|ICDL Tutorial - WELCOME!

+09:00-11:00: Primer on DFT

+11:00-11:30: coffee break

+11:30-13:30: Hands-on session 1 (CEDAR)

+13:00-14:00: lunch

+14:00-15:00: Case study 1: VWM
+Hands-on session 2 (COSIVINA)

+15:00-16:00: Case study 2: IOWA

+Hands-on session 3 (simulating empirical data)
+16:00-16:30: coffee break
+16:30-18:00: Case study 3: WOLVES

+Hands-on session 4 (simulating complex architectures / data)
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The Big Picture

+What is a theory?

+What is a model?

+What is the relation between the two?
+What function do theories/models serve?
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Formal theories are essential

Creates challenges...

+Not everyone understands models
+Summer schools and primer events!

+Which modeling approaches should be taught as part of
graduate training?
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DFT

+29 years old (first conference proceedings paper
published in 1993; the neural dynamics of saccadic eye
movements)
+Over 100 papers since 2001
+Topics:
+Working memory; spatial categorization; word learning; executive
function; imitation; robotics; visual scene representation;
habituation; behavioral organization; object recognition and
representation; spatial memory; spatial language; saccadic eye
movements; spatial attention; feature-based attention; visual
working memory; dual-task performance; hierarchical word

learning; motor planning; reaching; multi-object tracking; model-
based fMRI

+And the development of all this stuff... [E&
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Where does DFT fitin?

Many classes of models...
+Cognitive models (prototype models; Bayesian models)

+Process models (multivariate time series models;
SUSTAIN)

+Hybrid and production models (ACT-R)
+Neural process models: do process in a neural way...
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Classes of neural process models

+Biophysical models
+DFT
+Connectionism

Two key dimensions...
+How neural are they?
+How are they linked to behavior?

DFT tries to find the Goldilock’s zone: just the right amount
of neural to be grounded; just the right amount of behavior

to be testable and integrative
LEA

University of East Anglia




DFT provide a framework for formalizing dynamic thinking...
+A Thought: a pattern of local decisions
+Thinking: movement from one pattern to another

+Behaving: connecting these patterns to sensorimotor systems

+Developing: shaping these patterns step-by-step through hours,
days, weeks, and years of generalized experience [ E X
+
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DFT: Neural reality

The reality of neural systems
+The neural system is densely interconnected; massively
recurrent

+Can go from any neuron in the brain to any other neuron in the
brain in 5-8 steps.

+The vast majority of cells are part of recurrent loops rather than
feed-forward pathways

+The creates a stability problem: how do neural systems

maintain a stable pattern of activation in the presence of
massive interactivity

(LA
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Dynamical Systems Theory

The solution: neural dynamics

+Dynamical systems theory gives us the concepts we need
to understand how neural populations can form neural
attractor states...stable patterns of activation

What kind of attractors?

+Stable when at rest (no seizures)

+When system detects an input, it ‘represents’ that the
input is present (turns ‘on’)

+We also want a system that can maintain a working
memory of the input when it disappears

(EA
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Linear dynamical systems

+Attractor (rate of change = 0)
+Exponential relaxation to fixed point

+Input shifts the location of the
attractor in phase space

+[simulator]
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Non-linear dynamical systems
+Make neuronal activation non-linear

+System can be bi-stable (‘off and
‘on’ attractors)—current state
determines where the system travels

+Input shifts the attractors [simulator]
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Non-linear systems show hysteresis
u(t)
A
reverse
detection
instability o
i time, t
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Strongly non-linear systems show
self-sustaining activation

[simulator]

15

Dynamical coupling

+We can couple multiple dynamical nodes together to
capture system interactions (excitatory, inhibitory)

+[simulator]
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Summary: Neural Dynamics

+Fixed point attractor = special place in a stable system
(negative slope) where rate of change is zero

+Bifurcation = a shift in the number or quality of attractor
states (happens in non-linear systems)
+Instability = a shift from one attractor to another
+Detection instability
+Memory instability
+Hysteresis = point where the instability happens is not
symmetric coming vs. going
+Self-sustaining state = system stays in the ‘on’ state even
when input removed

+Dynamical coupling captures how a system of multiple

neuronal units interact
(E\
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Fields: Metric spaces

+A single dynamical node can ‘represent’ the
presence/absence of input, but it can’t tell you what that
input is (features) or where it is (space)

+For that, we need metric spaces...
+Green hue value
+20 deg to the right of midline
+The dog is similar to the cat

(LA
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How do we represent metrics neurally?

+Simplest example: topographic representation in visual
cortex...

| |
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From nodes to fields
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Dynamic fields
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Different interactions = different behaviors

+Global inhibition = winner-take-all
+[simulator]
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Different interactions = different behaviors
+Local-excitation / surround inhibition = multi-peak

[simulator]
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+Weak interactions = self-stabilized peaks
+Strong interactions = self-sustaining peaks
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Summary: Dynamic Fields

+Neuronal dynamics distributed over a metric space =
dynamic field
+Fields combine...
+Sigmoidal non-linearity
+Neural interaction function (convolution kernel)
+inputs
+Different neural interactions yield different behaviors
+Self-stabilized (input-driven ‘encoding’)
+Self-sustaining (working memory ‘consolidation’)
+Winner-take-all (decision-making)
+Multi-peak (multi-item working memory)

(LA
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Dynamic fields are not a neural analogy

Jancke et al. (1999)

+Evidence suggests that the brain actually work this way
+Neural population dynamics captured by DFT are

observable in cortex (e.g., surround inhibition)

Figure 6. The t i i DPAs (top) of ite stimuli (from left to right, 0.4-2.4° ion) were to the

of the rep ions of their y stimuli (bottom). The DPAs were based on spike activity of 178 cells averaged over the time interval
from 30 to 80 msec after stimulus onset. Same conventions as in Figure 2B, the color scale was nonna]lzed to peak activation separately for each column.
For small stimulus separation, note the remarkably reduced level of activation for the pared to the superimposed responses. The bimodal
distribution recorded for the largest stimulus separation comes close to match the superposmcln However, inhibitory interaction can still be observed.
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Neural dynamics over multiple timescales

+Thus far, we’ve covered local decisions (peaks) within

neural populations

+In some cases, these decisions are short-lived = detect a

stimulus and then relax back to resting state

+In other cases, these decisions can remain for up to 30 or

more seconds > self-sustaining peaks (working memory)

+But what about neural dynamics that extend over the

timescales of learning and development?

