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Abstract

■ People are typically slower when executing two tasks than
when only performing a single task. These dual-task costs are
initially robust but are reduced with practice. Dux et al.
(2009) explored the neural basis of dual-task costs and learn-
ing using fMRI. Inferior frontal junction (IFJ) showed a larger
hemodynamic response on dual-task trials compared with
single-task trial early in learning. As dual-task costs were elimi-
nated, dual-task hemodynamics in IFJ reduced to single-task
levels. Dux and colleagues concluded that the reduction of
dual-task costs is accomplished through increased efficiency of
information processing in IFJ. We present a dynamic field theory
of response selection that addresses two questions regarding

these results. First, what mechanism leads to the reduction
of dual-task costs and associated changes in hemodynamics?
We show that a simple Hebbian learning mechanism is able to
capture the quantitative details of learning at both the behav-
ioral and neural levels. Second, is efficiency isolated to cognitive
control areas such as IFJ, or is it also evident in sensory motor
areas? To investigate this, we restrict Hebbian learning to dif-
ferent parts of the neural model. None of the restricted learn-
ing models showed the same reductions in dual-task costs as
the unrestricted learning model, suggesting that efficiency is dis-
tributed across cognitive control and sensory motor processing
systems. ■

INTRODUCTION

A central function of cognitive control is to coordinate
ongoing operations associated with distinct tasks. Evi-
dence for these control processes can be observed in
the form of dual-task costs, as indexed by increases in RT
and errors when individuals perform two tasks simul-
taneously. These costs are reduced with practice, and
the magnitude of the reduction typically outpaces the re-
ductions in single-task RTs. In fact, in some instances, the
costs are no longer significant after five to eight 1-hr ses-
sions (Hazeltine, Ruthruff, & Remington, 2006; Schumacher
et al., 2001; Van Selst, Ruthruff, & Johnston, 1999). How
does practicing two tasks together alter neural systems to
reduce costs?

Dux and colleagues (2009) addressed this question
by asking participants to practice a visual–manual (VM)
task (face stimuli paired with button-press responses)
and an auditory–vocal (AV) task (sounds paired with
vocal responses) for 2 weeks. Participants were scanned
with fMRI as dual-task costs were reduced. Participants
performed trials in which one task was presented and
trials in which both tasks were presented simultaneously.
Figure 1 shows the RTs over 2 weeks of practice. Early

in practice, participants were much slower on dual-task
trials; however, by the second week, the difference
between single- and dual-task trials shows a tenfold re-
duction from the first session. Critically, participants
could perform both tasks together as quickly and accu-
rately as they could perform either task alone (see also,
Tombu & Jolicoeur, 2004; Hazeltine, Teague, & Ivry,
2002; Schumacher et al., 2001; Van Selst et al., 1999). Also
of note, the amount of learning was much larger for the
AV task compared with the VM task. The RTs for AV and
VM tasks were nearly equal at the beginning of training
but much smaller for the AV task by the end of training
(see Hazeltine et al., 2006; Schumacher et al., 2001).
In the fMRI data, inferior frontal junction (IFJ) showed a

stronger hemodynamic response on dual-task trials com-
pared with single-task trials. Moreover, this difference in
activation diminished over practice, closely following the
pattern of dual-task costs. The fMRI data were used to
evaluate three classes of models regarding the neural
mechanisms supporting the transition from large initial
dual-task costs to efficient multitasking. First, training
might lead to a shift away from slow, deliberate process-
ing in pFC to fast efficient processing in task-specific path-
ways (Kelly & Garavan, 2005; Petersen, van Mier, Fiez, &
Raichle, 1998). There was, however, no increase in activa-
tion in sensory motor areas over learning to support thisUniversity of Iowa
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account. Second, training might functionally segregate
the neural assemblies in pFC that are coupled to sen-
sory motor areas, thereby creating separate processing
streams for the two tasks (Erickson et al., 2007). But multi-
variate pattern analyses did not reveal any learning-related
changes in neural activation patterns associated with dif-
ferent tasks as predicted by this hypothesis. On the con-
trary, pattern classification on IFJ revealed a decrease in
task decoding over learning.
Such a decrease in task decoding is most consistent with

a third hypothesis, that training improves the efficiency
of information processing in pFC (Jonides, 2004). Use of
higher temporal resolution fMRI data supported this ac-
count. Early in training, the peak amplitude of the BOLD
response in dual-task conditions occurred approximately
500 msec later than in single-task conditions. In contrast,
no differences were observed in the timing and duration
of the BOLD signal at the end of training. Note that Dux
and colleagues acknowledged that improved efficiency

does not necessarily lie solely in pFC but could occur
throughout sensory motor areas.

Given these findings, Dux, Tombu, Harrison, Rogers,
Tong, & Marois (2009) concluded that response selection
includes the funneling of information from sensory motor
areas onto overlapping neural ensembles in pFC. These
overlapping neural ensembles create a bottleneck at a
central stage of response selection, which produces dual-
task costs (Pashler, 1994). Training speeds up information
processing in pFC, which reduces temporal processing.
This proposal is consistent with neurophysiological data
from macaque pFC (Asaad, Rainer, & Miller, 2000), show-
ing a decrease in neural latency within pFC over practice.
Thus, in contrast to alternative accounts of dual-task costs,
practice does not diminish the role of pFC or engage
alternative pathways of stimulus–response translation. In-
stead, practice tunes task-related processes so that they
require less activation and therefore interfere less with
other ongoing processes.

Figure 1. Data reproduced from Dux et al. (2009). (Top) The behavioral RTs over the eight sessions of the study. (Bottom) The hemodynamic
response reported from IFJ, VocMC, and AC.
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Dux et al. (2009) provide a detailed picture of the neural
and behavioral dynamics that underlie dual-task perfor-
mance and changes over learning; however, two central
questions remain. First, what neural mechanism leads to
the reduction in dual-task costs, that is, what mechanism
causes IFJ activation to weaken and become compressed
in time? Second, are changes in efficiency isolated to pFC
or do they extend to sensory motor systems as well? We
investigate these questions using a model-based approach
to fMRI. Our goal is to simulate both RT and hemodynamic
responses with the same neural process model, thereby
capitalizing on the rich constraints that exist by simulta-
neously capturing data at two levels of analysis (White &
Poldrack, 2013; Davis, Love, & Preston, 2012; Ashby &
Waldschmidt, 2008; Deco, Rolls, & Horwitz, 2004). We
can then use the model to test whether efficiency is iso-
lated to cognitive control systems or is pervasive through-
out the simulated neural system. We do this by turning
learning off in different parts of the model and asking
whether the resultant changes in the modelʼs performance
are consistent with both the behavioral and neuroimaging
data. Thus, the model provides a way to bridge between
brain and behavior, yielding a computationally explicit
description of what IFJ does, how neural processing in
IFJ changes with practice, and how these changes impact
RTs and neural activation.

Current computational models of response selection
would seem to provide a natural starting point for a for-
mal account of the neurocognitive dynamics reported by
Dux et al. (2009). Nevertheless, prominent models of
response selection such as ACT-R (Anderson et al., 2004)
and EPIC (Meyer & Kieras, 1997) are production models
that operate on abstract symbols. Consequently, such
models are not well situated to address questions about
the neural mechanisms of learning in dual-task contexts
(note that ACT-R has been used to simulate hemodynamic
responses from fMRI; we discuss this approach further
in the Discussion). We turn, instead, to a dynamic field
theory (DFT) of response selection and motor planning
proposed by Erlhagen and Schöner (2002). These re-
searchers used dynamic neural fields (DNFs) to capture
RTs across diverse response selection tasks. Critically,
the theory has also been tested at the neural level using
multiunit recording and ERPs (McDowell, Jeka, Schoner,
& Hatfield, 2002; Erlhange, Bastian, Jancke, Riehle, &
Schoner, 1999; Jancke et al., 1999).

