = point where the instability happens is not 
symmetric coming vs. going

ªSelf-sustaining state = system stays in the ‘on’ state even 
when input removed

ªDynamical coupling captures how a system of multiple 
neuronal units interact

17

Fields: Metric spaces
ªA single dynamical node can ‘represent’ the 

presence/absence of input, but it can’t tell you what that 
input is (features) or where it is (space)

ªFor that, we need metric spaces…
ªGreen hue value
ª20 deg to the right of midline
ªThe dog is similar to the cat

18
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How do we represent metrics neurally?
ªSimplest example: topographic representation in visual 

cortex…

0.4°

19

From nodes to fields
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Dynamic fields
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Different interactions = different behaviors
ªGlobal inhibition à winner-take-all
ª[simulator]
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Different interactions = different behaviors
ªLocal-excitation / surround inhibition à multi-peak 

[simulator]

ªWeak interactions = self-stabilized peaks
ªStrong interactions = self-sustaining peaks

23

Summary: Dynamic Fields
ªNeuronal dynamics distributed over a metric space = 

dynamic field
ªFields combine...

ªSigmoidal non-linearity
ªNeural interaction function (convolution kernel)
ªinputs

ªDifferent neural interactions yield different behaviors
ªSelf-stabilized (input-driven ‘encoding’)
ªSelf-sustaining (working memory ‘consolidation’)
ªWinner-take-all (decision-making)
ªMulti-peak (multi-item working memory)

24
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Dynamic fields are not a neural analogy
ªEvidence suggests that the brain actually work this way
ªNeural population dynamics captured by DFT are 

observable in cortex (e.g., surround inhibition)

Jancke et al. (1999)

25

Neural dynamics over multiple timescales
ªThus far, we’ve covered local decisions (peaks) within 

neural populations
ªIn some cases, these decisions are short-lived à detect a 

stimulus and then relax back to resting state
ªIn other cases, these decisions can remain for up to 30 or 

more seconds à self-sustaining peaks (working memory)
ªBut what about neural dynamics that extend over the 

timescales of learning and development?

26
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Memory traces
ªOperates like a linear system at each field site (activation 

in field moves attractor to 1; absence of activation moves 
attractor to 0)

ªAccumulate a trace as long as above-threshold activity 
ªCan have a convolution kernel that smears memory trace 

effects out over metric space
ªCan also have a separate decay rate

!mem!mem !, ! = −!mem !, ! + !(! !, ! )                                               (2.4) 
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Building peaks from memory traces
ªMemory trace + h boost
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What about development?
ªSpatial precision hypothesis: excitatory and inhibitory 

neural interactions become stronger over development 
(via a self-organizing or locally Hebbian process)

ªThis has multiple 
consequences…
ªPeaks build faster 

(faster RTs)
ªPeaks become narrower 

(enhance discrimination)
ªPeaks become stronger 

and more self-sustaining 
(more robust WM and 
higher capacity)

29

Summary: Learning & Development
ªMemory traces open up DFT to neural processes that 

extend over a learning timescale
ªWe can also capture developmental change by increasing 

the strength of excitatory and inhibitory neural interactions
ªRecent work suggests a link between the accumulation of 

memory traces distributed over metric dimensions and 
developmental changes in neural interaction strength
ªLearning and development might be mechanistically related

30
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Beyond single fields: Neural architectures
Dynamic thinking happens in a whole brain…

This requires coupling DFs into a larger architecture

31

New challenge: Integration
Once you start coupling fields together to create neural 
architectures, you confront new challenges…
ªCoupling: we usually reciprocally couple fields to reflect 

the recurrence in neural systems (vs. feed-forward)
ªOnly above-threshold peaks contribute to inter-field interactions
ªField activities are convolved with a kernel (like a connectivity 

matrix between two fields)
ªIntegration: how do you connect fields of different 

dimensionality?
ªSpecial binding dimensions like space or words

ªDoes the model scale up? Can you integrate smaller 
architectures into larger ones?