(LA
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Memory traces

attractor to 0)

effects out over metric space
+Can also have a separate decay rate

TmemUmem (¥, £) = —Umem (x, ) + g(u(x, t)) (2.4)

ta(x.t) = —u(x, ) + h+ 506, ) + Cnemtmen (6, ) + [ k(x —x)g(ulx’, t))dx’

+Operates like a linear system at each field site (activation
in field moves attractor to 1; absence of activation moves

+Accumulate a trace as long as above-threshold activity
+Can have a convolution kernel that smears memory trace

(2.5)
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+Memory trace + h boost
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What about development?

+Spatial precision hypothesis: excitatory and inhibitory
neural interactions become stronger over development
(via a self-organizing or locally Hebbian process)

— adults
— == b5years

+This has multiple
consequences...
+Peaks build faster
(faster RTs)
+Peaks become narrower -
(enhance discrimination)
+Peaks become stronger
and more self-sustaining
(more robust WM and
higher capacity)

......... 4 years
1 === 3years

L L L
-90 [ 90 180
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Summary: Learning & Development

+Memory traces open up DFT to neural processes that
extend over a learning timescale

+We can also capture developmental change by increasing
the strength of excitatory and inhibitory neural interactions

+Recent work suggests a link between the accumulation of
memory traces distributed over metric dimensions and
developmental changes in neural interaction strength
+Learning and development might be mechanistically related

(LA
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Beyond single fields: Neural architectures

Dynamic thinking happens in a whole brain...

This requires coupling DFs into a larger architecture
i qui upling i g i u [E&

University of East Anglia
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New challenge: Integration
Once you start coupling fields together to create neural
architectures, you confront new challenges...
+Coupling: we usually reciprocally couple fields to reflect
the recurrence in neural systems (vs. feed-forward)
+Only above-threshold peaks contribute to inter-field interactions
+Field activities are convolved with a kernel (like a connectivity
matrix between two fields)
+Integration: how do you connect fields of different
dimensionality?
+Special binding dimensions like space or words
+Does the model scale up? Can you integrate smaller
architectures into larger ones?
LEA
32
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Word learning (WOLVES)

Figure 4
The Overall Architecture of WOLVES

g Visualdisplay ___
h 1

Note. Scene WMs and memory traces are not shown for representational simplicity. Arrows represent uni/bidirectional (green: excitatory, red: inhibitory)
connectivity in the model. Sce text for additional details. WOLVES = word-object leaming via visual exploration in space. See the online article for the color
version of this figure.

+Binding visual features through space
+Integrating words and object features [ E X
+

University of East Anglia
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Beyond brains: Embodied agents

+DFT can be coupled to sensori-motor fields to guide
autonomous decision-making and autonomous action

(LA
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visual servoing
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DFT: Conclusions

DFT provides a theoretical approach to dynamic thinking...
+How neural systems form stable local decisions (peaks)

+How those decisions give rise to different types of
cognitive processes (encoding, working memory, winner-
take-all decision-making, multi-item WM)

+How real-time neural processes extend across the
timescales of learning and development

+How these local processes can be combined into larger-
scale cognitive systems that learn and develop

+And how whole-brain theories can be coupled to a body
to enable autonomous, real-world behavior

(LA
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DFT Conclusions
+What is a theory?

+All the principles of DFT combined — those are the theoretical
commitments

+What is a model?
+Alocal instantiation of a DF model using the tools/concepts of DFT
+What is the relation between the two?

+DFT blurs the boundaries between models and theories with its
quest for an integrated theory of the brain in a body

+What function do theories/models serve?
+To integrate findings, even findings from different domains
+To make predictions at both behavioral and neural levels
+To inspire new ideas and push the boundaries of what is possible

(EA

University of East Anglia
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+11:00-11:30: coffee break
+11:30-13:30: Hands-on session 1 (CEDAR)
+13:00-14:00: lunch
+14:00-15:00: Case study 1: VWM
+Hands-on session 2 (COSIVINA)
+15:00-16:00: Case study 2: IOWA
+Hands-on session 3 (simulating empirical data)
+16:00-16:30: coffee break
+16:30-18:00: Case study 3: WOLVES

+Hands-on session 4 (simulating complex architectures / data)

E\

University of East Anglia

38

9/11/22

19



9/11/22

Introduction to CEDAR

Optimal for building DF models quickly, tuning
them up, and designing complex
architectures.

Also allows interface with robotics.

(EA
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CEDAR Exercise

+You have built three types of fields — one for multi-peak
‘encoding’, one for working memory, and one for selection

+Now let’s build an integrated architecture that encodes
the stimuli, selects one of the items, and then
consolidates that item in working memory.

+These are key steps involved in building a scene
representation (which we will see later in WOLVES)

(LA
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Introduction to COSIVINA

Optimal for situating DF models in specific
tasks (e.g., for quantitatively fitting data).

We have both matlab and python versions.