We build on this prior work, extending the dynamic
field approach to response selection using a DNF archi-
tecture that binds visual or auditory features to spatial
locations and verbal labels (i.e., words; see Samuelson,
Smith, Perry, & Spencer, 2011; Faubel & Schöner, 2008).
We add a cognitive control system that takes its inspira-
tion from recent work examining behavioral organization
in autonomous robots (Sandamirskaya & Schöner, 2010)
and executive function in young children (Buss & Spencer,
in press). Moreover, we propose a linking hypothesis that
maps neural activity in the model to the BOLD response.

This enables us to simulate hemodynamic responses
from real-time neural activity in the model. After fixing
the parameters of the model to fit the behavioral data,
we show how the model with the same parameters
quantitatively captures neural data from Dux et al. (2009).
Finally, we test whether efficiency is isolated to the cog-
nitive control system or pervades the simulated neural
system, giving us insight into the neural mechanisms that
underlie efficiency over learning.

Model Architecture

The first issue to consider regarding a model of response
selection and dual-task performance is how a “task” is
represented. Consider a simple VM task: How do people
perceive a red item on the computer screen and know
to press the right response button? And how do they
do this even when, for instance, the red item is presented
at a left location? To do this, multiple transformations
must be handled. Object locations and features are ini-
tially encoded in a retinocentric frame by neurons in the
dorsal and ventral visual pathways (Mishkin, Ungerleider,
& Macko, 1983). These neural representations must then
be transformed from the frame of the sensors to a more
abstract frame like an allocentric representation (a “central
code”; Hazeltine, 2005). In addition, allocentric representa-
tions must be mapped to the frame of the motor system.
Recent work describes a DNF approach to the mapping
from sensors to a body-centered or allocentric spatial
frame (Lipinski, Schneegans, Sandamirskaya, Spencer, &
Schöner, 2012), including how object features and spatial
positions are “bound” together (Spencer, Schneegans, &
Schoner, in press). Moreover, the transformation from an
allocentric to a motor frame has been handled within the
framework of DFT (see Faubel, Dineva, & Bicho, in press).
We build on this work here but simplify matters by focus-
ing on “bound” neural representations in the spatial frame
of the manual response (which we will refer to as “manual
space” below to indicate, for instance, a “left” and “right”
dimension corresponding to left and right button presses).
The starting point for our model of response selection

comes from initial work by Johnson, Spencer, and Schöner
(2008) using 2-DDNFs. Figure 2 shows a 2-DDNF thatmaps
a stimulus dimension—color—to a response dimension—
the left–right dimension of the manual response. The top
panel in Figure 2A shows the excitatory layer of neurons
in the response selection field; the bottom panel shows
the inhibitory layer of neurons. Each 2-D layer is com-
posed of bimodal neurons with receptive fields for both
color and the location of the manual response. The vertical
axis shows neurons arranged according to receptive fields
for color (e.g., hue). The horizontal dimension in each
panel shows neurons arranged according to their manual
spatial receptive fields with neurons that “prefer” leftward
responses on the left. The activation level within the ex-
citatory and inhibitory layers is given by the inset color
scale with “hotter” colors showing greater activation.
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Importantly, units colored red mean that they are activated
above threshold. When stimulated to above-threshold lev-
els, the excitatory layer passes activation to the inhibitory
layer. Similarly, when the inhibitory layer is activated to
above-threshold levels, broad inhibition is passed back into
the excitatory layer. Together, these layers implement a
form of local excitation/surround inhibition common in
neural systems (Amari, 1977).
The model forms a real-time neural representation by

building a stable “peak” of activation centered over par-
ticular sites in the field (see hot spot of activation in
Figure 2C). This is achieved through the balance of ex-
citation and inhibition within the field. For example, in
Figure 2B, the model is given two inputs to the excitatory
layer. One is a ridge running horizontally specifying a
color value (e.g., red). The other is a ridge running verti-
cally specifying a manual response (e.g., push the right
button). We assume that these ridges reflect input from
cortical fields earlier in the visual pathways that detect
the objectʼs color (for details, see Spencer et al., in press)
and task instructions that specify the nature of the man-
ual response. In Figure 2C, activation has pierced thresh-
old, and neural interactions have been engaged to build
a peak of activation for neural units tuned to the par-
ticular stimulus–response information presented in the
inputs—the model has mapped the red color to a right-
ward response.
Critically, the DNF model has a Hebbian learning pro-

cess to capture changes in neural dynamics over learning.
For example, in the response selection field, this process
accumulates memory traces while a peak of activation is
present, and decays memory traces over a slower time-

scale when no peak is present. To illustrate this, Figure 2D
shows the DNF model after the inputs have been turned
off and the layers have settled back to the neural resting
level. In the top panel, a memory trace is visible at neural
sites corresponding to where the peak was present in
Figure 2C, boosting the resting level of these neural units.
An important consequence of this is shown in Figure 2E–F.
Here, the model is only given the color information that
was present on the previous trial (i.e., there is only a hor-
izontal ridge corresponding to red). Nevertheless, in Fig-
ure 2F, the model recalls that the red object requires a
rightward response—even after only a single learning trial.
This occurs because the Hebbian trace brings the “red-
right” neural units closer to the activation threshold. Thus,
when the red color is presented, the “red-right” units
reach threshold first and win the competition to build a
peak. Although the model builds a memory trace after a
single trial, the further accumulation of Hebbian traces
over practice produces a decrease in peak latency (i.e.,
a decreases in RT) as activation at particular stimulus–
response combinations is brought closer to threshold.

The 2-D field in Figure 2 can quickly learn stimulus–
response mappings. Critically, this model can generalize
to multiple feature dimensions (e.g., visual, auditory,
tactile) using the space of the manual response as a binding
dimension (Spencer et al., in press; Johnson et al., 2008).
This expanded architecture is shown in the left panels of
Figure 3, which show two 2-D response selection fields—
a shape-manual space field (Figure 3A) and a color-manual
space field (Figure 3B). These fields pass activation back
and forth along the shared manual space dimension. The
peak on the right side of the field in Figure 3A—which

Figure 2. An example of a 2-D system highlighting the fast and flexible association created by directly binding information along different
dimensions and the Hebbian learning process operating within DNFs. The excitatory response selection field is shown on top and the inhibitory
field is shown on the bottom. Excitatory connections are shown with green arrows and inhibitory connections are shown with red arrows.
(A) The fields are at resting level (the mottling is because of spatially correlated noise). (B) The fields just after inputs corresponding to a
specific color and spatial are turned on. This reflects the onset of a colored item at a rightward location. (C) The model after a peak has been
created in the response selection field. (D) The fields after the inputs have been turned off, and the fields have returned to resting level.
The influence of Hebbian learning can now be seen by the localized boost at the location of the peak. (E) The model is given only a color input.
(F) The model has formed a peak of activation binding the color to the associated spatial location.
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maps, for instance, a star shape to a rightward response—
passes input into the right side of the field in Figure 3B—
which maps a red color to a rightward response. Thus, the
pattern of peaks in Figure 3A and B capture the “bound”
representation that the red star goes on the right (see,
e.g., Buss & Spencer, in press).

