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Survey

Discussion [GS]

two forms of modularity 

DFT vs. cognitive architectures

DFT vs. connectionism 

DFT and neurosymbolics

DFT vs.  VSA 

DFT and embodiment, dynamical systems thinking

DFT vs mathematical psychology 

Why model in DFT? How model in DFT? 

Laws of the mind 



Neuro-physics 

Neural dynamics

Recurrent neural dynamics

Neural fields: dynamics 

Roadmap Foundations 1: Neural dynamics



Neuro-physics
membrane potential, 

, evolves as a 
dynamical system
u(t)

[from: Tresilian, 2012]

τ ·u(t) = − u(t) + h + input(t)
 time scaleτ ≈ 10 ms

only when membrane potential exceeds a threshold 
is activation transmitted to downstream neurons

action
potential



Neural dynamics

spiking mechanism replaced by a threshold function

that captures the effective transmission of spikes in 
populations

1

0

σ(u)

u



Neural dynamics

replace spiking mechanism by sigmoid: 

low levels of activation: not transmitted to downstream systems

high levels of activation: transmitted to downstream systems

abstracting from biophysical details ~ population 
level membrane potential 
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Connectionism

employs the same abstraction: 
“neurons” sum input activations and 
pass them through a sigmoidal 
threshold function 

output = g (∑ (inputs))

inputs

output 

1

0

g(u)

u



Neural dynamics
dynamical system: the present determines the future

fixed point = constant solution = stationary state

stable fixed point = attractor: nearby solutions 
converge to the fixed point

du/dt = f(u)

u

resting
level

vector-field
τ ·u(t) = − u(t) + h

τ ·ufp = − ufp + h = 0
⇒ ufp = h resting level



inputs add to the rate of 
change of activation

positive: excitatory

negative: inhibitory

u

h+s

input, s

resting
level, h 

du/dt

time, t

u(t)

resting level, h

g(u(t))

input, sτ ·u(t) = − u(t) + h + s(t)

input shifts the attractor

activation tracks this shift

 transmitted to down-
stream neurons
σ(u(t))

Neural dynamics

(  and  used interchangeably)σ(u) g(u)



so far, the dynamics just 
does low-pass filtering… 
(smoothing the time 
course)

that would change as a 
step-function in a forward 
neural network

when does neural 
dynamics make a real 
difference? 

Neural dynamics
u

h+s

input, s

resting
level, h 

du/dt

time, t

u(t)

resting level, h

g(u(t))

input, s

output = g (∑ (inputs))



Neuronal dynamics with excitatory 
recurrent connection = interaction

in recurrent networks, time is 
conceptually necessary as some 
inputs are outputs from the same 
neuron/population …

“past outputs are new input”

=> dynamics

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

s(t)

c σ(u(t))

σ(u(t))



u 

du/dt 

resting
level, h

nonlinear dynamics!

Neuronal dynamics 
with self-excitation

du/dt

u

resting level

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))



u 

du/dt 

resting
level, h

input strength

varying input

=> number of 
attractors changes

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

Neuronal dynamics 
with self-excitation



at intermediate input 
levels: bistable 
dynamics

“on” vs “off” state

u

du/dt

time, t

u(t)<0

u(t)>0

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

Neuronal dynamics 
with self-excitation

“off” “on”



increasing input 
strength => 
detection instability

u 

du/dt 

resting
level, h

input strength

u 

du/dt 

 

fixed point

unstable

stable
stimulus
strength

stimulus
strength

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

Neuronal dynamics 
with self-excitation



decreasing input 
strength => reverse 
detection instability

u 

du/dt 

resting
level, h

input strength

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

Neuronal dynamics 
with self-excitation u 

du/dt 

 

fixed point 

unstable

stable 

stimulus
strength

stimulus
strength



the detection and its  
reverse create events at 
discrete times from 
time-continuous changes

time, t

u(t)

detection 
instability

reverse
detection 
instability

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

Neuronal dynamics 
with self-excitation



dynamicfieldtheory.org

=> simulation

http://dynamicfieldtheory.org


Neuronal dynamics with inhibitory 
recurrent connectivity

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))

coupling/interaction



=> competition/selection 

two possible attractor stats

 and 

 and 

u2 > 0 u1 < 0

u2 < 0 u1 > 0

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))