(EA
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Getting Started

See www.dynamicfieldtheory.org

+Download COSIVINA
+https://github.com/cosivina/cosivina

+Download pyCOSIVINA
+https://github.com/cosivina/cosivina python

+Download jsonlab
+https://github.com/fangg/isonlab

+Download examples
+https://github.com/cosivina/cosivina dft projects

(LA

University of East Anglia
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Run example from primer lecture

+Navigate to the COSIVINA folder in matlab
+Type ‘setpath’
+In the ‘examples’ folder, open...

launcherTwoNeuronSimulator.m

+Hit ‘run’

(EA
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Case Study: VWM

A simple model that captures a lot of data and
grounds our understanding of learning and
development.

(EA
sity of East Anglia

Univer:

45

Working Memory and the
Developing Brain

John P. Spencer
Professor

School of Psychology
University of East Anglia
Norwich, UK

University of East Anglia
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Working Memory in a Dynamic World

Football as a case study...

+Dynamic balance between
distraction and focus

+Hold one focus in mind —
follow the ball — and then
switch to new focus —
throw-ins

+Working memory is key to
holding these goals in mind

47

Overview

Fascinating finding about working memory (WM):

+Children go from holding just 1 item in WM during infancy
to 3-4 items by 10 years

How does this happen?

+Lots of data showing brain changes using fMRI and
fNIRS but how does this improvement happen?

+Computer models to the rescue...

Conclusion: DF models offer novel insights into how
development happens suggesting new ways to help at-risk

(LA

University of East Anglia
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What is working memory?

And how does it change over development?

(EA

University of East Anglia
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Varieties of working memory

Working memory

+A memory system that holds information in an active state
in the service of mental operations (e.g., mental rotation)
+Contrasts with short-term memory (passive storage)
+Contrasts with long-term memory

Verbal working memory

+Holds verbal information in mind (articulatory loop)
Visuo-spatial working memory

+Visuo-spatial sketchpad (spatial working memory)
+Visual working memory (colours, shapes, etc)

(LA

University of East Anglia
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Visual Working Memory (VWM)

+VWM is a central cognitive system used — over 10,000
times each day -- to remember and compare items that
cannot be simultaneously foveated and to detect changes
in the world when they occur

(EA

University of East Anglia
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Visual Working Memory

Case 1: Large feature
difference makes it easy

Case 2: Need to
‘ remember subtle
i featural detail

WM is very limited: we can only hold about 3-5 items in WM
+https://www.youtube.com/watch?v=1GQmdoK_ZfY [E &
+

University of East Anglia
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Visual Working Memory (VWM)

+VWM is a great target for early assessment &

intervention
+We can measure VWM early in development
+Individual differences in infancy are predictive of school outcomes

up to 11 years later
+VWM is open to intervention (e.g., parenting interventions)

(EA
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Measuring Changes in VWM over

No Change Change Sample Array
= A m
m |%oms | |s0ms
—‘ 20ms Del 1500 ms
elay
= T
=205 - 20s 1000 ms
‘ 250 ms
] So0m Test Display
| O 7]
]
1 1 H 1
i ! i | J

Infant / Child PL Task Child / Adult CD Task
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VWM over development

Dramatic changes in visual WM capacity from 1 item in
infancy to 3-4 items by 9-10yrs

6

VWM

wv

—
g

IS

Capacity (items)
N w

[

()
Y

T T T T T |
4-6mo 3y 4y Sy 7-8y 9-10y  11-12y  Adults
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Simmering (2018). Monographs of SRCD. Rose et al. (2012). Psychological Science. University of East Anglia
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How does WM change?

Looking to the brain for insights...

(EA

University of East Anglia
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Kwon et al. 2002

+VSWAM task using fMRI (detect spatial repetition 2-back in
3x3 grid; control task = detect item in center)

+Improvement in accuracy and latency

WM Accuracy = 0.52 + 0.02'Age . WM RT = 950.7- 18.3'Age

T
§8888
./

Accu

(msec) =
8883888
/. i

c
&
12 14 16 18 20 22 24 8 10 12 14 16 18 20 22 24 |I+s
Age Age

University of East Anglia
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Kwon et al. 2002

+Increases in brain activity
associated with
improvements in
performance with age as
the strongest predictor

LeRPFC =156 + 0.25%Age Right PFC =173 + 0.20"Age

8 10 12 14 16 18 20 22 24
Age

Left PPC = -3.01 + 0.30°Age Right PPC = -2.94 + 0.39°Age

h ¥ ) @ P
g
) . el
7o e . %
of *S A e e “.e
Y d
® 10 12 14 16 18 20 22 24 8 10 12 14 16 18 20 22 24
Age Age N
. glia

tescore
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How does WM change?
These data highlight which brain networks
change, but they don’t really explain how this
change occurs.
60
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How Does WM Change?

+WNM skills emerge as the brain matures

intervention: how do we intervene

in brain maturation?

VWM Not very satisfying...
z +Just shifts the question to a
: /'?7 different level: what explains
1.7 7 brain maturation?
T o ww wowmoaw e +NOt terribly useful for

(EA

University of East Anglia
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Computer models
the brain works...

]
CDj/%E.

+Dynamic Field Theory

of how

62
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Spencer (2020)

WM in Infancy WM in Childhood WM in Adulthood
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+Stronger local excitation leads to more robust WM
+More robust WM peaks increases capacity [E&
+ WM capacity increases as excitation increases
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Spencer (2020)

WM in Infancy with Weak LTM WM in Childhood with Stronger LTM WM in Adulthood with Very Strong LTM
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+Memory traces accumulate locally to support WM
+As experience accumulates, WM abilities generalize [E&
+ The brain develops itself via generalized experience

University of East Anglia
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VWM: Conclusions

+Brain data reveal which brain areas change over
development
+Regarding how change occurs, brain models provide a

mechanism: increase in neural excitation as experience
generalizes across, for instance, features (colors)

(EA

University of East Anglia
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VWM: Conclusions

How might this work guide interventions?
+Tells us how VWM operates — experience matters...