The left panels in Figure 3 show a model that can
build fast associations between multiple stimulus dimen-
sions and a manual spatial response. Critically, however,
stimulus–response associations can extend beyond man-
ual responses into the vocal modality. Panels C and D
of Figure 3 show a second part of the DNF architecture
taken from work by Samuelson et al. (2011) and Faubel
and Schöner (2008). This part of the neural architec-
ture consists of two 2-D neural fields, whose peaks are
bound to a second binding dimension—vocal labels or
words. Sites within each 2-D field have bimodal receptive
fields. They are receptive to input from label neurons—
population representations of a spoken word—and
featural input from, for instance, early visual areas. A
Hebbian process enables the model to learn feature–
label associations quickly and influence performance on
subsequent trials. Finally, because the fields in Figure 3A
and C share a common feature dimension—the shape
dimension—they pass activation back and forth along
this dimension. Similarly, the fields in Figure 3B and D
share a common feature dimension—color—and pass
activation back and forth along this dimension. This is
reflected in the horizontal ridges of activation in the
shape-label field and the color-label field. In this way,
the model can recall the vocal labels associated with pre-
sented object features. For instance, in Figure 3C, the
model is recalling that the object is a “star,” whereas in
Figure 3D, it is recalling that the object is “red.” Note
that neural interactions across the label dimension are

winner-takes-all with sharp boundaries between one label
and the next (i.e., local excitation spreads minimally from
one unit to the next). Such interactions thus capture the
discrete nature of word representations common in con-
nectionist models of early word learning (Damasio, 1989;
Gross, Rocha-Miranda, & Bender, 1972).
To extend the DNF model used by Samuelson et al.

(2011) to a dual-task setting, we need to address how to
selectively attend to particular stimulus–response dimen-
sions, for instance, mapping a color dimension to a manual
response and a tone dimension to a vocal response. Fig-
ure 4 shows a generalized version of the response selec-
tion model with four response selection fields—a VM
field, an auditory–manual field, a visual–vocal field, and
an AV field—along with a type of cognitive control system
we will refer to as the dimensional attention network.
The dimensional attention network depicted in the cen-

ter of Figure 4 consists of dimensional attention units
inspired by recent work on executive function and dimen-
sional attention with children (Buss & Spencer, in press).
These units boost baseline levels of activation within the
response selection fields, enabling the selection of task
goals (respond to the visual stimulus with a manual re-
sponse) and flexibly switching between alternative goals
(switch to a vocal response based on an auditory stimulus).
For instance, when an input is presented to the VM field
in the top left of Figure 4, this field passes activation to
its associated attention unit (Att). As this unit is activated,
it projects a global boost of activation back onto the VM
field. This facilitates peak formation in the VM field, en-
abling the system to selectively attend to particular set of
stimulus–response bindings. The attention units are self-
excitatory (see green arrows in Figure 4) and mutually in-
hibitory (see red arrows in Figure 4) consistent with lateral
inhibitory interactions in frontal cortex (Fuster, 1989).

Figure 4. Architecture of dual-task model. Green lines show excitatory
connections, and red lines show inhibitory connections. The black lines
denote the gating function of the CoS neurons. For the simulations
of the data reported by Dux and colleagues, only the VM and AV
components are used.

Figure 3. Architecture of word-binding model from Samuelson et al.
(2011). (A and B) Two dynamic neural fields that are tuned to a shape
or color dimension but share a manual space dimension. (C and D) Two
dynamic neural fields that are also tuned to shape or color but share
a vocal label dimension.
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This excitatory and inhibitory coupling leads to winner-
takes-all interactions among these units—once a unit
achieves above-threshold activation and goes into the
“on” state (analogous to a peak in a neural field; see
Schoner & Schutte, in press), the other units are
suppressed.
The attention units in Figure 4 bias the system to selec-

tively build responses based on particular response selec-
tion goals, but to respond to multiple stimulus–response
bindings, a mechanism is also needed to decide when
one goal has been achieved and another goal can be
attended. Here, we borrow a concept from autonomous
robotics called the “condition of satisfaction” (CoS;
Sandamirskaya & Schöner, 2010; Searle, 1980). Condi-
tions of satisfaction are the perceptual or motor states
that indicate when a goal has been met. For instance,
if the goal is to push a button when a specific color is
presented, then the neural system must monitor motor
output to sense when the finger has done its job. For
simplicity, we assume that building a peak within one
of the response selection fields in Figure 4 is sufficient
to trigger the offset of a goal (see Bausenhart, Rolke,
Hackley, & Ulrich, 2006). To detect the presence of a
peak in a response selection field, we add CoS units to
the model. Each CoS unit is activated by peaks within
an associated 2-D field. When a CoS unit is activated to
above-threshold levels, it gates input from the 2-D field
to the associated attention unit. This prevents input to
the attention unit, allowing the unit to return to the neu-
ral resting level, and releases the current focus of atten-
tion. Once the active attention unit goes into the resting
state, the other attention units are released from inhibi-
tion and another attention unit can become activated.
This is consistent with data showing that satisfying the
conditions of one task enables the processing of the
other task early in practice (Bausenhart et al., 2006).
The rise of activation of the CoS units are slower than

the attention units (see Appendix), so the attention units
become engaged when activation is initially building in
the response selection fields, whereas the CoS units only
become engaged once this activation has robustly gone
above threshold. Hebbian learning processes are engaged
for the attention and CoS units. Similar to Hebbian learn-
ing within the response selection fields, Hebbian learning
within these units serves to boost their resting level so
that they are closer to threshold as they are repeatedly
activated within a task.
In summary, the model initiates response selection by

binding stimuli and responses within 2-D fields tuned to
specific combinations of stimulus dimensions (e.g., visual
or auditory) and response dimensions (e.g., manual
space, vocal labels). Learning is accomplished via a fast
and flexible Hebbian mechanism operating within the
response selection fields, which serves to drive the forma-
tion of stimulus–response associations and to strengthen
these associations from trial to trial. The response selection
fields are modulated by an attentional network. Attention

units receive activation from the response selection fields
when a stimulus is presented. Once activated, the atten-
tion units boost the resting level of the associated response
selection field, facilitating the formation of a peak and
leading to the generation of a response. Finally, CoS neu-
rons release attention from a task goal once the response
has been activated. Together, the attention and CoS units
enable the system to selectively attend to one task goal,
achieve that goal (i.e., form a peak), and then attend to
any remaining goals.

Dynamics of Response Selection

In this section, we show simulations of the DNF model of
response selection, highlighting how the model captures
the neural processes that underlie dual-task performance.
Recall that Dux et al. (2009) paired a VM task (pressing
buttons in response to different images of faces) with an
AV task (vocalizing a response to different tones). Thus,
for the simulations below, we only use the two response
selection fields (and associated attention and CoS units)
needed to accomplish these two tasks.

The top panel of Figure 5 shows the activation of the
attention and CoS units during the course of a dual-task
trial early in training. Panels A–E show activation in the
response selection fields at key points during the trial
(see time labels in milliseconds) to highlight the modelʼs
neural dynamics. The horizontal axis in the response selec-
tion fields shows the response dimension (manual or vocal
responses), whereas the vertical axis shows the stimulus
dimension (visual or auditory features). The activation
level is given by the color inset.

Figure 5A shows the instructed stimulus–response map-
pings within VM and AV fields. These are subthreshold
“bumps” of activation that are priming particular responses
for the relevant stimuli of the task (e.g., faces matched
to two different button presses and sounds mapped to
vocal responses). At the start of the trial (after 80 msec;
note the rise in activation of the Att nodes at this time
point), a stimulus is presented as a ridge of activation
at a particular stimulus location extending across all pos-
sible responses. Figure 5B shows ridges of activation form-
ing 480 msec after a face and a sound are presented but
before responses are selected. Because both tasks were
simultaneously presented, the attention units both rise
toward threshold (0 activation—see dashed line in the
top panel), but the increase in activation is slow because
of their mutual inhibitory coupling. In Figure 5C, the VM
field has formed a peak of activation, selecting a label
for the face stimulus. At this point in the top panel, the
VM-CoS unit becomes activated, turning off input to the
VM-attention unit and driving this attention unit below
threshold. This frees the system to robustly engage the
AV task, which is reflected by the boost in activation of
the AV-attention unit around 700 msec. That is, the model
is able to fully engage the AV task without inhibitory com-
petition from the VM task. In Figure 5D, the model has
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now formed a peak within the AV field. At this point in
time, the AV-CoS unit becomes activated and turns off
input to the AV-attention unit. Finally, in Figure 5E the
model has returned to its resting state, and the influence
of Hebbian learning from the previous trials can be seen
(note the brighter color of the just-selected stimulus–
response associations in Figure 5E relative to Figure 5A).
Note that the same sequence of events play out for
single-task trials, except there is no competition in ac-
tivation for the attention units because they are activated
individually based on the task for a given block.