32
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Word learning (WOLVES)

ªBinding visual features through space
ªIntegrating words and object features

33

Beyond brains: Embodied agents
ªDFT can be coupled to sensori-motor fields to guide 

autonomous decision-making and autonomous action

34
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DFT: Conclusions
DFT provides a theoretical approach to dynamic thinking…
ªHow neural systems form stable local decisions (peaks)
ªHow those decisions give rise to different types of 

cognitive processes (encoding, working memory, winner-
take-all decision-making, multi-item WM)

ªHow real-time neural processes extend across the 
timescales of learning and development

ªHow these local processes can be combined into larger-
scale cognitive systems that learn and develop

ªAnd how whole-brain theories can be coupled to a body 
to enable autonomous, real-world behavior

36
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DFT Conclusions
ªWhat is a theory?

ªAll the principles of DFT combined – those are the theoretical 
commitments

ªWhat is a model?
ªA local instantiation of a DF model using the tools/concepts of DFT

ªWhat is the relation between the two?
ªDFT blurs the boundaries between models and theories with its 

quest for an integrated theory of the brain in a body
ªWhat function do theories/models serve?

ªTo integrate findings, even findings from different domains
ªTo make predictions at both behavioral and neural levels
ªTo inspire new ideas and push the boundaries of what is possible

37

ICDL Tutorial
ª09:00-11:00: Primer on DFT
ª11:00-11:30: coffee break
ª11:30-13:30: Hands-on session 1 (CEDAR)
ª13:00-14:00: lunch
ª14:00-15:00: Case study 1: VWM

ªHands-on session 2 (COSIVINA)
ª15:00-16:00: Case study 2: IOWA

ªHands-on session 3 (simulating empirical data)
ª16:00-16:30: coffee break
ª16:30-18:00: Case study 3: WOLVES

ªHands-on session 4 (simulating complex architectures / data)
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Introduction to CEDAR
Optimal for building DF models quickly, tuning 
them up, and designing complex 
architectures. 
Also allows interface with robotics.

39

CEDAR Exercise
ªYou have built three types of fields – one for multi-peak 

‘encoding’, one for working memory, and one for selection
ªNow let’s build an integrated architecture that encodes 

the stimuli, selects one of the items, and then 
consolidates that item in working memory.

ªThese are key steps involved in building a scene 
representation (which we will see later in WOLVES)

40
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Introduction to COSIVINA
Optimal for situating DF models in specific 
tasks (e.g., for quantitatively fitting data).
We have both matlab and python versions.

41

Getting Started
See www.dynamicfieldtheory.org
ªDownload COSIVINA 

ªhttps://github.com/cosivina/cosivina
ªDownload pyCOSIVINA

ªhttps://github.com/cosivina/cosivina_python
ªDownload jsonlab

ªhttps://github.com/fangq/jsonlab
ªDownload examples

ªhttps://github.com/cosivina/cosivina_dft_projects

42

http://www.dynamicfieldtheory.org/
https://github.com/cosivina/cosivina
https://github.com/cosivina/cosivina_python
https://github.com/fangq/jsonlab
https://github.com/cosivina/cosivina_dft_projects
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Run example from primer lecture
ªNavigate to the COSIVINA folder in matlab
ªType ‘setpath’
ªIn the ‘examples’ folder, open…

launcherTwoNeuronSimulator.m

ªHit ‘run’

43

ICDL Tutorial – WELCOME!
ª09:00-11:00: Primer on DFT
ª11:00-11:30: coffee break
ª11:30-13:30: Hands-on session 1 (CEDAR)
ª13:00-14:00: lunch
ª14:00-15:00: Case study 1: VWM

ªHands-on session 2 (COSIVINA)
ª15:00-16:00: Case study 2: IOWA

ªHands-on session 3 (simulating empirical data)
ª16:00-16:30: coffee break
ª16:30-18:00: Case study 3: WOLVES

ªHands-on session 4 (simulating complex architectures / data)
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Case Study: VWM
A simple model that captures a lot of data and 
grounds our understanding of learning and 
development.

45

Working Memory and the 
Developing Brain
John P. Spencer
Professor
School of Psychology
University of East Anglia
Norwich, UK
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Working Memory in a Dynamic World

Football as a case study…
ªDynamic balance between 

distraction and focus
ªHold one focus in mind –

follow the ball – and then 
switch to new focus –
throw-ins

ªWorking memory is key to 
holding these goals in mind

47

Overview
Fascinating finding about working memory (WM):
ªChildren go from holding just 1 item in WM during infancy 

to 3-4 items by 10 years
How does this happen?
ªLots of data showing brain changes using fMRI and 

fNIRS but how does this improvement happen?
ªComputer models to the rescue…

Conclusion: DF models offer novel insights into how 
development happens suggesting new ways to help at-risk 
children.

