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Reaching movements 
directed at objects

exemplary model case for 
movement generation

as it entails “everything”… 
perception, cognition, action, 
even goal orientation

all these component 
processes interact… the key 
challenge of understanding 
movement generation

the generation of goal-directed movement in general (Kim et al., 2021; Rossetti
et al., 1998). This is why reaching movements make for a good model system
for the study of these processes.

scene 
perception / 

attention

target selection / 
movement initiation

timing

degrees of
freedom

control

Figure 1: The processes (left) and coordinate frames (right) entailed in reaching
for an object.

Figure 1 illustrates the processes that the neural theory outlined in this
Chapter will touch upon. (1) Before reaching for an object, we take in the
visual scene, and visually attend to objects that may be relevant to our action.
Not every object that is visually attended will be the correct target matching
our movement intention, however. (2) We must select the correct target and
decide to initiate the movement. Movements go into the right direction from
the very start, so the selection and initiation processes must take into account
the initial position of the hand. (3) The actual movement entails generating
time courses of neural signals that are suitable to bringing about the movement
within a desired movement time. (4) These signals must be distributed to the
many muscles that actuate the limb, so that the degrees of freedom of the arm
are appropriately recruited for the motor act. (5) Finally, muscle forces must
be generated and controlled to physically move the limb, stabilize it against any
mechanical perturbation, and bring it to a new postural position at the target
location.

These processes are typically embedded in overarching behaviors. For in-
stance, the reaching movement may be part of a sequence of motor acts (Her-
bort & Butz, 2009) aimed at a behavioral goal, say preparing a cup of co↵ee.
Each individual motor act may be driven by a desired outcome (Kunde et al.,
2004) that is critical to the next motor act. While the style of neural theory we
will outline is beginning to address such issues (Aerdker et al., 2022; Tekülve
et al., 2019), we will not review those ideas here.

Figure 1 makes visible challenges to the scientific study of reaching which
entails processes from perception through cognition to motor control. These
processes are tightly integrated. They are, for instance, coordinated so that each
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Levels of movement generation

1 planning

movement preparation… 

2 timing:

generate time courses of 
neural activation

3 control

activate muscles to generate 
the forces that bring about 
the movement 
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the generation of goal-directed movement in general (Kim et al., 2021; Rossetti
et al., 1998). This is why reaching movements make for a good model system
for the study of these processes.
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the initial position of the hand. (3) The actual movement entails generating
time courses of neural signals that are suitable to bringing about the movement
within a desired movement time. (4) These signals must be distributed to the
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are appropriately recruited for the motor act. (5) Finally, muscle forces must
be generated and controlled to physically move the limb, stabilize it against any
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location.

These processes are typically embedded in overarching behaviors. For in-
stance, the reaching movement may be part of a sequence of motor acts (Her-
bort & Butz, 2009) aimed at a behavioral goal, say preparing a cup of co↵ee.
Each individual motor act may be driven by a desired outcome (Kunde et al.,
2004) that is critical to the next motor act. While the style of neural theory we
will outline is beginning to address such issues (Aerdker et al., 2022; Tekülve
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DFT model of target selection

[Erlhagen, Schöner, 2002]
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Movement parameters from targets
based on initial position of the hand

Movement preparation
movement is prepared before it is initiated: 

movement parameters like movement direction, amplitude, time, or 
force level can be predicted from the first 10 to 20 ms of 
movement  

movement parameters are about the hand’s 
movement in space 

[Erlhagen, Schöner, Psych Rev 2002]
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Online updating

movement parameters can be 
updated online any time… 

with a time delay of about 100ms target jumps

trajectory is
adjusted
online

[Goodale, Prablanc, et al… ]



Online updating: mouse tracking 

observe the time course of selection … 

blue, yellow and orientations 10, 55, 100, 145. An example for the scene in shown in
figure 1, where the target is the yellow item rotated 100° to the right and the yellow
item rotated 145° is the distractor item.

2.2.1 Experiment 2

The search scene showed 22 colored bars with a width of 14.5 and a height of 4.5mm.
The area where the stimuli were presented was positioned at the center of the screen
and measured 237.5 148.5mm. In the first two conditions, each scene consisted of
one target item, one distractor item that shared one feature with the target (color in
condition 1 and orientation in condition 2) and 20 filler items that shared no feature
with the target item. In the third condition a filler item, that shared no features with the
target was placed at the position were the distractor was in the other two conditions.
The features color possible colors: red, green, blue, yellow and orientation possible
orientations: 0, 45, 90, 135 were distributed homogenously over all trials for the target
items and assigned randomly for the fillers and the second feature of the distractor.