SIMULATING DUX ET AL. (2009)

The model provides quantitative simulations of the behav-
ioral and hemodynamic data presented by Dux et al. (2009).

We first describe the simulation of the behavioral task.
After setting the model parameters to fit the behavioral
data, we adapt a method for generating hemodynamic re-
sponses from integrate-and-fire networks (see Deco et al.,
2004) to the DNF model. This allows us to simulate BOLD
responses from real-time neural activity of the model. Next,
we evaluate whether different components of the model
effectively capture hemodynamic data from Dux et al.
Finally, we manipulate where learning takes place in the
DNF model to determine the loci of learning that are
critical for driving the behavioral practice effects.

Methods

Simulations were conducted in Matlab 7.5.0 (Mathworks,
Inc., Natick, MA) on a PC with an Intel i7 3.33 GHz quad-
core processor (the Matlab code is available from the

Figure 5. The dual-task model in action on a dual-task trial. Top: The activation of the attention and CoS neuron over the course of the trial.
(A) The VM and AV response selection fields before the onset of the stimulus. Here, the stimulus–response mappings are shown for each task.
(B) The presentation of a stimulus to each response selection field. At the corresponding point in the time course of activation of the attentional
network, the attentional neurons for each task has become robustly activated. At this point, they are competing with one another through their
mutual inhibitory coupling. (C) A peak has formed in the VM response selection field. At the corresponding time point, the VM-CoS neuron becomes
activated and begins to turn off the interaction between the AV-attention neuron and AV response selection field. (D) A peak has been built corresponding
to the selection of a response within the AV response selection field. At the corresponding time point, the AV-CoS neuron becomes activated and
begins to turn off the interaction between the AV-attention neuron and AV response selection field. (E) The response selection systems have returned
to resting level, and the influence of Hebbian learning can be seen by the increased activation of the stimulus–response mappings for the previously
activated SR pairs.
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authors on request). The model was given the same
training regimen as described by Dux et al. (2009). This
includes eight sessions in which dual-task and single-task
trials for VM and AV tasks were randomly intermixed.
Each session consisted of 150 trials. This is fewer trials than
participants were given in the study by Dux et al. (2009).
Given the time-intensive nature of the simulations, we
chose to simplify the sessions by including fewer trials. This
is reasonable given the nature of the Hebbian learning
mechanism we are using, essentially, the number of trials
and the strength of learning scale linearly. To reduce the
number of trials then, we increased the learning rate (by
decreasing the tau parameter; see τw_build, τd_build, τΩ_build,
τw_decay, τd_decay, τΩ_decay parameters in Appendix).
To begin the simulation work, the excitatory and inhi-

bitory parameters for the fields and attention/CoS nodes
were tuned to fit the initial session of single-task data
from Dux et al. These parameters were then tested in
dual- and single-task conditions over learning. Data were
averaged over a batch 10 simulations (corresponding to
10 individual participants). A total of 12,000 trials were
simulated. RTs from the model were determined by the
number of time steps from the onset of a stimulus until a
peak of activation formed within the excitatory layer of
a response selection field (i.e., activation > 0). For the
purpose of mapping time steps in the model to real time,
1 time step was set equal to 1.6 msec. In previous work
(Spencer, Barich, Goldberg, & Perone, 2012), this map-
ping was set to 1 time step equals 0.56 msec. We selected
a mapping here to ensure that we sample time densely
enough to accurately capture RTs. Critically, the same
value was used to map RTs and the hemodynamic re-
sponse from the model. As noted previously, there are
inherent differences in RTs associated with VM and AV
tasks (Hazeltine et al., 2006; Schumacher et al., 2001).
To capture this, we modified the relaxation time param-
eter of the VM field to be four times slower than the
AV field (reflected by the tau parameters in the model
equations; see τe and τi parameter in Appendix). This
might reflect observed differences in speed of process-
ing with auditory versus visual cortex (Cohen, Horowitz,
& Wolfe, 2009). To compensate for this timescale dif-
ference, the resting level of the excitatory layer was 9%
closer to threshold and the stimuli were 12.5% stronger
for the VM field compared with the AV field. All other

parameters—including all parameters that affect learning
over trials—were the same (see Table 3).

Results

As shown in Figure 6, the model reproduces three impor-
tant features of the behavioral data: initial dual-task costs,
reduction of these costs over practice, and differential
learning rates for the different modality pairings. The
dual-task costs emerge from the shared inhibition among
the attention nodes. This led to a slower rise in activation
of the attention units on dual-task trials, producing a
slower peak-build time in the response selection fields.
The reduction of these costs over practice results from
Hebbian learning operating both within the response
selection fields as well as within the attention system.

Figure 7 shows the activation of the attention units
during single and dual-task trials during Session 1 and
Session 8. As can be seen, Hebbian learning serves to
compress the competition of the attention units in time.
That is, early in practice, the VM task is completed first,
with a substantial lag before the AV task is initiated. Late
in practice, by contrast, the activation peak in the AV-
attention unit is quickly followed by a rise in activation of
the VM-attention unit. In this situation, dual-task costs are
greatly reduced. Note that the compression in time on
dual-task trials is also accompanied by a switch in the task
ordering similar to what is seen in the behavioral data.
That is, early in practice, the VM task is completed before
the AV task on dual-task trials. By Session 3, however, the
AV task is completed more quickly than the VM task. The
early advantage for the VM task stems from the higher
resting level and stronger inputs. As Hebbian learning ac-
cumulates, however, the faster timescale of the AV task
allows the AV-attention unit to outpace the VM-attention
unit. This leads to an emergent switch in the task ordering
on dual-task trials.

In this way, the model captures an account of dual-task
performance, mostly consistent with the view offered by
Dux et al. (2009), that costs are eliminated as both re-
sponse selection processes and control processes become
more efficient through Hebbian learning. This qualita-
tive change in performance occurs without a shift in the
underlying response selection mechanisms; no compo-
nents were eliminated, and no task operations ceased to

Figure 6. Behavioral fits of the
model and the data from Dux
et al. (2009).
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interfere with other operations (i.e., became automatic).
The reduced dual-task costs are consistent with a latent
bottleneck account (e.g., Ruthruff, Johnston, Van Selst,
Whitsell, & Remington, 2003), in which some task opera-
tions are performed serially but, because they occur at
different times, there is no observable increase in RT.

The model also captures the different learning rates
for VM and AV tasks. These differences in performance
are not a direct result of differences in the strength of
Hebbian memories. As shown in Figure 8, there is a
stronger build-up of memory traces in the VM response
selection system and on the VM-attention and CoS units.
Nevertheless, VM RTs change less over practice (see Fig-
ure 6), because these stronger memory traces are em-
bedded within relatively slow neural dynamics (see τe and
τi parameters in Appendix). Thus, learning is not just a
function of memory strength but also of the neural
dynamics within which these memories are situated. Inter-
estingly, the slower timescale of the VM response selection
system makes peaks of activation persist for a longer dura-
tion late in practice when Hebbian traces are strong (see
Figure 7). We return to this point in the Discussion.