48
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What is working memory?
And how does it change over development?

49

Varieties of working memory
Working memory
ªA memory system that holds information in an active state 

in the service of mental operations (e.g., mental rotation)
ªContrasts with short-term memory (passive storage)
ªContrasts with long-term memory

Verbal working memory
ªHolds verbal information in mind (articulatory loop)
Visuo-spatial working memory
ªVisuo-spatial sketchpad (spatial working memory)
ªVisual working memory (colours, shapes, etc)

50
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Visual Working Memory (VWM)
ªVWM is a central cognitive system used – over 10,000 

times each day -- to remember and compare items that 
cannot be simultaneously foveated and to detect changes 
in the world when they occur

51

Visual Working Memory

Case 1: Large feature 
difference makes it easy 

Case 2: Need to 
remember subtle 
featural detail

WM is very limited: we can only hold about 3-5 items in WM
ªhttps://www.youtube.com/watch?v=IGQmdoK_ZfY

52

https://www.youtube.com/watch?v=IGQmdoK_ZfY
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Visual Working Memory (VWM)
ªVWM is a great target for early assessment & 

intervention
ªWe can measure VWM early in development
ªIndividual differences in infancy are predictive of school outcomes 

up to 11 years later
ªVWM is open to intervention (e.g., parenting interventions)

53

Measuring Changes in VWM over 
Development

Infant / Child PL Task Child / Adult CD Task

54
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VWM over development
Dramatic changes in visual WM capacity from 1 item in 
infancy to 3-4 items by 9-10yrs
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Simmering (2018). Monographs of SRCD. Rose et al. (2012). Psychological Science. 

56



9/11/22

29

How does WM change?
Looking to the brain for insights…

57

Kwon et al. 2002
ªVSWM task using fMRI (detect spatial repetition 2-back in 

3x3 grid; control task = detect item in center)
ªImprovement in accuracy and latency

58
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Kwon et al. 2002
ªIncreases in brain activity 

associated with 
improvements in 
performance with age as 
the strongest predictor

59

How does WM change?
These data highlight which brain networks 
change, but they don’t really explain how this 
change occurs.

60
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How Does WM Change?
ªWM skills emerge as the brain matures
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VWM Not very satisfying…
ªJust shifts the question to a 

different level: what explains 
brain maturation?

ªNot terribly useful for 
intervention: how do we intervene 
in brain maturation?
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Computer models of how 
the brain works…
ªDynamic Field Theory
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WM in Infancy WM in Childhood WM in Adulthood

Spencer (2020)

ªStronger local excitation leads to more robust WM
ªMore robust WM peaks increases capacity
ªWM capacity increases as excitation increases
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Spencer (2020)

ªMemory traces accumulate locally to support WM
ªAs experience accumulates, WM abilities generalize
ªThe brain develops itself via generalized experience
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VWM: Conclusions
ªBrain data reveal which brain areas change over 

development
ªRegarding how change occurs, brain models provide a 

mechanism: increase in neural excitation as experience 
generalizes across, for instance, features (colors)

65

VWM: Conclusions
How might this work guide interventions?
ªTells us how VWM operates – experience matters…

ªencourage caregivers to help provide the ‘right’ experiences for 
each child

ªGives us tools to assess changes in VWM as children 
develop
ªcould provide targets for intervention work – is each child changing 

as predicted month-to-month as we intervene?
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Hands-on: VWM
Introduction to coding in COSIVINA: how do 
you build a DF model that can be embedded 
in a task?

67

ICDL Tutorial – WELCOME!
ª09:00-11:00: Primer on DFT
ª11:00-11:30: coffee break
ª11:30-13:30: Hands-on session 1 (CEDAR)
ª13:00-14:00: lunch
ª14:00-15:00: Case study 1: VWM

ªHands-on session 2 (COSIVINA)
ª15:00-16:00: Case study 2: IOWA

ªHands-on session 3 (simulating empirical data)
ª16:00-16:30: coffee break
ª16:30-18:00: Case study 3: WOLVES

ªHands-on session 4 (simulating complex architectures / data)
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Case Study: IOWA
Another simple model that captures a lot of 
data. Useful for highlighting the iterative 
nature of building a model, including fitting 
data and testing novel predictions.