+encourage caregivers to help provide the ‘right’ experiences for
each child

+Gives us tools to assess changes in VWM as children
develop

+could provide targets for intervention work — is each child changing
as predicted month-to-month as we intervene?

(LA

University of East Anglia
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Hands-on: VWM

Introduction to coding in COSIVINA: how do
you build a DF model that can be embedded
in a task?

(EA

University of East Anglia
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Case Study: IOWA

Another simple model that captures a lot of
data. Useful for highlighting the iterative
nature of building a model, including fitting
data and testing novel predictions.

(EA

University of East Anglia
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Testing Predictions of a Neural Process Model of
Visual Attention in Infancy Across Competitive
and Non-Competitive Contexts

John P. Spencer Professor, School of Psychology
University of East Anglia
Norwich, UK

Shannon Ross-Sheehy University of Tennessee

Bret Eschman Florida International University

‘@“ 7
& University of East Anglia
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The development of spatial attention

+Spatial information plays a key role in the early development of attention by
providing an ecologically grounded continuous dimension along which infants
and children can relate objects in the environment

+Attention and spatial processing systems develop gradually in early
development as indexing of spatial locations and shifts of attention — both
overt and covert — are integrated

+Evidence of changes in this integration comes from spatial orienting tasks
which have become a benchmark for the study of early attention development

f
&/
h University of East Anglia
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The IOWA task

+One spatial orienting tasks that has been particularly useful — the Infant
Orienting With Attention (IOWA) task — examines how different types of spatial
events influence covert orienting

+The tasks probes how a precue

influences a later attentional shift
+Valid precue
+Invalid precue

Fixation Cue (100 ms) Blank (100 ms) Target

e “'-

+Double precue
+Tone only
+No cue

I@%

(EA

University of East Anglia

Ross-Sheehy, Schneegans, Spencer (2015)

+Results showed faster RTs for the 10mo infants, slower for the 5mo infants,
and intermediate for the 7mo

+Cues had the greatest impact on 7 and 10mo infants, with faster RTs in valid
conditions and slowest RTs in the invalid condition

+There was a speed-accuracy trade-off with older infants showing more
erroneous shifts of attention in the double and invalid conditions

(a) 350 (b) 1
09
08

5 07

g

5 06

S

250 § o5

£

2 04

2

& 03

0.2 =—4—7 Months

"
[\ —e— 10 Months
1 01
150 0
Double Invalid Nome Tone Valid Double Invalid Nome Tone Valid
Cue Condition Cue Condition
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What changes in the brain underlie these shifts?

+Neural process models can be a useful tool here, shedding light on which
types of neural changes underlie such empirical results

+Neural models implement known neurophysiological constraints, including
how different functional neural populations interact to yield looks to the target
under different conditions

+Critically, connections within and between model components can be
manipulated to understand how particular behavioral patterns emerge

+Such models can also inform developmental hypotheses about how the
neural system changes over time

A
|4
& University of East Anglia

Dynamic field model of spatial attention

+Visual input layer m
+Spatial attention field

+Local excitation / surround inhibition E : - e =
+Global inhibition (selects only one peak) S

+Fixation node (boosts act near fovea)  *: v
+Gaze change node (boosts act in NJ\/V\/\/V\J | \,\,«/\””\/"V"\
periphery) : - 5" ‘ '
+Saccade motor field T
+Peak generates eye movement

+Reset node (inhibits input during 5 > ~ : e .
saccade) o (-

Toutput

Load aut
A
‘\\ %
University of East Anglia
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DF model of the IOWA task

+Simulator...
+https://qithub.com/cosivina/cosivina_dft projects

(a) 350 (b) 1 (a) 350 (b) 1
09 09
08 08
300 300 07
5 07 5 0
7 g 7 g
g 5 06 £ 5 06
- o
£ 250 é 05 g 250 g 05
=
E 2 04 g 2 04
2 1 =
= 03 - 03
200 —=—5 Months 200 —=—5 Months
02 ——7 Months 02 —4—7 Months
—e—10 Months o1 —e—10 Months
01 .
150 0 150

- 0
Double Invalid None Tone Valid Double Invalid None Tone Valid Double Invalid None Tone  Valid Double Invalid None  Tone  Valid

Cue Condition Cue Condition Cue Condition Cue Condition

+RMSE = 12.8ms for RT data and 0.04 for accuracy data

i
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How did we capture development?

+Spatial precision hypothesis: strength of excitation and inhibition increases

in early development (Schutte et al., 2003; Simmering et al., 2008; Schutte & Spencer, 2009; Perone et al.,
2011; Perone & Spencer 2013a,b, 2014)

+Experience-dependent effect, e.g., exposure to spatial input patterns from retina which
structure spatial maps in cortex may strengthen lateral connectivity within those maps

+Myelination of cortical populations which enhances neural efficiency

+Developmental changes

+Increase local excitation, surround inhibition, global inhibition in
the attention field

+Increase local excitation, global inhibition in the saccade field

+Increase connectivity from attention to saccade field, from
saccade field to reset node, and from reset node to attention
and saccade fields - . .

