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Survey

s Session 1: Foundations

m Neural dynamics/neural fields [Daniel Sabinasz]

m Introduction to Cedar/Instabilities in DFT [Raul Grieben]

a Session 2: Dimensions/Binding [Raul
Grieben]

m Cedar architecture: visual search



Survey

s Session 3: Grounded Cognition [Daniel
Sabinasz]

m Cedar architecture: relational grounding

= Session 4: Sequence generation

m Sequence generation/Embedding DFT [Raul Grieben]

m Cedar architecture sequence generation [Daniel
Sabinasz]



= Sequence generation: problem and example
= Condition of satisfaction

= Who to activate next?

s Demonstration of sequence generation

a Embedding DFT in the literature



Sequential processes

= How may neural attractors lead to the
sequences of processing steps/actions that
characterize higher cognition and behavior?



Sequential processes

= the neural attractor = intention predicts its condition
of satisfaction

s matching input detected => detection instability

= inhibits intention... => transition

. N / \

aAcondition
of satisfaction

dimension x
>
prediction

dimension y

_____________

[Sandamirskaya ... 2010-2016]



Sequence of physical acts

a task: search for objects of a given color in a given order

e . target 2 .

m green

m 1 blue

target |
obstacles

a stably couple to
objects once they
are detected

s ignore objects
when their turn target 3
has not yet come

(distractors) vehicle




Implementation as an imitation task

s learn a serially ordered a perform the serially
sequence from a single ordered sequence with
demonstration new timing
yellow-red-green-blue-red yellow-red-green-blue-red

¥ -

[Sandamirskaya, Schoner: Neural Networks 23:1163 (2010)]



red a distractor red a target

[Sandamirskaya, Schoner: Neural Networks 23:1163 (2010)]



Condition of
Satisfaction

(CoS)

[Sandamirskaya, Schoner: Neural
Networks 23:1163 (2010)]
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Visual input

Camera image

a 2D visual input

m horizontal space

m color

“intensity” of 2D input
from color histogram at
each horizontal location
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Visual search

s intention=color cue provides ridge input into space-color
field

s when that ridge overlaps with 2D space-color input =>
peak formed

Color-space DF

search cue




ordinal stack

intentional state
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transition > Ordinal nodes
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Mathematical mechanism

A intention / A®

dimension x of satisfaction
b

prediction

dimension y
>

T

» neural state

L L % motor-world-sensor state ---



Sequence of instabilities

the CoS is pre-shaped by the intention field, but is in

the sub-threshold state

until a matching input pushes the CoS field through

the detection instability

the CoS field inhibits the intention field that goes
through a reverse detection instability

the removal of input from the intention to the CoS
field induce a reverse detection instability

both fields are sub-threshold

imension




CoS and efference copy

s one could think of the “prediction” implied in
the CoS as being a form of efference copy

s that does act inhibitorily...

s but it does so on the (motor)intention, not on
the perception of the outcome that is
predicted!

» neural state

--------+ motor-world-sensor state ---'



s match-detection => CoS

Generalization

s mis-match (or change) detection => CoD (condition
of dissatisfaction)

[Grieben, Schoner, CogSci 2021]
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How is the next state selected?

a once the current state has been deactivated...

s 3 notions (“Henson Burgess 1997)

:; ______________

s 1 gradient-based selection p p

s 2 chaining L AN
U

a 3 positional representation

Ordinal nodes

f\ion field

5‘ YN ¥ \ |




Gradient-based

a afield/set of nodes is released from inhibition
once the current state is deactivated...

s a hew peak/node wins the selective
competition based on inputs...

m e.g.salience map for visual search

m e.g.overlapping input from multiple fields..

s return to previous states avoided by inhibition
of return

-------------------------------------------------

4 A/ / A/

5 E :  inhibition of return
scene spatlal selection 5 ...................................................

[Grieben, Schoner, CogSci 2021]




Gradient-based

s this is used in many of the DFT architectures
m visual search
m relational grounding

m mental mapping

....................... v
' v 0
[Grieben, Schdner, CogSci 2021] 5 : : hib; f)‘(
: scene spatial selectlon ....... l nlltlonoreturn .......