70
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Testing Predictions of a Neural Process Model of 
Visual Attention in Infancy Across Competitive 
and Non-Competitive Contexts 
John P. Spencer Professor, School of Psychology

University of East Anglia
Norwich, UK

Shannon Ross-Sheehy University of Tennessee
Bret Eschman Florida International University

1

The development of spatial attention
ªSpatial information plays a key role in the early development of attention by 

providing an ecologically grounded continuous dimension along which infants 
and children can relate objects in the environment

ªAttention and spatial processing systems develop gradually in early 
development as indexing of spatial locations and shifts of attention – both 
overt and covert – are integrated

ªEvidence of changes in this integration comes from spatial orienting tasks 
which have become a benchmark for the study of early attention development

2
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The IOWA task
ªOne spatial orienting tasks that has been particularly useful – the Infant 

Orienting With Attention (IOWA) task – examines how different types of spatial 
events influence covert orienting

ªThe tasks probes how a precue
influences a later attentional shift

ªValid precue
ªInvalid precue
ªDouble precue
ªTone only
ªNo cue

3

Ross-Sheehy, Schneegans, Spencer (2015)
ªResults showed faster RTs for the 10mo infants, slower for the 5mo infants, 

and intermediate for the 7mo
ªCues had the greatest impact on 7 and 10mo infants, with faster RTs in valid 

conditions and slowest RTs in the invalid condition
ªThere was a speed-accuracy trade-off with older infants showing more 

erroneous shifts of attention in the double and invalid conditions

4
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What changes in the brain underlie these shifts?
ªNeural process models can be a useful tool here, shedding light on which 

types of neural changes underlie such empirical results
ªNeural models implement known neurophysiological constraints, including 

how different functional neural populations interact to yield looks to the target 
under different conditions

ªCritically, connections within and between model components can be 
manipulated to understand how particular behavioral patterns emerge

ªSuch models can also inform developmental hypotheses about how the 
neural system changes over time

5

Dynamic field model of spatial attention
ªVisual input layer
ªSpatial attention field

ªLocal excitation / surround inhibition
ªGlobal inhibition (selects only one peak)

ªFixation node (boosts act near fovea)
ªGaze change node (boosts act in 

periphery)
ªSaccade motor field

ªPeak generates eye movement
ªReset node (inhibits input during 

saccade)
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DF model of the IOWA task
ªSimulator…
ªhttps://github.com/cosivina/cosivina_dft_projects

ªRMSE = 12.8ms for RT data and 0.04 for accuracy data

7

How did we capture development?
ªSpatial precision hypothesis: strength of excitation and inhibition increases 

in early development (Schutte et al., 2003; Simmering et al., 2008; Schutte & Spencer, 2009; Perone et al., 
2011; Perone & Spencer 2013a,b, 2014)

ªExperience-dependent effect, e.g., exposure to spatial input patterns from retina which 
structure spatial maps in cortex may strengthen lateral connectivity within those maps

ªMyelination of cortical populations which enhances neural efficiency
ªDevelopmental changes

ªIncrease local excitation, surround inhibition, global inhibition in 
the attention field

ªIncrease local excitation, global inhibition in the saccade field
ªIncrease connectivity from attention to saccade field, from 

saccade field to reset node, and from reset node to attention 
and saccade fields

ªDecrease noise strength in attention and saccade fields

8

https://github.com/cosivina/cosivina_dft_projects
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Novel predictions of DF model – Competition 
ªSimulated the model in 

competitive or ‘overlap’ conditions

9

Novel predictions of DF model – Competition 
ªSimulated the model in 

competitive or ‘overlap’ conditions

5 novel predictions
1. Slower RTs in comp
2. Slowing greater for 7 and 10mo
3. Longest RTs in none cond with 

a flattening of RTs across cond
4. Few errors in invalid and double
5. Accuracy should increase with 

age relative to non-comp 

10
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Spencer, Ross-Sheehy, Eschman (2022)
ªTested these predictions with 31 5mo, 27 7mo, and 26 10mo in a within-

subjects design
ªInfants completed both non-competitive and competitive conditions with all 

cue types (valid, invalid, double, tone, none)
ªEach block contained one of every trial type (2 x 5) in random order 
ªInfants completed up to 80 trials over the 10min experiment

11

Results
5 novel predictions
1. Slower RTs in comp ✓
2. Slowing greater for 7 and 10mo ✓
3. Longest RTs in none cond ✓
with a flattening of RTs across cond X
4. Few errors in invalid and double ✓
5. Accuracy should increase with age 

relative to non-comp ✓

12
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Can we improve the model fit?
ªAlthough the DF model accurately predicted 5 novel effects, the fit of the 

model to the new data was relatively poor.
ªCan we ‘repair’ the fit with modest parameter tuning?
ªMore critically, can we ‘repair’ the fit while holding the developmental changes 

constant? This would provide a strong test of the spatial precision hypothesis.