+Decrease noise strength in attention and saccade fields Difference in horizontal position (degree)

i
&/
h University of East Anglia

—— 5 Months
——7 Months
——— 10 Months

Interaction weight
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Novel predictions of DF model — Competition

+Simulated the model in Eizarion LR L
competitive or ‘overlap’ conditions valid >

'"“"“m

Double

Tone m—
m

No Cue

@%
University of East Anglia

Novel predictions of DF model — Competition

+Simulated the model in

competitive or ‘overlap’ conditions o 7 vents "
5 novel predictions im e N L L P e
1. Slower RTs in comp Fee ST e
2. Slowing greater for 7 and 10mM0o e s e van towe e o o van o e e o s
3. Longest RTs in none cond with ) 1 :“’/F 1 .. 1 .
a flattening of RTs across cond  : | ™ dN AN
Few errors in invalid and double )
Accuracy should increase with . . of Gt

Double Invalid ~None Tone Valid  Double Invalid None Tone Valid  Double Invalid None  Tone  Vaid

age relative to non-comp

7
g University of East Anglia
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Spencer, Ross-Sheehy, Eschman (2022)

+Tested these predictions with 31 5mo, 27 7mo, and 26 10mo in a within-

subjects design

+Infants completed both non-competitive and competitive conditions with all

cue types (valid, invalid, double, tone, none)

+Each block contained one of every trial type (2 x 5) in random order

+Infants completed up to 80 trials over the 10min experiment

(EA

University of East Anglia
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Results

10 Months

5 novel predictions o “ “ ,//\\'\;
1. Slower RTs in comp v/ i */j—i\‘\* - ‘/i/i\!\( -
2. Slowing greater for 7 and 10mo v | '+ B T N L
3. Longest RTs in none cond v 0 0 0
with a flattening of RTs across cond X . — = = 7 1\:/,‘:_,
4. Few errors in invalid and double v, I I i
5. Accuracy should increase with age & ol Y

relative to non-comp v : 0 0 |

Double Invalid None Tome  Valid  Double Invalid None Tone  Valid

Double Invalid None  Tome  Valid
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Can we improve the model fit?

+Although the DF model accurately predicted 5 novel effects, the fit of the
model to the new data was relatively poor.

+Can we ‘repair’ the fit with modest parameter tuning?

+More critically, can we ‘repair’ the fit while holding the developmental changes
constant? This would provide a strong test of the spatial precision hypothesis.

n
i
|4

& University of East Anglia
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Model modifications

+In previous model, the fixation node was not used; this is critical here as
fixation input varies by condition. Added that in and tuned parameters.

+With addition of fixation node, we now had to re-tune the gaze change node
so these were in balance.

+Now the model showed better switching between the fixation state and shifts
of attention, but the model often had two peaks simultaneously — a fixation
peak and a target peak. Increased global inhibition in the attention field to fix
this, keeping the developmental modulation the same.

+To boost errors, we increased the cue input strength and the noise strength,
again keeping the developmental modulation the same

n
[\ %
” University of East Anglia
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New simulation results

5 Months 7 Months 10 Months

500 500 500
g TN | %ﬁ - A
£
2 a/f::/\ Overall
¥ 300 DA R S, 300 == 300 ve
5 = 8 ‘\§ /,48*“.‘5_‘\ r’/—"-——&‘“a\
3 X - RN
g ) [ 4 So o RN 2015 Model
200 200 8 {200 ~o
Reaction time No competition 26.7
100 100 100 Competition 121.7
Double Invalid None Tone Vaiid  Double Invaid None Tone Vaid  Double Invaiid None Tone  Vaid Proportion correct No competition 0.05
1 1 v@q 1 ::7;&*:’ Competition 0.07
71
LN NN N 2021 Model
g X AN N Reaction time No competition 15.9
3 N/ N/
% 05 05 N 05 ° Competition 48.3
£
g Proportion correct No competition 0.07
a ==@= No-Comp (Infant] .
_._c:“p (,:;m, ) Competition 0.07
—0— No-Comp (Model)
o o | —8—Comp (Model)

Double Invalid Nome  Tone  Valid  Double Invaid None Tome Valid  Double Invalid None  Tome  Valid

+Overall RMSE = 37ms for RTs and 0.07 for accuracy

A
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Conclusions and next steps

+DF model made 5 novel predictions which were generally supported with a
new set of empirical data with infants

+The model achieved a good quantitative fit to the new data set while
maintaining the integrity of the developmental hypothesis

+This provides strong support for this particular account of the development of
spatial attention in infancy

+We are currently testing a new set of novel predictions using this model by
removing the tone cue.
+We are also developing methods to optimize model parameters using

tensorflow instead of doing this work ‘by hand’. This will enable us to more
rigorously test the SPH and should improve the quantitative fit of the model.

i
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]
Conclusions and next steps

+More generally, we note that most accounts of competition effects in the
literature emphasize developmental improvements in a ‘disengaging’

mechanism via inputs from frontal eye fields and DLPFC (e.g., Fan et al., 2005;
Johnson & De Haan, 2015; Johnson et al., 1991).

+Our model shows, however, that developmental changes in competition
effects can instead arise from more general changes in excitation / inhibition

+0One possibility linking these views is that the dynamics captured by the gaze
change node reflects these frontal inputs.

+We recently proposed a method to map neural activity in DF models to fMRI
and fNIRS measures (Buss & Spencer, 2021); such methods could be used to

directly link the DF model to neural measures of the infant brain.

A
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Thanks to our fabulous team!

+Funded by: NIH RO1HD083287 awarded to JPS

€3,

University of East Anglia
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Hands-on: IOWA

Goal: To highlight how COSIVINA can be
used to quantitatively simulate empirical data.

(EA

University of East Anglia
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The future of DF simulation work

+We’re working on a way to use tensorflow to optimize
parameters of DF models

+Currently using our IOWA model as a test case

+This builds on pyCOSIVINA and new software called
‘Dynamic Field Flow’

+https://dynamicfieldtheory.org/software/
+https://github.com/danielsabinasz/DynamicFieldFlow

(LA

University of East Anglia
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https://dynamicfieldtheory.org/software/
https://github.com/danielsabinasz/DynamicFieldFlow
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|ICDL Tutorial - WELCOME!