The nine positions where the targets may be placed are distributed homogenously
over the stimulus presentation area at 50mm distance to each other and 30mm distanc
to the border of the presentation area. The 16 possible positions for the distractor are
arranged in a square around every target at 35.3mm. The possible target and distractor
positions are shown in figure ??. Every target position is combined with every distrac-
tor position once for every conditions, leading to 144 trials in every condition and a
total of 432 trials. For each trial the filler items were placed randomly with the con-
straint that the items kept a miminmum border to border distance of 0.5mm and the the
center of mass of all items lay within a 0.8mm radius of the center of the presentation
area.

A

-80 -40 80400-80

-40

80

40

0

B

Fig. 1: A: An exemplary scene for one trial with the target element (yellow, rotated
100°) presented first and after movement onset the stimuli are presented. B: he possible
target and distractor locations with the distractor placed on the right colored red and
left blue for the target at position 8 (square)
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visual search



Fig. 5: The movement times for different distances of the target to the distractor. The
distances as in figure ??
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Implications

the mouse trajectory is updated online while 
visual search and target selection take place

activation around the non-selected target is 
passed on to the movement generation 
system

=> “planning” and “control” are integrated  

this may be the basis for compliance
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How is movement generated? 

autonomously… not “driven” by external input 
=> neural activation patterns must be “self-
generated” 

notion of neural timers: neural oscillators 

although they may only do a single cycle of activation/
deactivation = active transient 

timing is highly constrained: hand must reach 
target with zero final velocity in a given time 
(“the optimal control problem”)



Speed response I

The neuronal firing rates during each trial’s movement time
were divided into 10 bins to normalize binwidths among all
trials. Across all cells, the average binwidth was 24 6 5 (SE)
ms for 41,560 trials. In addition, 15 prebins, having the same
width as the movement bins, were calculated just before move-
ment onset. On average, the first eight bins corresponded to the
later part of the hold-A period, and the next seven bins covered
the reaction time. Five-trial averages were made over all move-
ment directions. The outer perimeter of Fig. 3 shows the raw
(i.e., unsmoothed and untransformed) firing rates during move-
ments to each target for an example cell. During the hold-A
period the rates were very similar across targets. In the subse-
quent reaction and movement times, the activity was graded
with movement direction.
These histograms were smoothed and square-root trans-

formed. The average firing rate in the five bins before reaction
time was subtracted from the reaction and movement time bins,
eliminating the tonic component of cortical activity (b0). Av-
eraging the resulting profiles across the eight targets removed
the directional component (bx and by terms) of the discharge
profile. Finally, the 17-bin window of neural activity that best
correlated with finger speed over the reaction and movement
time was found. The result is the left profile in the center of
Fig. 3. This nondirectional profile is very similar to the speed
of the hand averaged across the eight targets (right profile in
the center of Fig. 3). For this cell, the two waveforms were
highly correlated (r2 5 0.96) at a lag of 155 ms. In general, this
was true for cells throughout the motor cortical population as
shown in Fig. 4A. A histogram of the corresponding time lags
between the nondirectional discharge and velocity profile for
all M1 cells in the population can be seen in Fig. 4B. The time
lag distribution peaked at a mode of 125 ms with a median
value of 75 ms.
A similar analysis was performed on the recorded responses

of 142 premotor cortical cells. Figure 4C shows the results of
correlating the nondirectional portions of Pmd cortical dis-
charge with speed. Lags between Pmd cortical activity and
finger speed had a median value of 100 ms, but the mode of the
distribution was 175 ms (Fig. 4D).
An ensemble nondirectional activity profile was generated

by averaging all 897 M1 profiles bin-by-bin. The result (Fig. 5)
is highly correlated (R2 5 0.99) with the speed profile, and
leads it by 145 ms. This M1 profile was compared with those

derived from Pmd and muscle activity. Each curve in Fig. 5 is
composed of the 17 bins that best correlate with finger speed.
Pmd activity had an r2 of 0.68 at a lag of 190 ms. Nondirec-
tional EMG activity was also correlated to the speed profile
(R2 5 0.96, lag 5 65 ms).

Directional response

Figure 6 shows the response of a motor cortical cell (same
cell as Fig. 3) during the center3out task. The firing rate

FIG. 2. Average movement kinematics for the center3out task.
A: the monkey placed its finger in the center start circle (dark gray
circle) and made a planar movement to one of the 8 peripheral
targets (light gray circles). The thick black line shows the average
of 5,195 movements to each target. The thin lines represent the
standard deviation of the mean. B: average velocity profiles to each
of 8 peripheral targets are shown by the 8 thick black lines. The
overall standard deviation (across all target directions) is repre-
sented by the thin lines.