13

Model modifications
ªIn previous model, the fixation node was not used; this is critical here as 

fixation input varies by condition. Added that in and tuned parameters.
ªWith addition of fixation node, we now had to re-tune the gaze change node 

so these were in balance.
ªNow the model showed better switching between the fixation state and shifts 

of attention, but the model often had two peaks simultaneously – a fixation 
peak and a target peak. Increased global inhibition in the attention field to fix 
this, keeping the developmental modulation the same.

ªTo boost errors, we increased the cue input strength and the noise strength, 
again keeping the developmental modulation the same

14
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New simulation results

ªOverall RMSE = 37ms for RTs and 0.07 for accuracy

15

Conclusions and next steps
ªDF model made 5 novel predictions which were generally supported with a 

new set of empirical data with infants
ªThe model achieved a good quantitative fit to the new data set while 

maintaining the integrity of the developmental hypothesis
ªThis provides strong support for this particular account of the development of 

spatial attention in infancy
ªWe are currently testing a new set of novel predictions using this model by 

removing the tone cue.
ªWe are also developing methods to optimize model parameters using 

tensorflow instead of doing this work ‘by hand’. This will enable us to more 
rigorously test the SPH and should improve the quantitative fit of the model.

16
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Conclusions and next steps
ªMore generally, we note that most accounts of competition effects in the 

literature emphasize developmental improvements in a ‘disengaging’ 
mechanism via inputs from frontal eye fields and DLPFC (e.g., Fan et al., 2005; 
Johnson & De Haan, 2015; Johnson et al., 1991).

ªOur model shows, however, that developmental changes in competition 
effects can instead arise from more general changes in excitation / inhibition 

ªOne possibility linking these views is that the dynamics captured by the gaze 
change node reflects these frontal inputs.

ªWe recently proposed a method to map neural activity in DF models to fMRI 
and fNIRS measures (Buss & Spencer, 2021); such methods could be used to 
directly link the DF model to neural measures of the infant brain.

17

Thanks to our fabulous team!
ªFunded by: NIH R01HD083287 awarded to JPS                                                                 

18
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Hands-on: IOWA
Goal: To highlight how COSIVINA can be 
used to quantitatively simulate empirical data.

72

The future of DF simulation work
ªWe’re working on a way to use tensorflow to optimize 

parameters of DF models
ªCurrently using our IOWA model as a test case
ªThis builds on pyCOSIVINA and new software called 

‘Dynamic Field Flow’
ªhttps://dynamicfieldtheory.org/software/
ªhttps://github.com/danielsabinasz/DynamicFieldFlow

74

https://dynamicfieldtheory.org/software/
https://github.com/danielsabinasz/DynamicFieldFlow
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ICDL Tutorial – WELCOME!
ª09:00-11:00: Primer on DFT
ª11:00-11:30: coffee break
ª11:30-13:30: Hands-on session 1 (CEDAR)
ª13:00-14:00: lunch
ª14:00-15:00: Case study 1: VWM

ªHands-on session 2 (COSIVINA)
ª15:00-16:00: Case study 2: IOWA

ªHands-on session 3 (simulating empirical data)
ª16:00-16:30: coffee break
ª16:30-18:00: Case study 3: WOLVES

ªHands-on session 4 (simulating complex architectures / data)

75

Case Study: WOLVES
A more complex neural architecture that 
simulates a lot of data quite well. Highlights 
what is possible by ‘scaling up’ from simpler 
DF models.

76
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Word-Object Learning via Visual Exploration in 
Space (WOLVES): A Neural Process Model of 

Cross-Situational Word Learning

Larissa K. Samuelson

with...
Ajaz A. Bhat

John P. Spencer

1

Words are the building blocks of language

How do people learn the meanings of words when there 
are an infinite number of possible referents?
• One possibility: Track word-object co-occurrences (cross-

situational statistical learning)

“Try some of 
the banana”

2
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Words are the building blocks of language

How do people learn the meanings of words when there 
are an infinite number of possible referents?
• One possibility: Track word-object co-occurrences (cross-

situational statistical learning)
• But what is the nature of this type of statistical learning?