+09:00-11:00: Primer on DFT

+11:00-11:30: coffee break

+11:30-13:30: Hands-on session 1 (CEDAR)
+13:00-14:00: lunch

+14:00-15:00: Case study 1: VWM
+Hands-on session 2 (COSIVINA)
+15:00-16:00: Case study 2: IOWA

+Hands-on session 3 (simulating empirical data)
+16:00-16:30: coffee break
+16:30-18:00: Case study 3: WOLVES

+Hands-on session 4 (simulating complex architectures / data)

E\

University of East Anglia
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Case Study: WOLVES

A more complex neural architecture that
simulates a lot of data quite well. Highlights
what is possible by ‘scaling up’ from simpler
DF models.

(LA

University of East Anglia
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Word-Object Learning via Visual Exploration in
Space (WOLVES): A Neural Process Model of
Cross-Situational Word Learning

Larissa K. Samuelson

with...
Ajaz A. Bhat
John P. Spencer

DYNAMICS
LABORATORY

[E& Egéﬁrﬁgﬁ;’ f ‘ ﬁ% DEVELOPMENTAL

SCHOOL OF PSYCHOLOGY

Words are the building blocks of language

How do people learn the meanings of words when there
are an infinite number of possible referents?

* One possibility: Track word-object co-occurrences (cross-
situational statistical learning)

“Try some of

the banana”




Words are the building blocks of language

How do people learn the meanings of words when there
are an infinite number of possible referents?

* One possibility: Track word-object co-occurrences (cross-
situational statistical learning)

* But what is the nature of this type of statistical learning?

Two classes of theories
* Hypothesis testing accounts
* Associative learning

!®

Hypothesis Testing

* Encounter a novel word
* Make a single hypothesis about the word-object
mapping

* If later evidence shows that this hypothesis is wrong,
form a new one and proceed to verification...

!®
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Hypothesis Testing
i -
én 4+ oo | OF 4+ o
@k k=
1.0 A B

0.9
0.8
0.7 A
0.6
0.5

T

0.4 1
0.3 4 M J
0.2 4 1 Chance
0.1 1
0.0

Proportion Correct

1 2 3 4 5 Incorrect Correct

Learning Instance Previous Learning Instance %
Trueswell et al. (2013). Cognitive Psychology.

Associative Learning

* When encounter a novel word, form multiple
associations between word and available objects

* Over time, refine these associations based on available
co-occurrences

* Strongest association wins (as correct word usage should
always drive you to one strong association)

%
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Associative Learning

* 2 words x 2 pictures on each training trial; 3x3;4 x4
* Taught same 18 words

* 6 repetitions of each target word-ref pairing — so same
exposure in each condition but different erroneous
mappings (5.09 incorrect mappings in 2x2, 8.78 in 3x3,
12.22 in 4x4)

* 4 AFC test with one word on each test trial (foils from 18)

1.0,

81

61
41
- = — - B — — =& . Chance
2
0

Proportion Correct

(%
. . . 2X2 3X3 4X4
Yu & Smith (2007). Psychological Science. Loarning Conctton

Limitations of existing theories

* Both types of theories have been used to explain the
same data; Yu and Smith (2012) used this to call for
implementation-level theories

* Current theories are not comprehensive (tend to explain
only a subset of data from specific tasks)

* Current theories fail to take time seriously despite
evidence that how processes unfold in real time, over
learning, and over development matter...

Yu & Smith (2012). Psychological Review.

!®
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Cross-Situational Word Learning

‘. ! .‘.

¢ 12-14 month old children can learn 4 words (Smith & Yu, 2008, Yu & Smith,
2011). Older kids and adults can learn up to 9-16 words.

* What is changing over development?

* Individual differences: ‘strong’ vs ‘weak’ learners.
* Moment-by-moment variation in looking matters — strong learners have

fewer, longer fixations.
ﬁ

9
’
Today’s talk focuses on a new theory of CSWL
* WOLVES
* Overview of model & demonstrate that it is a good model.
* Timescale of the task
» Simulations that highlight role of attention and learning processes.
* Timescale of development
* Present the first developmental account of CSWL highlighting the role of
memory processes.
* Model evaluation
* |s the theory comprehensive?
* How does it fare relative to competitor models?
10
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OXFORD SERIES IN DEVELOPMENTAL COONITIVE NEUROSCIENCE

Dynamic Thinking

A PRIMER ON DYNAMIC FIELD THEORY

Copyrightod Material

OXFORD

www.dynamicfieldtheory.org

11
“BOSA”
“REGLI” Task Input & @
Word Form Spatial Working " hdors:;)l ” Spatial
Memory where/how attention
(scene) pathway (retinal)
1 | |
Vocabulary Word-Object Scene representation Working Memory Object
(long-term word- Mappings (what objects are where) & Novelty Features
object associations) Detection (retinal)
=
ventral|(“what”) pathway
Word-Object Learning Visual Exploration in Space
Samuelson, Smith, Perry & Spencer (2011); Johnson, Spencer & Schéner (2009);
Samuelson, Jenkins & Spencer (2013) Perone & Spencer (2013b)
Bhat, Spencer, Samuelson (2021). Psychological Review.
12
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WOLVES

Full model includes ventral pathways for colour and shape
as well as memory traces for all field except visual field,
attention fields and IOR

Figure 4
The Overall Architecture of WOLVES

Misualdisplay ___
i

i
10
100
spatial attention (retina)
10
"

20 o
word-feature memory trace word-feature field scene attention con n visual field
300 301 f

word field

10
0

Note. Scenc WMs and memory traces are not shown for representational simplicity. Arrows represent uni/bidirectional (green: excitatory, red: inhibitory)
connectivity in the model. See text for additional details. WOLVES = word-object leaming via visual exploration in space. See the online article for the color
version of this figure.