Neuronal dynamics with inhibitory 
recurrent connectivity



to visualize, assume that 
 has been activated by 

input to a positive level

=> it inhibits 

u2

u1

u1

h+s1

du1/dt

u2

h+s2

inhibition
from u2

du2/dt

h+s1-c12

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))

Neuronal dynamics with inhibitory 
recurrent connectivity



symmetry: same logic if  was initially 
activated it would prevent  from 
activating

=> bistable selection of either  or  

u1
u2

u1 u2

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))

Neuronal dynamics with inhibitory 
recurrent connectivity



asymmetric case: e.g. more 
input to  (better “match”) => 
faster increase =>  selected

=> input advantage => time 
advantage => competitive 
advantage

u2
u2 u1

h+s1

du1/dt

u2

h+s2

inhibition
from u2

du2/dt

h+s1-c12

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))

Neuronal dynamics with inhibitory 
recurrent connectivity



dynamicfieldtheory.org

=> simulation

http://dynamicfieldtheory.org


Neural dynamic nodes

discrete activation variables: nodes

that are self-excitatory: “on” vs 
“off” states, detection instability 
regulates switch between these 

that are coupled inhibitorily: 
“on” states compete… 
selection

0-dimensional



Neural dynamics of fields

embed activation variables in 
continuous dimensions, x

detection: self-excitation => 
location excitation

selection: => global inhibition 

interaction organized along a 
dimension, x…

(meaning of dimension: next 
lecture)

dimension

global inhibition

input

activation field

local excitation

self-
excitation

mutual
inhibition

s(x)
u(x)

u1 u2

x

s1
s2

self-
excitation



Neural dynamics of fields

σ(u)

u

x�x�

�(x�x�)

τ ·u(x, t) = − u(x, t) + h + s(x, t) + ∫ dx′￼ w(x − x′￼) σ(u(x′￼))

w(x − x′￼) = wexce
− (x − x′￼)2

2σ2 − winh

dimension

global inhibition

input

activation field

local excitation

kernel: local excitatory interaction/
global inhibitory interaction 



dynamicfieldtheory.org

=> simulation

http://dynamicfieldtheory.org


Attractors and their instabilities

input driven solution (sub-
threshold) 

self-stabilized solution 
(peak, supra-threshold)

selection / selection 
instability 

working memory / 
memory instability 

boost-driven detection 
instability

detection 
instability

reverse
detection 
instability

Noise is critical
near instabilities



Dynamic regimes

which attractors and instabilities arise as 
input patterns are varied

examples

“perceptual regime”: mono-stable sub-threshold => 
bistable sub-threshold/peak => mono-table peak..

“working memory regime” bistable sub-threshold/peak 
=> mono-table peak.. without mono-stable sub-threshold

single (“selective”) vs. multi-peak regime 



Embedding space may  
vary in dimensionality

2-dimensional1-dimensional

1, 2, 3, 4… dimensions: peaks/
blobs as attractors 

3-dimensional
Visual search and working memory: theory and experiment 15

size
orientation

color

x

y

Scene

Fig. 6 The feature extraction pathway in illustrated in the blown up portion on the left and bottom. The pathway is

positioned within the complete neural dynamic architecture. See text for an explanation.

From the scene space/feature maps input is generated into a single central salience map, represented

by the scene spatial salience field. That input is obtained by integrating along each feature dimension

within each space-feature field (conspicuity) and summing across the three conspicuity representations.

3.2 Attentional selection

Visual cognition always entails attentional selection decisions. Figure 7 highlights the sub-system of the

neural dynamic architecture that generates such selection decisions.

Central is the scene spatial selection field that represents the localization of spatial attention. It re-

ceives multi-peak input from the salience field and singles out the most salient location by being in the

dynamic regime of selection, in which a single supra-threshold peak may be stable at any moment in

time. The selection decision is biased toward previously unattended positions by additional input from

the inhibition of return memory trace, which reflects the recent history of activation of the scene spatial

selection field. The self-sustained spatial working memory field reinforces that e↵ect, but its representa-

Case Study: Spatial Remapping during Saccades
transformation fieldA
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Neural dynamics

Recurrent neural dynamics

Neural fields: dynamics 

Roadmap Foundations 1: Neural dynamics