Two classes of theories
• Hypothesis testing accounts 
• Associative learning

3

Hypothesis Testing

• Encounter a novel word
• Make a single hypothesis about the word-object 

mapping
• If later evidence shows that this hypothesis is wrong, 

form a new one and proceed to verification…

4
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Hypothesis Testing

Trueswell et al. (2013). Cognitive Psychology.

5

Associative Learning

• When encounter a novel word, form multiple 
associations between word and available objects
• Over time, refine these associations based on available 

co-occurrences
• Strongest association wins (as correct word usage should 

always drive you to one strong association)

6
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Associative Learning

• 2 words x 2 pictures on each training trial; 3 x 3; 4 x 4
• Taught same 18 words
• 6 repetitions of each target word-ref pairing – so same 

exposure in each condition but different erroneous 
mappings (5.09 incorrect mappings in 2x2, 8.78 in 3x3, 
12.22 in 4x4)
• 4 AFC test with one word on each test trial (foils from 18)

Yu & Smith (2007). Psychological Science.

7

Limitations of existing theories

• Both types of theories have been used to explain the 
same data; Yu and Smith (2012) used this to call for 
implementation-level theories
• Current theories are not comprehensive (tend to explain 

only a subset of data from specific tasks)
• Current theories fail to take time seriously despite 

evidence that how processes unfold in real time, over 
learning, and over development matter…

Yu & Smith (2012). Psychological Review.

8
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Cross-Situational Word Learning

• 12-14 month old children can learn 4 words (Smith & Yu, 2008, Yu & Smith, 
2011). Older kids and adults can learn up to 9-16 words.
• What is changing over development?

• Individual differences: ‘strong’ vs ‘weak’ learners.
• Moment-by-moment variation in looking matters – strong learners have 

fewer, longer fixations. 

BOSA 

KAKI

REGLI 

BOSA

BOSA 

BOSA

9

Today’s talk focuses on a new theory of CSWL

• WOLVES
• Overview of model & demonstrate that it is a good model.

• Timescale of the task
• Simulations that highlight role of attention and learning processes.

• Timescale of development
• Present the first developmental account of CSWL highlighting the role of 

memory processes. 

• Model evaluation
• Is the theory comprehensive?
• How does it fare relative to competitor models?

10
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www.dynamicfieldtheory.org

11

WOLVES

Object
Features
(retinal)

Working Memory 
& Novelty 
Detection

Scene representation 
(what objects are where)

Word-Object
Mappings

Vocabulary
(long-term word-

object associations)

Spatial 
attention 

(retinal)

Spatial Working 
Memory

(scene)

Word Form dorsal 
“where/how” 

pathway

ventral (“what”) pathway

Word-Object Learning Visual Exploration in Space

“BOSA”
“REGLI” Task Input

Samuelson, Smith, Perry & Spencer (2011); 
Samuelson, Jenkins & Spencer (2013)

Johnson, Spencer & Schöner (2009);
Perone & Spencer (2013b)

Bhat, Spencer, Samuelson (2021). Psychological Review.

12
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WOLVES

Full model includes ventral pathways for colour and shape 
as well as memory traces for all field except visual field, 
attention fields and IOR

13

Sh
ap
e

Co
lo
ur

WOLVES in action
ªVES cycles of 

novelty detection, 
consolidation in 
working memory, 
and release from 
fixation.

ªWOL cycles of 
associative learning 
that is non-linear as 
memory traces 
evolve

ªTDA cycles of top-
down memory 
driven attention

“KAKI”“BOSA”“REGLI”

14
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VES Cycle

15

WOL Cycle

16
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TDA Cycle
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Does WOLVES capture – and explain – empirical data?

Will compare WOLVES to Kachergis et al. (2012) as relevant: 
an AL model that distributes attention between known and 

novel associations; has memory decay to capture association 
frequency; one shot computation on each trial.

18
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WOLVES explains HT data

WOLVES captures 
HT data. Why?
• Timing of task 

means WOLVES 
typically makes 
one look on a 
trial (so only 
forms one 
association)
• What if we 

extend the time?