FIG. 3. Speed representation in a motor cortical cell. Firing rates for move-
ments to each of the 8 center3out targets were aligned to movement onset
(V . 0.15Vmax), divided into 25 bins (26-ms binwidth) and averaged over 5
trials. The resulting histograms, located radially around the figure, represent
the average cortical activity recorded for movements in each of the respective
directions. The vertical calibration bar on the left of the figures represents 100
spikes/s. The timing marks under each histogram are 440 ms [average reaction
time (RT) 1 movement time (MT)] apart and represent the portion of the
histogram that was used to generate the central figure. These firing rates were
then smoothed using a 10-Hz low-pass digital filter and square-root trans-
formed. The tonic firing rate occurring during the hold-A period (i.e., the
activity before the 1st timing mark in the histograms) was subtracted from the
record. The firing rates were then summed over the 8 movement directions to
cancel the directional component. The resulting nondirectional profile (left
middle) is highly correlated to the average movement speed (right middle
profile).
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Neural timers in MC

Fig. 1c, f are idiosyncratic. But, as shown below, rotations of the neural
state are one of the most prominent features of the data.

Quasi-rhythmic responses during reaching
We analysed 469 single-neuron recordings from motor and premotor
cortex of four monkeys (identified as A, B, J, N). We made a further 364
simultaneous recordings (single and multi-unit isolations) from two
pairs of implanted 96-electrode arrays (monkeys J, N). Monkeys
executed straight reaches (monkeys A, B) or straight and curved reaches
(monkeys J, N). An instructed delay paradigm allowed monkeys to
prepare their reaches before a go cue. We analysed 9 data sets, each
using 27–108 reach types (‘conditions’). For each neuron and con-
dition we computed and analysed the average across-trial firing rate.

Most neurons exhibited preparatory and movement-related res-
ponses (Fig. 2). Responses were typically complex, multiphasic and
heterogeneous14. Yet there appear to be oscillations in many single-
neuron responses, beginning just before movement onset and lasting
for ,1–1.5 cycles. These quasi-oscillatory patterns were seen for all
reach types and all monkeys. Yet interpretational caution is warranted:
multiphasic responses might exist for any number of reasons. The
critical question is whether there exists orderly rotational structure,
across conditions, at the population level.

We have proposed that motor cortex responses reflect the evolution
of a neural dynamical system, starting at an initial state set by pre-
paratory activity14,15,17,18,26. If the rotations of the neural state (Fig. 1f)
reflect straightforward dynamics, then similar rotations should be
seen for all conditions. In particular, the neural state should rotate
in the same direction for all conditions15, even when reaches are in
opposition.

We projected the population response for all conditions onto
the jPC plane. This was done for 200 ms of data, beginning when

preparatory activity transitions to movement-related activity (Sup-
plementary Movie 3 shows a longer span of time). The resulting
projections (Fig. 3a–f) show four notable features. First, rotations of
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Figure 1 | Oscillation of neural firing rates during three movement types.
a, Response of 1 of 164 neurons (simultaneously recorded using voltage-
sensitive dye) in the isolated leech central nervous system during a swimming
motor pattern. Responses (not averaged across repetitions) were filtered with a
100 ms Gaussian kernel. a.u., arbitrary units. b, Multi-unit response from 1 of
96 electrodes implanted in the arm representation of caudal premotor cortex.
Data from 32 such channels were wirelessly transmitted during walking. sp s21,
spikes per second. Responses (not averaged across repetitions) were filtered

with a 100 ms Gaussian kernel. c, Response of 1 of 118 neurons recorded from
motor cortex of a reaching monkey (N) using single-electrode techniques.
Firing rates were smoothed with a 24 ms Gaussian and averaged across 9
repetitions of the illustrated leftwards reach (flanking traces show s.e.m.).
d, Projection of the leech population response into the two-dimensional jPCA
space. The two dimensions are plotted versus each other (top) and versus time
(bottom). Units are arbitrary but fixed between axes. e, Similar projection for
the walking monkey. f, Similar projection for the reaching monkey.
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Figure 2 | Firing rate versus time for ten example neurons, highlighting the
multiphasic response patterns. Each trace plots mean across-trial firing rate
for one condition. Traces are coloured red to green based on the level of
preparatory activity observed for that neuron. This allows inspection of how the
pattern of preparatory tuning changes during the movement. Data were
averaged separately locked to target onset, the go cue, and movement onset. To
aid viewing, traces are interpolated across the gaps between epochs. Vertical
scale bars indicate 20 spikes s21. Insets plot hand trajectories, which are
different for each data set. Traces are coloured using the same code as for the
neural data: red traces indicate those conditions with the greatest preparatory
response.
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 Dynamic Field Theory and Its Links to Neurophyisology 83