FROM REAL-TIME SIMULATIONS OF NEURAL
ACTIVITY TO SIMULATED HEMODYNAMICS

A primary goal of this work is to simulate both behavior
and the associated hemodynamic responses over training.
Thus, we now consider how the dynamics of the model
can be mapped onto the target neural measure—the
BOLD response measured with fMRI. Simulating the real-
time dynamics of both neural and behavioral dynamics
has been a challenging endeavor (Ashby & Waldschmidt,
2008). To achieve this using DFT, we adapt an approach
based on biophysical work exploring the neural basis of
the BOLD signal. Logothetis, Pauls, Augath, Trinath, and
Oeltermann (2001) recorded single- and multiunit data

along with local field potentials (LFP) and the BOLD sig-
nal in visual cortex of macaques while they were shown
checkerboard displays. An LFP is a measure of dendritic
activity over a localized population of neurons, accounting
for changes in both inhibitory and excitatory ion channels.
This provides a measure of the input to and local process-
ing within a region of cortex. Logothetis et al. (2001) re-
ported that the LFP was most strongly correlated with
the BOLD response. Furthermore, by convolving the LFP
with an impulse response function (specifying the time
course of the slow blood flow response to neural activity),
the authors were able to reproduce the BOLD signal. This
suggests that the LFP is a strong contributor to the neural
signal driving the BOLD response.
Deco et al. (2004) expanded upon this work using an

integrate-and-fire network to simulate the hemodynamics
underlying visual working memory. They estimated an
LFP by summing the absolute value of the total synaptic
current flow into the cells, including excitatory compo-
nents (implemented through NMDA and AMPA receptors)

Figure 7. Attention unit
activation on single-task
(solid lines) and dual-task
(dashed lines) trials during
Session 1 (top) and
Session 8 (bottom).

Figure 8. Accumulation of Hebbian memories on different
components of the model over the eight sessions of training.
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and inhibitory components (GABA). According to the
model, these components are the primary contributors
to the rate of change in membrane potential, excluding
the stability term and factors that influence the resting
potential. By convolving this estimated LFP with an impulse
response function, the authors were able to simulate the
BOLD response in a visual working memory task.
Here we adapt the approach of Deco et al. (2004) for

use with DNFs. In particular, we created a DFT-LFP mea-
sure by summing the absolute value of all terms contribut-
ing to the rate of change in activation within a DNF (i.e.,
within a component of the model), excluding the stability
term and the two factors that impact the neuronal resting
level—a resting level parameter (h) and the Hebbian
memory traces, which modulate the baseline resting levels
over learning. The included terms reflect excitatory and in-
hibitory interactions within each component of the model,
excitation between components of the model, and noise
(see Appendix for equations). Note that we excluded the
stimulus input in the LFP computation because we applied
inputs directly to the model rather than implementing
these in a more neurally realistic manner (e.g., by using
simulated input fields as in Spencer et al., in press).
In the simulations below, we compare the hemody-

namics of the AV field to activation in auditory and vocal-
motor cortex (VocMC). Moreover, because the attention
units are critically involved in the coordination of dual-task
performance, we probe whether the hemodynamics gen-
erated from these units correspond to IFJ activation.

Methods

A DFT-LFP was computed for each of the components of
the model at each time step: the LFP from the AV response
selection system (combining the excitatory and inhibitory
layers) and the LFP from the attention units (summed

across both the AV and VM attention units). Note that
two additional LFPs were computed—one for the VM
response selection system and one for the CoS units—
but these hemodynamics are not discussed in detail below
for ease of comparison with the set of data reported by
Dux et al. (2009).

After recording the DFT-LFP components at each time
step, an intertrial interval was artificially added between
each trial by inserting a vector of zeroʼs equivalent to
a 1-min duration. This yielded a robust estimate of the
hemodynamic response on each trial, allowing the hemo-
dynamic response to fully return to baseline. Each LFP
time course was then convolved with a sum of Guassians
function (Deco & Rolls, 2005; Deco et al., 2004; see Ap-
pendix). The resulting data were then analyzed by ini-
tializing the hemodynamic response at the start of each
trial to a 0 baseline value and normalizing the simulated
hemodynamics by computing the mean hemodynamic
response for each session and dividing by the maximum
value across sessions. This was done separately for each
component of the model yielding a localized normalization
similar to what is done in fMRI. The average hemodynamic
response across trial types (single AV, single VM, and dual
task) was then calculated for each session.

Results

Dux et al. (2009) focused their discussion on the change
in activation in the IFJ with practice (reproduced in Fig-
ure 9A); thus, we begin by comparing IFJ activation to
the hemodynamics generated from the modelʼs attention
system. The attention units showed a strong hemodynamic
response on dual-task trials relative to single-task trials
early in learning. Over practice, this difference reduced
to single-task levels (Figure 9B). This bears a close corre-
spondence to the data reported from IFJ, suggesting that

Figure 9. Hemodynamic data from Dux et al. (2009) (A) and the hemodynamic fit from the attentional neurons of the model (B; note that the
red and blue lines overlap in this panel).
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the functional role of the attention units and how these
units change with practice provide a comprehensive expla-
nation for both the changes in behavior and the changes
in neural activation in IFJ. That is, not only does the model
account for the behavioral changes that result from dual-
task practice, but it also provides a quantitative explana-
tion for the changes in activation that accompany the
improvements in performance.

The top two rows of Figure 10 show data from Dux
et al. (2009) for the VocMC and the auditory cortex
(AC). These cortical areas showed robust hemodynamic
responses when the AV task was engaged, but no differ-
ences across single- and dual-task contexts and no
changes in the hemodynamics over learning. As can be

seen in the bottom row of Figure 10, the hemodynamics
from the AV response selection system paralleled these
patterns. Thus, the task-specific components of the
model showed a similar pattern of activation to the task-
specific cortical areas reported by Dux et al. (2009). Note
that a similar pattern of hemodynamics was observed with
the VM task fields.
The first row of Table 1 shows the RMSE value for the

simulated behavioral and hemodynamic data. Columns 1
and 2 show the RMSE for the single-task RTs. Over learn-
ing, the model diverged from the behavioral data by an
average of 15.15 and 18.03 msec for the single-AV and
single-VM tasks, respectively. As shown in Column 3,
the model diverged from the dual-task behavioral data

Figure 10. (A) Data from vocal–motor cortex and auditory cortex reported by Dux et al. (2009). (B) Hemodynamic data from task-specific
response selection systems from the DNF model.

Table 1. RMSE for the Behavioral and Hemodynamic Fits of the DFT Model

Single-AV Single-VM Dual IFJ-fMRI VocMC-fMRI

Full Hebbian learning 15.15 18.03 15.74 0.144 0.144

Hebbian learning on Att units 24.71* 39.02* 43.27* 0.147* 0.167*

Hebbian learning in RS layers 150.44* 48.30* 161.31* 0.149* 0.141*

Stronger Hebbian learning on Att units 15.65 27.67* 28.70* 0.148* 0.138*

Column 1 shows the RMSE for single-task RTs over learning in the AV task. Column 2 shows the RMSE across single-task RTs over learning in the VM
task. Column 3 shows the RMSE across dual-task RTs over learning in both the AV and VM tasks. Column 4 shows the RMSE between the Att nodes
and IFJ HRF time course over the three phases of learning in both single- and dual-task conditions. Column 5 shows the RMSE between the AV fields
and VocMC HRF time course over the three phases of learning in both single- and dual-task conditions.