13

WOLVES in action

+VES cycles of
novelty detection,
consolidation in
working memory,
and release from
fixation.

+WOL cycles of
associative learning
that is non-linear as
memory traces
evolve

+TDA cycles of top-
down memory
driven attention

“B “ReGLI” "KAKI”

20 100 0
atn 1

Shape

Colour

14
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VES Cycle

Figure 3

Visual Exploration in Space Model in Four Stages of an Autonomous Looking Cycle

A5
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*

nhbtion O eturn (00

il eld
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nt

Note. The top-left panel shows the model detecting novel objects in the scene. The top-right panel shows the model attending to one object. The bottom-left
panel shows the model having consolidated the object in working memory. The bottom-right panel shows model releasing attention to begin a new looking
isual exploration in space. Sec the online article for the color version of this figure.

cycle. VES

15

WOL Cycle

Figure 5

Processing in WOLVES During Smith and Yu's (2008) Cross-Situational Word Learning Task
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o i
TDA Cycle ===

17
Does WOLVES capture — and explain —empirical data?
Will compare WOLVES to Kachergis et al. (2012) as relevant:
an AL model that distributes attention between known and
novel associations; has memory decay to capture association
frequency; one shot computation on each trial.
18



WOLVES explains HT data

WOLVES captures
HT data. Why?

* Timing of task
means WOLVES
typically makes
one look on a
trial (so only
forms one
association)

* What if we

extend the time?

Figure 13

Data from Trueswell et al. and the WOLVES and Kachergis Models

0.9 —§-WOLVES Model
.08 -F- Trueswell et al (2013)
E 07 I Kachergis Model
Sos
§05
s‘ 04
503
802

0.1

1 2 3 4 5
Learning Instance
WOLVES Prediction
B
'
5 [l instance 2
608
o [Minstance 3
6 0.6! [instance 4
§ [Jinstance 5
004
(=8
c O —
£0.2
1]
2

Correct

Incorrect
Previous Leaming Instance

Bhat, Spencer, Samuelson (2021). Psychological Review.

1

Mean proportion correct
o o o o
o a2 > ®

o

Mean proportion correct

[C_IWOLVES Model
I Trueswell et al (2013),
[Kachergis Model
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WOLVES also explains associative learning data

* With more things to look at, WOLVES forms more
incorrect associations with weaker association strengths

Figure 16

Data from Yu and Smith (2007) and the WOLVES and Kachergis Models
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—
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o
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[ Kachergis Model

w
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Bhat, Spencer, Samuelson (2021). Psychological Review.
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Does WOLVES capture — and explain — empirical data?

Yes and successfully generates novel predictions.

21

What about CSWL in early development?

22
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Smith & Yu (2008), Yu & Smith (2011)

[ Smith & Yu 2008 (14 m)
I Yu & Smith 2011
I WOLVES Model

RMSE =0.204

Looking time(seconds)
N

Target Distractor

Bhat, Spencer, Samuelson (2021). Psychological Review.

23

Smith & Yu (2008), Yu & Smith (2011)

S&Y Y&S WOLVES
(2008) (2011)

Test Trials

Mean looking per 8s trial 6.10 5.92 6.26 .26 4.22
Pref. looking ratio .60 .54 .54 .04 6.10
Mean words learned ( of 6) 4.0 3.5 4.0 .35 7.14
Prop. Strong/weak learners NA .67 .74 .07 10.45
Mean looking to target per trial 3.6 3.25 3.36 .19 5.03
Mean looking to distractor per trial 2.5 2.67 2.89 .32 11.92
Training Trials S W

Mean looking per 4s trial 3.04 296 3.07 3.01 .02 71
Mean fixations per trial NA 2.75 3.82 2.89 .22 6.98
Mean fixation duration NA 169 1.21 1.31 .22 14.38

RMSE = Root Mean Squared Error, MAPE = Mean Absolute Percentage Error

Bhat, Spencer, Samuelson (2021). Psychological Review.

24
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The Role of Spatial Attention

0.8

[ Yu & Smith 2011
I WOLVES Model

Task Input

o
g 06 RMSE = 0.055
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Word-Object Learning Visual Exploration in Space
0 4
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. . 1]
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+atn_sa = atn_c 2 * HA{V}.]-'H'I'}
g .
+Sort by strong/weak learners. &3
%5 —4-Strong Learners
+Strong learners have fewer, longer 3 o Wosk Losmars
. . E 25
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fixation count fixation count
+As fixations go up, association +As fixations go up, incorrect
strength goes down. associations go up.

Bhat, Spencer, Samuelson (2021). Psychological Review.
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We created the difference between strong and weak
learners via manipulation of a particular parameter.

This mechanistically relates variations in spatial attention to
learning outcomes and highlights the contribution of real-time
looking dynamics to CSWL.

27

Timescale of Development

* Vlach & Johnson (2013), Vlach & DeBrock (2017, 2019)

Block #1

e

RHHBRHAH
ALK AR

HA. Viach, S.P. Johnson / Cognition 127 (2013) 375-382

Block #2

IHEHIHHE
o

LB B|®
B R

[
L)

+16 mo learn words from
massed but not interleaved
presentation.

+20 mo learn equally with
massed or interleaved.

+Older children learn better
with interleaved
presentation.