excitatory ones have started firing. The delayed 
onset of inhibition means that an external stimu-
lus may produce an initial overshoot of excitation, 
which then decreases as it is balanced by rising inhi-
bition. This gives rise to a phasic-tonic response 
behavior in the excitatory neurons (although it is 
not the only cause of this pattern).

In the DF model, this connectivity and the 
resulting effects on the activation time course 
can be replicated by introducing separate layers 
for the excitatory and inhibitory subpopulations 
(Figure  3.13; see Box 3.5 for the formal descrip-
tion). The basic structure for the two-layer field is 
as follows:  The two layers, excitatory and inhibi-
tory, are defined over the same feature space and are 
both governed by differential equations similar to 
those used in one-layer DFs. In the version consid-
ered here, only the excitatory layer receives direct 
external input. Excitatory interactions are imple-
mented through connections of the excitatory layer 
onto itself, described by an interaction kernel (e.g., 
a Gaussian function). In addition, the excitatory 
layer also projects to and excites the inhibitory 
layer. These projections are topological; that is, a 
projection from any point along the feature space 
on the excitatory layer acts most strongly onto the 
same point in feature space on the inhibitory layer. 
The inhibitory layer, in turn, projects back to the 
excitatory layer in an inhibitory fashion (that is, it 
creates a negative input in that layer’s field equa-
tion). Within the inhibitory layer, there are typi-
cally no lateral interactions.

The projections between the two layers can be 
described by interaction kernels, just like the lateral 

interactions. Note that the effective spread of inhi-
bition is determined by properties of both the pro-
jection from the excitatory to the inhibitory layer 
and of the reverse projection. Let us assume, for 
instance, that all three projections in the two-layer 
field (from excitatory to excitatory, excitatory 
to inhibitory, and inhibitory to excitatory) are 
described by Gaussian kernels of the same width. 
Then the effective range of inhibition in the excit-
atory layer will be wider than the range of lateral 
excitation, because the inhibition is spread by two 
kernels instead of just one. In practice, the two-layer 
field is sometimes set up in such a way that the pro-
jection from the excitatory to the inhibitory field is 
purely local (point-to-point, without an interaction 
kernel). The kernel for the reverse projection is then 
made wider to produce the overall pattern of local 
excitation and surround inhibition. This is a simpli-
fication done to reduce the computational load and 
the number of parameters. It is not meant to ref lect 
any neurophysiological property of the inhibitory 
neurons or the neural connectivity pattern.

The two-layer field shows a delayed onset 
of inhibition according to the same mechanism 
described earlier for the biological neural system. 
In particular, if an external input is applied to the 
system, it drives the activation in the excitatory 
layer, while the inhibitory layer initially remains 
unchanged. When the activation of the excitatory 
layer reaches the threshold of the output function, 
the interactions start to come into effect. The lat-
eral interactions within the excitatory layer drive 
activation further up locally, and at the same time 
the activation of the inhibitory layer is increased. 
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FIGURE  3.13: Architecture of two-layer field. The excitatory layer (top) projects onto itself and onto the inhibitory 
layer (bottom; green arrows). The inhibitory layer projects back onto the excitatory layer (red arrow). All projections are 
spread out and smoothed by Gaussian interaction kernels.
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Timing at low-dimensional /spatial level
neural data… 

coordination of hand with events 

kinematic regularity of movement in 
hand space 

invariant under force-field learning
3210 Shadmehr and Mussa-lvaldi * Representation of a Learned Motor Task 

left workspace right workspace 

Figure2. Configurations of a model two-joint arm, representing typical 
kinematics of the human arm, at two workspace locations where reach- 
ing movements were performed. Typical shoulder and elbow angles at 
these two workspaces were 15” and 100” at right and 60” and 145” at 
left, using coordinates defined in Figure 1. 

domly chosen from the set (O”, 45”,. . ., 315”) and at a distance of 10 
cm was presented. After the subject had moved to the target, the next 
target, again chosen at a random direction and at 10 cm, was presented. 
A target set consisted of 250 such sequential reaching movements. All 
targets were kept with in the confines of the 15 x 15 cm workspace. 
The targets represented a pseudorandom walk. 