*p < .05 compared with the Full Hebbian learning model.
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by an average of 15.74 msec (averaged across both the AV
and VM tasks over learning). Finally, Columns 4 and 5
show the RMSE of the simulated hemodynamics from
IFJ and VocMC. These values were computed across
the entire time course of the hemodynamic response
and averaged across all trial types. On average, the model
diverged from the hemodynamic data by 0.144% signal
change for both the IFJ and VocMC data.
The DNF model effectively captures both behavioral

and neural data from the study by Dux et al. (2009),
including changes in neural efficiency over learning. This
demonstrates that a Hebbian mechanism can underlie
behavioral and neural changes in dual-task performance.
The simulations that generated the data in Figures 6–10
included Hebbian learning in the attentional units, the
CoS units, and the response selection fields (see Figure 8).
But are all of these Hebbian changes critical to increases
in “efficiency” over practice?
We probed this by examining which aspects of learning

were most essential for producing reductions in dual-task
costs. In particular, we ran additional batches of simula-
tions that isolated learning to either the attentional net-
work (i.e., learning is turned off within the VM and AV
fields) or to the response selection fields (i.e., learning is
turned off within the attentional and CoS network). Rows
2 and 3 of Table 1 shows the RMSE for 10 iterations each
of these altered models. RMSE values for these versions of
the model were compared with the full Hebbian model
using a t test. RMSE values that were significantly different
from the full model shown in the top row are marked with
an asterisk. When learning was isolated to the attention
units (Row 2), the RMSE was significantly larger for all
fits. These fits were poorer, however, when learning was
isolated to the response selection system (see Row 3).
Interestingly, the fit for the VocMC hemodynamics was
significantly better in this situation. Although there are
significant deviations in performance when learning is iso-
lated to either component of the model, the pattern of
results shown in Table 1 suggest that learning on the at-
tentional network more strongly influences the AV task,
but learning within the stimulus response systems more
strongly influences the VM task. Specifically, learning only
on the attention network produced a better RMSE for the
single-AV task than the single-VM task as well as better fits
of the VocMC hemodynamics. Learning only in the RS
layers, however, produced a better RMSE for the single-
VM task than for the single-AV task.
One challenge in interpreting the simulation results in

Table 1 is that the DNFmodel is a fully recurrent dynamical
system; thus, a change in one component of the system
is likely to have a system-wide impact. Thus, in a final
simulation, we examined whether we could improve the
fits of the model when learning was isolated to the at-
tention and CoS units. In particular, we resimulated the
model using 10% stronger Hebbian memories on these
units. Can stronger learning within the attentional net-
work compensate for a lack of learning within the RS

layers? As can be seen in the bottom row of Table 1, this
manipulation significantly improved the fit of the single-AV
RTs relative to the full model but still poorly fit the single-
VM task and dual-task RTs as well as the IFJ hemodynamics.
Thus, learning is necessary within both the attention net-
work and the RS layers, suggesting that changes in dual-task
“efficiency” over practice are distributed across both cogni-
tive control and sensory motor processing areas.

DISCUSSION

Using basic neural principles, we were able to simulate the
quantitative details of a study of dual-task performance
over practice. The critical phenomena addressed by the
model were behavioral and neural. Behaviorally, par-
ticipants reduced both single-task and dual-task RTs with
practice, and the reductions were much greater for the
dual-task trials. Neurally, the IFJ showed a pattern of activa-
tion that closely followed dual-task costs. Early in training,
activation on dual-task trials was significantly larger than
single-task trials. By the end of training, there was no dif-
ference between single- and dual-task activation.

We used the DNF model to probe two questions regard-
ing the increased efficiency at the behavioral and neural lev-
els. The first issue was the mechanism underlying changes
in efficiency. Although the data reported by Dux and col-
leagues (2009) characterized the neural dynamics accom-
panying learning, the processes giving rise to such changes
remained ambiguous. The DNF model implemented a
simple form of Hebbian learning that provides a computa-
tionally explicit account of changes in RT. This same model
also generated quantitative estimates of the changes in neu-
ral activation resulting from these learning mechanisms.
Thus, the DNF model demonstrates that a Hebbian process
is sufficient to create changes in dual-task efficiency.

The second issue we addressed was the locus of effi-
ciency and whether it extends beyond IFJ. We explored
this by restricting learning to the attention network or to
the response selection fields and comparing changes in
the pattern of RTs and hemodynamics over practice. Re-
sults revealed that efficiency through Hebbian learning
was important both at the level of the attentional units
and the level of the response selection system, suggesting
that the locus of efficiency is distributed across the cortical
areas involved in these tasks. This conclusion is broadly
consistent with the wealth of data demonstrating that plas-
ticity is ubiquitous throughout the brain; learning-related
changes in neural firing have been observed in nearly every
region where they have been sought.

The DNF account of dual-task performance examined
here shares many similarities to the explanation offered
by Dux et al. (2009). The attention system resembles the
overlapping neural ensembles within IFJ posited by Dux
et al. (2009) with laterally inhibitory connections between
the ensembles (i.e., the attention units). The implementa-
tion of these neural ensembles in a neural process model
specifies the functional role they play in dual-tasking and
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response selection. The attention network operated by
boosting activation for different task representations. A
processing “bottleneck” emerged from the inhibitory
competition between these attention units. The “effi-
ciency” displayed at the end of training was brought about
through Hebbian learning, which boosted the baseline ac-
tivation levels, compressing activation in time, and allow-
ing the system to execute both tasks in rapid succession.

An important component of the implementation of
dual-task costs in the model is the reciprocal inhibition
between attention units. In a dual-task context, these in-
hibitory connections are detrimental to performance and
ultimately must be overcome through Hebbian processes.
These inhibitory connections, however, are important for
implementing task switching processes (Buss & Spencer,
in press). By activating a newly relevant task goal, inhibitory
interactions can suppress other previously active or com-
peting task goals (see, e.g., Sandamirskaya & Schöner,
2010). This suggests that dual-task training, while benefit-
ing performance in a multitasking context, may have con-
sequences for other aspects of behavior.

Although the model presented here is the first neural
process model of response selection to integrate behav-
ioral and neural data, other models have pursued this goal
using alternative means. For example, Anderson and col-
leagues extended the ACT-R framework—a general model
of human performance—to demonstrate how symbolic
systems can interface with the subsymbolic distributed
processing thought to underlie brain function ( Jilk,
Lebiere, OʼReilly, & Anderson, 2008). Consistent with this
extended framework, these researchers used ACT-R to
capture and predict fMRI data in different types of tasks
(Anderson, Qin, Jung, & Carter, 2007). The linking hy-
pothesis used in this case assumed that the duration of
activation of modules in ACT-R determined the magnitude
of the hemodynamic response.

This work suggests an alternative way to link computa-
tional models to fMRI data. Thus, we examined whether
the linking hypothesis proposed by Anderson et al. might
be an effective way to map the DNF model to fMRI data

from Dux et al. (2009). We computed the duration of time
on each trial that the attention units showed activation >
0 over practice. Figure 11A shows how a key neural mea-
sure used in the present report—the DFT-LFP from the
attention units—changed over the course of training across
single and dual-task conditions. Figure 11B shows the aver-
age duration of above threshold activation for the atten-
tion units. There is a drastic departure from the pattern
of change over learning reported by Dux et al. Both the
AV and VM attention neurons are activated for a longer
duration on single-task trials compared with dual-task
trials. One might assume that dual-task trials are harder
and require a longer period of activation. Instead, dura-
tions are shorter on dual-task trials because of the active
inhibitory coupling between the attention units, which
deactivates the units more quickly. In addition, it is
clear in Figure 11B that the changes in durations over
learning provide a poor match to the data reported by
Dux et al.—some durations increase over learning (VM
task) whereas others decrease (AV task). Thus, in the con-
text of our neural process model, the linking hypothesis
proposed by Anderson et al. does not provide an effective
way to map brain and behavior.
ACT-R has been used to simulate dual-task data sim-

ilar to the effects examined here (Anderson, Taatgen, & By-
rne, 2005). In these simulations, Anderson and colleagues
suggest that the elimination of dual-task costs results from
a “latent bottleneck.” That is, the two tasks are performed
with sufficient lag that they do not try to access the bottle-
neck at the same time (Ruthruff et al., 2003). The present
model speaks to this idea. Specifically, as can be seen in
Figure 7, the activation of the AV Att unit is suppressed
before the VM task is completed in a single-task situation.
Thus, the AV Att unit is deactivated before any strong in-
terference can be observed for the VM task. It is an open
question whether themodel possesses a strict latent bottle-
neck; although there is no direct competition for computa-
tional resources as in a standard bottleneck model (e.g.,
Pashler, 1994), the attentional units are strongly competi-
tive and, therefore, place constraints on serial processing