Bhat, Spencer, Samuelson (2021). Psychological Review.

19

WOLVES also explains associative learning data

• With more things to look at, WOLVES forms more 
incorrect associations with weaker association strengths

Bhat, Spencer, Samuelson (2021). Psychological Review.

20
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Does WOLVES capture – and explain – empirical data?

Yes and successfully generates novel predictions.

21

What about CSWL in early development?

22
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Smith & Yu (2008) , Yu & Smith (2011)

Bhat, Spencer, Samuelson (2021). Psychological Review.

23

Smith & Yu (2008) , Yu & Smith (2011)

Measure S & Y
(2008)

Y & S
(2011)

WOLVES RMSE MAPE

Test Trials

Mean looking per 8s trial 6.10 5.92 6.26 .26 4.22

Pref. looking ratio .60 .54 .54 .04 6.10

Mean words learned ( of 6) 4.0 3.5 4.0 .35 7.14

Prop. Strong/weak learners NA .67 .74 .07 10.45

Mean looking to target per trial 3.6 3.25 3.36 .19 5.03

Mean looking to distractor per trial 2.5 2.67 2.89 .32 11.92

Training Trials S W

Mean looking per 4s trial 3.04 2.96 3.07 3.01 .02 .71

Mean fixations per trial NA 2.75 3.82 2.89 .22 6.98

Mean fixation duration NA 1.69 1.21 1.31 .22 14.38

RMSE = Root Mean Squared Error, MAPE = Mean Absolute Percentage Error 

Bhat, Spencer, Samuelson (2021). Psychological Review.

24
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The Role of Spatial Attention

0 5 10 15 20 25 30

Training TrialC

Object
Features
(retinal)

Working Memory 
& Novelty 
Detection

Scene representation 
(what objects are where)

Word-Object
Mappings

Vocabulary
(long-term word-

object associations)

Spatial 
attention 

(retinal)

Spatial Working 
Memory

(scene)

Word Form dorsal 
“where/how” 

pathway

ventral (“what”) pathway

Word-Object Learning Visual Exploration in Space

“BOSA”
“REGLI” Task Input

ªSpatial attention parameter
ªatn_sa à atn_c

ªSort by strong/weak learners. 
ªStrong learners have fewer, longer  

fixations.

25

The Role of Spatial Attention

ªAs fixations go up, association 
strength goes down.

ªAs fixations go up, incorrect 
associations go up.

Bhat, Spencer, Samuelson (2021). Psychological Review.

26
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We created the difference between strong and weak 
learners via manipulation of a particular parameter.

This mechanistically relates variations in spatial attention to 
learning outcomes and highlights the contribution of real-time 

looking dynamics to CSWL.

27

Timescale of Development
• Vlach & Johnson (2013), Vlach & DeBrock (2017, 2019)

ª16 mo learn words from 
massed but not interleaved 
presentation.

ª20 mo learn equally with 
massed or interleaved. 

ªOlder children learn better 
with interleaved 
presentation.

28
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Timescale of Development

• Memory: Tau_Decay
defines how fast a 
memory trace 
deteriorates. Object

Features
(retinal)

Working Memory 
& Novelty 
Detection

Scene representation 
(what objects are where)

Word-Object
Mappings

Vocabulary
(long-term word-

object associations)

Spatial 
attention 

(retinal)

Spatial Working 
Memory

(scene)

Word Form dorsal 
“where/how” 

pathway

ventral (“what”) pathway

Word-Object Learning Visual Exploration in Space

“BOSA”
“REGLI” Task Input

• Unified developmental account of CSWL 

tau_decay = 1000 tau_decay = 1500 tau_decay = 3000

29

Timescale of Development

Bhat, Spencer, Samuelson (2021). Psychological Review.
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We captured 60 datapoints from 12 months to 5 
years with a change to just one parameter.

WOLVES is a powerful developmental model 
This is because it has rich real-time and learning dynamics.

31

Is WOLVES a comprehensive theory?

Compared WOLVES to 2 competitor models:
• Kachergis et al. (2012) 
• Stevens et al. (2017) – Pursuit: an HT model that uses an AL 

mechanism to weigh different hypotheses. Only adds a 
word to the lexicon if the conditional probability of 
hypothesis exceeds a threshold.