Chaining

s for fixed sequences...

m e.g.reach-grasp

m fixed order of mental operations... e.g. ground reference object
first, then target object

a less flexible (e.g.. when going through the same
state with different futures)

a could be thought to emerge with practice/habit
from the positional system

P.
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Positional representation

a a neural representation of ordinal position is organized

to be sequentially activated.

s the contents at each ordinal position is determined by
neural projections from each ordinal node...
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[Sandamirskaya, Schoner: Neural Networks 23:1163 (2010)]
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Positional representation

essentially chaining with flexible contents

good for fast learning of sequences...
m e.g.imitation

m a Hippocampus function?

but: must have potential synaptic links to
many representations...

=> such ordinal systems must exist for sub-
representations... embodiment effects...



Serial order demonstrated/enacted

[TekUlve et al.,
Frontiers in
Neurorobotics
(2019)]
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Time course of
attention
selection and
building of scene
memory
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FIGURE 4 | Time course of building a scene memory.
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Why do neural dynamic
architectures work?

a 1) Why is the dynamic regime (“selection”,
“working memory”, “detection”, “match” etc.)
of a component field invariant as we couple it

into a larger architecture?

s 2) Why is the content (the feature space over
which fields are defined, the content of a
concept node) of a component field invariant as
we couple it into a larger architecture?



1) Why is the dynamic regime invariant?

a stability => structural stability = invariance of
solutions under change of the dynamics

s =>dynamic modularity: fields retain their
dynamic regime as activation elsewhere varies

activation field activation field
A \ A
ﬂ : input
4 input P
dimension dimension

" | sub-threshold

 self-excited self-excited




2) Why is the content invariant?

s coupling among fields must preserve the fields’
dimensions: “non-synesthesia principle”

s informational modularity (encapsulation)

'\;ﬁ ol o k. = heural dynamic
. architectures are
r'_rl . . .
— specific = constrained

| \ by evolution and
\[J | A 4 development

color mismatch

ittention fields spatial scene | repr. field (space)



Embodiment hypothesis

s cognition does not necessarily activate motor systems

s cognition inherits the dynamic properties of sensory-
motor cognition:

m continuous state, continuous time, stability ..

m continuous/intermittent link to the sensory and motor surfaces is
possible -

s =>cognition is generated
in the specific embodied
cognitive architectures
that emerged from
evolution/development



DFT vs connectionism/NN

s DFT models
are neural
network
models in the
most general
sense...

a sharing level of
description
(activation,
sigmoid)

(Theoretical)
Logogen/
Pandemonium

Simple Neural
Networks
(logical operations)
2-Layer Feedforward
Ic\i';::or:l(:)(ir?;gfgewtl:gn % Constraint Satisfaction
( I Networks (e.g., IA, IAC — Jets &
l Sharks, Necker Cube, Stereopsis)

(Hand-wired)

Competitive Networks
unsupervised learning
(e.g., Kohonen, Grossberg

Boltzmann
3-Layer Feedforward ﬁ Machine
Networks (trained with (simulated

backpropagation algorithm) Hopfield Nets annealing
metaphor)

(binary)

!

Recurrent Networks
Cascade Rule

(e.g., Stroop model) / i \

Jordan Elman
Networks

Cascade correlation
(Fahlman & Lebiere)

Attractor
Networks

[Thomas, McClelland, 2008]



DFT makes more specific
commitments

stability of functionally significant states

populations as the level of description at
which regularities of behavior/thinking can be
understood

instabilities as key elements of neural
processing .. sequences

=> all autonomous cognition is based on
localist representations

=> all cognitive representations are low-
dimensional



DFT as a neural theory for higher cognition

a 1) all concepts are grounded

a 2) attentional selection,
coordinate transformation,
sequential processing ... "
emulate “function calls” “right”

“above”
“below”

totheleftof = f (target, reference)

Reference

f
000
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Object-centered

s 3) the sequences of processing steps emerge from dynamic

4 intention m

dlmen5|on x of satisfaction /\ dimension y

= => DFT=neurosymbolics A\ e ~N
|

]
------------- ¥ motor-world-sensor state ---

» neural state