Figure 11. DFT-LFP (A) and average duration of activation of attention neurons (B) for different trial types over learning.
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of the tasks. This type of constraint is akin to constraints in
EPIC, a general computational model of human perfor-
mance (Meyer & Kieras, 1997), which holds that dual-task
costs are reduced as the strategic delays are eliminated
with practice. As in DFT, EPIC models reductions in dual-
task costs without qualitative changes in the way responses
are selected as practice unfolds. However, unlike EPIC, the
DNF model specifies quantitative changes in the selection
processes that lead to reduced costs.
Despite these various points of conceptual agreement

that exist between DFT and current theories of response
selection, there are important points of divergence as
well. Most critically, DFT specifies a neutrally grounded
account that clarifies the real-time processes of response
selection as well as candidate neural mechanisms of
learning. Moreover, we specify a direct way to link neural
processes in the model to functional neuroimaging. These
differences may offer ways to test competing predictions
of models of response selection in future work at both
the behavioral and neural levels. Our exploration of the
ACT-R linking hypothesis with DFT is suggestive on this
front—it is not the case that the ACT-R method of fitting
fMRI data works with our model. Thus, tangible dif-
ferences between models and linking hypotheses lead
to differences in model outcomes that could be tested
experimentally in future work.
A second broad framework that addresses how re-

sponse selection is carried out is the LEABRA model
developed by OʼReilly and colleagues (Hazy, Frank, &
OʼReilly, 2007; OʼReilly, Noelle, Braver, & Cohen, 2002).
LEABRA takes a neural computational perspective using
connectionist-style modeling and addresses control pro-
cesses using activation loops between pFC and BG. This
framework, too, has been used to integrate brain and
behavior, capturing the qualitative aspects of behavioral
performance and neural activation in the Simon task
(Herd, Banich, & OʼReilly, 2006). More generally, this ap-
proach has focused on understanding mechanisms of
cortical learning and the role of the basal ganglia in motor
planning, execution, and inhibition.
One key point of contrast between our DNF model

and LEABRA concerns how stimuli and responses are
associated. Recall that we used 2-D neural fields that bind
stimulus and response information along particular di-
mensions. These 2-D fields enable Hebbian learning to
form fast and flexible task representations on-the-fly. By
contrast, learning specific stimulus–response associations
can takemany trials within connectionist approaches. More
critically, dual-task conditions present a binding problem
in connectionist-style models because multiple stimuli
are simultaneously presented for different tasks. Con-
sequently, the network cannot select which stimulus to
bind to which response and forms erroneous associa-
tions. Future work will be needed to contrast models like
LEABRA and DFT on this front. For example, one conse-
quence of binding stimuli and responses along continuous
metric dimensions is that these factors should have inter-

active effects. That is, the DNF model predicts that the
similarity of the stimuli and responses of a task should
produce an interaction of factors as information is inte-
grated within 2-D fields rather than additive effects.

The work presented here brings us closer to a general
theory of response selection and provides a novel frame-
work for explaining perception–action translation. DFT
integrates behavioral and neural dynamics within the same
model, moving interpretations of neuroimaging data
beyond simply accounting for “where” cognitive processes
can be localized toward a cognitively functional account of
neural dynamics. Our report represents one of the first in-
stances in which behavioral and hemodynamic data have
been simulated in quantitative detail using the samemodel
and parameters (see Jilk et al., 2008). Critically, these model-
ing efforts effectively addressed two central questions from
the dual-task literature, elucidating mechanisms underlying
changes in dual-task efficiency over learning.

APPENDIX

In this section, we describe the equations used in the
DNF simulations. Table 2 shows the notation used in

Table 2. Notation

Letter Meaning

a amplitude/strength parameter

x,y dimension (x = stimulus, y = response)

w activation variable for WM layer

v activation variable for inhibitory layer

d activation variable for attention units

Ω activation variable for CoS units

m activation variable for memory/Hebbian layer

s stimulus input (Guassian for fields)

c connection weight function

g gating function

t time

τ timescale parameter

h resting level parameter

n number of nodes/generic node

η number of units along a dimension

r random contribution

ξ noise variable

e excitatory

i inhibitory

j Index 1

k Index 2
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the equations below. The basic formulation of a 2-D
neural system tuned, for instance, to visual and manual
dimensions is given by Equation 1 (excitatory layer)
and Equation 2 (inhibitory layer). The rate of change in
activation in an excitatory cortical field, w, evolves over
time, t, at each location in the field along a response di-
mension, x, and a stimulus dimension, y. The first part of
Equations 1 and 2 reflect stabilization terms (−w(x, y, t)
and −v(x, y, t)) and the neural resting levels (he and
hi). The stabilization terms serve to maintain activation
around an attractor state. That is, the rate of change
goes in the opposite direction of perturbations away
from an attractor. The resting level sets the baseline ac-
tivation below the activation threshold. The excitatory
layer has a further term specifying a stimulus input that
is function of the location in the field and the time point
in the simulation (s(x, y, t)). A final contribution is from
spatially correlated noise (∫ cr(x − x0, y − y0)ξ(x0, y0, t)
dx0dy0). Note that the tau parameters (τe and τi) reflects
the timescale at which activation approaches an attractor
state.

τe _wðx; y; tÞ ¼ −wðx; y; tÞ þ he þ sðx; y; tÞ
þ
ZZ

cwwðx−x0; y−y0Þgðwðx0; y0; tÞÞdx0dy0

−
ZZ

cwvðx−x0; y−y0Þgðvðx0; y0; tÞÞdx0dy0

þ ð1−gðΩðtÞÞÞawdgðdðtÞÞ
þ
ZZ

cwrðx−x0; y−y0Þξðx0; y0; tÞdx0dy0

þ
ZZ

cwmðx−x0; y−y0Þmðx0; y0; tÞ ð1Þ

τi _vðx; y; tÞ ¼ −vðx; y; tÞ þ hi

þ
ZZ

cvwðx−x0; y−y0Þgðwðx0; y0; tÞÞdx0dy0

þ
ZZ

cvrðx−x0; y−y0Þξðx0; y0; tÞdx0dy0 ð2Þ

The remainder of the equation specifies the excitatory
and inhibitory neural interactions. Neural interactions
within a field are determined by the convolution of a
sigmoidal threshold function (Equation 3) and Guassian
interaction kernel (Equation 4). The beta parameter (β)
in Equation 3 specifies the steepness of the transition
between weak and strong neural interactions around
the activation threshold of 0. The c parameter in Equa-
tion 4 specifies the strength of the Gaussian interaction
kernel, whereas the sigma parameter (σ) specifies the
width of the Guassian interaction kernel. Self-excitation
in Equation 1 then is given by the sigmoided output of
the w field (g(w(x0, y0, t))) with an excitatory interaction
kernel (cvw(x − x0, y − y0)). Lateral inhibition in this
excitatory layer is defined as the sigmoided output form
a separate inhibitory field (v; g(v(x0, y0, t))) given by