28
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Timescale of Development

* Memory: Tau_Decay
defines how fast a

memory trace
deteriorates.

tau_decay = 1000

Ml Viach & Johnson 2013 (16 m)
[ IWOLVES Model
—

Massed Interleaved

* Unified developmental account of CSWL

Task Input

dorsal
Word Form Spatial Working . . Spatial
Memory where/how attention
(scene) pathway (retinal)

object associations)

P

2z 1
Vocabulary Word-Object Scene representation || Working Memory Object
(long term word- Mappings (what objects are where) & Novelty Features

Detection (retinal)

Word-Object Learning

tau_decay = 1500

S 06 (b) [ DwoLves moder

[l Viach & Johnson 2013 (20 m)

ventral (“what”) pathway

Visual Exploration in Space

tau_decay = 3000

o

(c) |CJWOLVES Model

—I

lViach & DeBrock 2019 (47-58 m)

}

1

N

Massed Interleaved

Number of Correct Responses

o

Massed Interleaved
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Timescale of Development

tau_decay = 1000

tau_decay = 1500

tau_decay = 3000

Word-Object Pair
(Presented in Temporal Order)

1 2 3 4 5 6
Word-Object Pair
(Presented In Temporal Order)

Bhat, Spencer, Samuelson (2021). Psychological Review.
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We captured 60 datapoints from 12 months to 5

years with a change to just one parameter.

WOLVES is a powerful developmental model

This is because it has rich real-time and learning dynamics.

g

31

Is WOLVES a comprehensive theory?

Compared WOLVES to 2 competitor models:
Kachergis et al. (2012)

» Stevens et al. (2017) — Pursuit: an HT model that uses an AL

mechanism to weigh different hypotheses. Only adds a
word to the lexicon if the conditional probability of
hypothesis exceeds a threshold.

g

32
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Model Validation; coverage & comparison

* 5 CSWL studies with adults

* Trueswell et al. (2013), Yu & Smith (2007), Yu, Zhong & Fricker (2012),
Yurovsky et al. (2012), Kachergis et al. (2012)

» 7 CSWL studies with infants, toddlers & children

* Smith & Yu (2008), Yu & Smith (2011), Smith & Yu (2013), Vlach & Johnson
(2013), Vlach & DeBrock (2019), Vlach & DeBrock (2017), Suanda etal. (2014)

Data WOLVES Kachergis et al.*
Points

Grand Mean Specific tasks 69 .0 13.51 .0 19.95 2 42.13
Standard Deviations 69 .04 15.79 .07 21.99 .13 25.52
Grand Mean 3 Gen Exp 15 .03 4.05 21 47.42 13 23.91
Grand Mean .10 15.80 unable to capture

+Kachergigs et al. (2012, 2013, 2017); *Stevens et al. (2017) M
Bhat, Spencer, Samuelson (2021). Psychological Review.

33
Is WOLVES a comprehensive theory?
Yes.
Also raises interesting questions about metrics for model
comparison. AIC lowest for Kachergis model, but WOLVES
clearly outperforms this competitor model.
Suggests that the penalty for ‘free’ parameters too steep
and/or that other metrics — like model generalisation — are
more useful. ﬁ%
34
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Conclusions

* WOLVES

* Formal neural-process account of CSLW based on autonomous real-time
visual exploration and non-linear associative learning.

* Captures a large range of data and beats other models in direct comparison.

* Timescale of the task

* Mechanistically related the strength of spatial attention to learning
outcomes.

* Timescale of development

* Presented the first developmental account of CSWL based on changes in
memory strength.

* Future Directions

* Currently exploring how we can use the model to make predictions,
understand relations between tasks, and understand individual differences.

35
Members of Developmental Dynamics Lab, University of East Anglia
Funding: NICHD RO1HD045713 to L.K. Samuelson
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We've highlighted the real timescale.
What about the timescale of learning in the task and the
timescale of development?
38
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Timescale of the task

Smith & Yu (2008) Smith & Yu (2013): Novelty Trap
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Timescale of the task
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Timescale of the task

Proportion looking time
o
(9]

Habituation over training

o
3

~¢-Varying Objects
-¥-Repeated Objects

o
o
:

o
~

associations

Novelty detection &

- .j consglldatlon in
| working memory

e +Top-down attention
driven by growing

0 5 10 15 20 25 30
training trial
41
Two types of learning on timescale of the task:
* learning / habituating to visual features
* learning word + object mappings
42
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77

Hands-on:; WOLVES

Goal: to show how we handle the complexity
of using a large architecture to simulate data
from many different tasks.

University of East Anglia

78

9/11/22

38



9/11/22

]
WOLVES - Code Organisation

+Wolves core
+Sim, GUI, Controls
+Different Sim file for one task (bigger field)
+XSIT_Manual_run.m - BAM file
+Experiments code

+One for each study (lots of code duplication in each file — easy to
copy, paste, edit)

+Analysis code
+One for each study (since people measure different things)

+Support code

+Misc tools (e.g., for computing root mean squared errors)

(EA

University of East Anglia
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r (/"]
WOLVES — How to run

+Show basics

(LA

University of East Anglia
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WOLVES - Running on an HPC

+We run 300 iterations per condition

+Simulated 132 data points over 12 experiments — that’s a
lot of simulation time

+0n an HPC, we can distribute simulations over cores;
conceptually, each simulation is a subject. So with 96
cores, we can run a full batch in about the same amount
of time as 3 single runs.

+How? Job script on HPC with matlab; just need to copy
over COSIVINA and jsonlab.

(EA

University of East Anglia

81

r (/"]
WOLVES - bells and whistles

+Example using reload option for recent project

(LA

University of East Anglia
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The End?

You've earned beer/wine/cider/gin.
Stay in touch via dynamicfieldtheory.org!

(EA

University of East Anglia
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