32
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Model Validation; coverage & comparison
• 5 CSWL studies with adults

• Trueswell et al. (2013), Yu & Smith (2007), Yu, Zhong & Fricker (2012), 
Yurovsky et al. (2012), Kachergis et al. (2012)

• 7 CSWL studies with infants, toddlers & children
• Smith & Yu (2008), Yu & Smith (2011), Smith & Yu (2013), Vlach & Johnson 

(2013), Vlach & DeBrock (2019), Vlach & DeBrock (2017), Suanda etal. (2014) 

Measure Data 
Points

WOLVES Kachergis et al.+ Pursuit*

RMSE MAPE RMSE MAPE RMSE MAPE

Grand Mean Specific tasks 69 .05 13.51 .08 19.95 .20 42.13

Standard Deviations 69 .04 15.79 .07 21.99 .13 25.52

Grand Mean 3 Gen Exp 15 .03 4.05 .21 47.42 .13 23.91

Grand Mean 132 .10 15.80 unable to capture

Overall AIC 69 -239.67 -295.78 -193.32
+Kachergigs et al. (2012, 2013, 2017); *Stevens et al. (2017)

Bhat, Spencer, Samuelson (2021). Psychological Review.

33

Is WOLVES a comprehensive theory?

Yes.
Also raises interesting questions about metrics for model 
comparison. AIC lowest for Kachergis model, but WOLVES 

clearly outperforms this competitor model.
Suggests that the penalty for ‘free’ parameters too steep   

and/or that other metrics – like model generalisation – are 
more useful. 

34
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Conclusions

• WOLVES
• Formal neural-process account of CSLW based on autonomous real-time 

visual exploration and non-linear associative learning.
• Captures a large range of data and beats other models in direct comparison. 

• Timescale of the task
• Mechanistically related the strength of spatial attention to learning 

outcomes. 

• Timescale of development
• Presented the first developmental account of CSWL based on changes in 

memory strength. 

• Future Directions
• Currently exploring how we can use the model to make predictions, 

understand relations between tasks, and understand individual differences. 

35

Thank you

Members of Developmental Dynamics Lab, University of East Anglia

Funding: NICHD RO1HD045713 to L.K. Samuelson
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37

We’ve highlighted the real timescale. 
What about the timescale of learning in the task and the 

timescale of development?

38
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Timescale of the task
Smith & Yu (2013): Novelty Trap

No overall difference in looks to target v. distractor at test
Fewer “learners”

Smith & Yu (2008)

39

Timescale of the task
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Timescale of the task

Object
Features
(retinal)

Working Memory 
& Novelty 
Detection

Scene representation 
(what objects are where)

Word-Object
Mappings

Vocabulary
(long-term word-

object associations)

Spatial 
attention 

(retinal)

Spatial Working 
Memory

(scene)

Word Form dorsal 
“where/how” 

pathway

ventral (“what”) pathway

Word-Object Learning Visual Exploration in Space

“BOSA”
“REGLI” Task Input

ªNovelty detection & 
consolidation in 
working memory

ªTop-down attention 
driven by growing 
associations

41

Two types of learning on timescale of the task:

• learning / habituating to visual features
• learning word + object mappings

42
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77

Hands-on: WOLVES
Goal: to show how we handle the complexity 
of using a large architecture to simulate data 
from many different tasks.

78
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WOLVES – Code Organisation
ªWolves core

ªSim, GUI, Controls
ªDifferent Sim file for one task (bigger field)
ªXSIT_Manual_run.m à BAM file

ªExperiments code
ªOne for each study (lots of code duplication in each file – easy to 

copy, paste, edit)
ªAnalysis code

ªOne for each study (since people measure different things)
ªSupport code

ªMisc tools (e.g., for computing root mean squared errors)

79

WOLVES – How to run
ªShow basics

80
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WOLVES – Running on an HPC
ªWe run 300 iterations per condition
ªSimulated 132 data points over 12 experiments – that’s a 

lot of simulation time
ªOn an HPC, we can distribute simulations over cores; 

conceptually, each simulation is a subject. So with 96 
cores, we can run a full batch in about the same amount 
of time as 3 single runs.

ªHow? Job script on HPC with matlab; just need to copy 
over COSIVINA and jsonlab.

81

WOLVES – bells and whistles
ªExample using reload option for recent project

82
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The End?
You’ve earned beer/wine/cider/gin.
Stay in touch via dynamicfieldtheory.org!
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