Equation 2. This sigmoided output is convolved with an
inhibitory interaction kernel (cwv(x − x0, y − y0)).

gðwÞ ¼ 1
1þ exp½−βðwðtÞ−w0Þ� ð3Þ

cðx− x0Þ ¼ aexp −
ðx− x0Þ2

2σ2

" #
ð4Þ

Thus, the excitatory layer has three neural interaction
terms for self-excitation, lateral-inhibition, and noise. The
contribution of Hebbian memories (∫∫ cwm(x − x0, y −
y0)m(x0, y0, t)) is given by two separate equations reflecting
the rise and decay of memories (see Equations 5.1–5.3).
Equation 5.1 defines the build-up of activation when a
peak of activation is present in an associated excitatory
layer (i.e., w(x, y, t) > 0). The decay of Hebbian memories
is driven by Equation 5.3 (i.e., w(x, y, t) < 0). The inhibi-
tory layer has terms for the input from the excitatory layer
along with noise. The same equations govern activation
with the AV system, except for the parameter differences
in Table 3.

mðx; y; tÞ ¼ _mwbuildðx; y; tÞ þ _mwdecayðx; y; tÞ ð5:1Þ

τwbuild _mwbuildðx; y; tÞ ¼ ½−mwðx; y; tÞ þ gðwðx; y; tÞÞ�
� gðwðx; y; tÞÞ

ð5:2Þ

τwdecay _mwdecayðx; y; tÞ ¼ −mwðx; y; tÞ
�½1− gðwðx; y; tÞÞ�

ð5:3Þ

The dynamics for the Att units is given by Equation 6.
This takes the form of discrete neural unit, so activation
now only is a function of time. The equation takes the
same general form as the equations for the fields pre-
sented above. This node is self-excitatory and receives in-
put from the 2-D VM field (ad ∫∫ w(x0, y0, t)dx0dy0). This
input from the 2-D VM field is gated by the sigmoided
output of the VM CoS unit (Ω; given by Equation 7), such
that the Att node receives input from the VM field when
the CoS node is subthreshold but receives no input from
the VM field when the CoS node is activated above
threshold. The Att unit also receives inhibitory input
from the Att unit associated with the AV task. The CoS
node is also self-excitatory and receives an input from
the VM response selection field. The Att and CoS units
both receive inputs from their associated 2-D response
selection field; however, a critical difference in their dy-
namics is produced by different beta parameters for the
sigmoided output of the 2-D response selection field. For
example, the VM field is thresholded with a beta value of
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5 for the input to the CoS node (meaning that there is a
more abrupt transition between weak and strong neural
output around the threshold value of 0, engaging the CoS
unit only after a robust peak of activation has formed).
The VM field is thresholded with a beta value of 0.5, how-
ever, for the input to the Att node (meaning weak activa-
tion levels as inputs build-up within the VM field will
produce stronger output to the Att unit, engaging the
Att before the formation of a peak of activation).

τn _djðtÞ ¼ −djðtÞ þ hn þ sdðtÞ
þ adgðdjðtÞÞ−adi

Xn
k≠j

gðdkðtÞÞ

þ ð1− gðΩðtÞÞÞadw

ZZ
gðwðx0; y0; tÞÞdx0dy0

þ admmdðtÞ þ anrξðtÞ ð6Þ

τn _ΩjðtÞ ¼ −ΩjðtÞ þ hn þ aΩgðΩjðtÞÞ
þ aΩw

ZZ
gðwðx0; y0; tÞÞdx0dy0 þ aΩmmΩðtÞ

þ anrξðtÞ ð7Þ

Finally, Equations 8.1–8.3 define the Hebbian learning
process that operates on the Att and CoS units. The equa-
tions for the Att and CoS units are the same; thus, only the
equations for the Att unit are shown. As with Hebbian
learning within the 2-D response selection fields, the rise
and decay of Hebbian memories is accounted for with two
different equations (Equations 8.2 and 8.3, respectively).

_mdðtÞ ¼ _mdbuildðtÞ− _mddecayðtÞ ð8:1Þ

τdbuild _mdbuildðtÞ ¼ ½−mdðtÞ þ gðdjðtÞÞ� � gðdjðtÞÞ ð8:2Þ

τddecaymddecayðtÞ ¼ mdðtÞ � ½1− gðdjðtÞÞ� ð8:3Þ

There were two types of inputs given to the model.
One set of inputs was a simplification of the instruction
procedure. That is, instead of instructing the model
through the accumulation of Hebbian memories, we ap-
plied localized Gaussian inputs (see Figure 5A). These
had a strength of 0.35 and a width along both dimensions
of 4 units. The second type of input was a ridge input
that reflected the presentation of a stimulus on a given
trial. This had a strength of 5.5 for the AV field but was
scaled to be 15% stronger for the VM field. The attention
nodes were also given an input with a strength of 3.5 when
a stimulus was presented to the associated response
selection field.

The impulse response function (h(t)) used to simulate
hemodynamics from the model is defined by Equation 9

Table 3. Parameters of the Model Used to Simulate the Data from Dux
et al. (2009)

Parameter Value

σvw 2.00

avw 0.90

βvw 5

σwv 15.00

awv 1.80

cwv_global 0.15

βwv 5

σww 3.00

aww 2.00

βww 5

ade 2.3

βde 5

adi 2.85

βdi 0.5

aΩe 1.5

βΩe 5

adw 0.0372

βdw 0.5

awd 3.68

βwd 0.5

aΩW 0.75

βΩW 5

ar 0.02

hi −8

τi 20, 5

he −8.19, −9

τe 160, 40

hd −10

τd 80

hΩ −10

τΩ 80

σwm 6.0

awm 0.13

τw_build 3.0 × 103

τw_decay 8.0 × 105

adm 3.45

τd_build 3.5 × 104

τd_decay 1.5 × 109

aΩm 1.0

τΩ_build 3.5 × 104

τΩ_decay 1.5 × 109

n 2

η 101

The only values that differed between the AV and VM fields were τv, hw, and τw. For
parameters that are different between the AV and VM systems, the value for the VM field
is given first, followed by the AV field.
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(Deco & Rolls, 2005; n1 = 7.000, t1 = 0.875, n2 = 12.250,
t2 = 1.000, a2 = 1.6 × 10−12).

hðtÞ ¼ c1tt1e
− t

t1 −a2c2tn2e−
t
t2 ; ci ¼ max tnie−

t
ti

� �
ð9Þ

Finally, Equations 10 and 11 define the DFT-LFP from
different components of the model.

LFPIFJðtÞ ¼
Xn
j¼1

absðadgðdjðtÞÞÞ

þ abs adi

Xn
k≠j

gðdkðtÞÞ
 !

þ abs ð1− gðΩjðtÞÞÞadw

ZZ
gðwðx0; y0; tÞÞdx0dy0

� �
þ absðanrξðtÞÞ

ð10Þ

LFPAV ðtÞ ¼
XX

abs

 ZZ
cwwðx−x0; y−y0Þgðwðx0; y0; tÞÞdx0dy0

!
=η2

þ
XX

abs

 ZZ
cwvðx−x0; y−y0Þgðvðx0; y0; tÞÞdx0dy0

!
=η2

þð1−gðΩjÞÞawAttgðdjðtÞÞ

þ
XX

abs

 ZZ
cvwðx−x0; y−y0Þgðwðx0; y0; tÞÞdx0dy0

!
=η2

þ
XX

abs

 ZZ
cwrðx−x0; y−y0Þξðx; y; tÞdx0dy0

!
=η2

þ
XX

abs

 ZZ
cvrðx−x0; y−y0Þξðx; y; tÞdx0dy0

!
=η2

ð11Þ
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