In some cases, the manipulandum was programmed to produce forces 
on the hand of the subject as the subject performed reaching movements. 
These forces, indicated by the vectorf, were computed as a function of 
the velocity of the hand: 

f= B%, (1) 
where X was the hand velocity vector, and B was a constant matrix 
representing viscosity of the imposed environment in end-point coor- 
dinates. In particular, we chose B to be 

B= -10.1 -11.2 
-11.2 11.1 1 N. set/m. 

Using this matrix, the forces defined by Equation 1 may be shown as 
a field over the space of hand velocities (Fig. 3A). For example, as a 
subject made reaching movements in this field, the manipulandum pro- 
duced forces shown in Figure 3B (here we have assumed that the move- 
ments are minimum jerk, as specified by Flash and Hogan, 1985, with 
a period of 0.5 set). 

Note that in the field defined by Equation 1, forces that act on the 
hand are invariant to the location ofthe workspace in which a movement 
is done; that is, the forces are identical in the left and right workspaces 
of Figure 2. Therefore, we say that the force field defined in Equation 
1 is translation invariant in end-point coordinates. 

In some cases, a different kind of a force field was produced by the 
manipulandum, one that was not translation invariant in end-point 
coordinates. This field was represented as a function of the velocity of 
the subject’s shoulder and elbow joints during the reaching movements: 

1= wq, (2) 
where 7 was the torque vector acting on the subject’s shoulder and elbow 
joints, 4 was the subject’s joint angular velocity, and W was a constant 
matrix representing viscosity of the imposed environment in joint co- 
ordinates of the subject. We say that the field described by Equation 2 
is translation invariant in joint coordinates. Indeed, note that the torque 
field in Equation 2 is equivalent to the following force field (i.e., forces 
acting on the hand): 

f= (JW-’ w  43 (3) 
where J(q) = dx/aq is the configuration-dependent Jacobian of the con- 
figuration mapping from q to x, and the superscript T indicates the 
transpose operation. Because the Jacobian changes as a function of the 
angular position of the limb,fvaries depending on the workspace where 
a reaching movement is performed. In particular, we chose W so that 
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Figure 3. An environment as described by the force field in Equation 
1. A, The force field. B, Forces acting on the hand during simulated 
center-out reaching movements. Movements are simulated as being 
minimum jerk with a period of 0.5 set and amplitude of 10 cm. 

the force field that resulted from Equation 3 at the right workspace was 
almost identical to the field produced by Equation 1. To accomplish 
this, the matrix W was calculated for each subject as 

W = J;BJo, 
where J,, is the Jacobian evaluated at the center of the right workspace. 
For a typical subject, we derived the following W matrix: 

IV= [i:zi -~:~:]N.m~sec/rad 

When the above joint-viscosity matrix was used to define an environ- 
ment, the resulting force field depended upon the position of the work- 
space where movements were being made. At the right workspace, this 
field (Eq. 3) was almost identical to that produced by Equation 1 (a 
correlation coefficient of0.99; see Appendix). However, at the left work- 
space, the forces produced by Equation 3 were substantially uncorrelated 
(nearly orthogonal) to that of Equation 1. The force field produced by 
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Figure 6. Typical hand trajectories at the right workspace in a null 
force field during no-visual feedback conditions. Dots are 10 msec apart. 

centripetal forces that make up the G matrix can be derived from the 
inertia tensor; cf. Slotine and Li, 199 1, p 400). For example, the dif- 
ferential equation describing the dynamics of the arm and the controller 
for movements in the force field of Equation 1 were 

kd 4 + G(a 4) + JW B J(q) 4 = C(a 4. t). (11) 
where Cis defined in Equation 9. Values for joint stiffness and viscosity 
(K and IJ’) were chosen based on measurements of Mussa-Ivaldi et al. 
(1985) and Tsuji and Goto (1994). The desired trajectory q*(t) was 
assumed to be minimum jerk in hand-based coordinates lasting 0.65 
sec. Values used for these variables are summarized in Table 1. 

Results 
Reaching movements were made while the hand interacted with 
a mechanical environment. This environment was a program- 
mable force field implemented by a light-weight robot mani- 
pulandum whose end-effector the subject grasped while making 
reaching movements. When the manipulandum was producing 
a force field, there were forces that acted on the hand as it made 
a movement, changing the dynamics of the arm. When the 
manipulandum’s motors were turned off, we say that the hand 
was moving in a “null field.” 

Hand trajectories before adaptation 
Our first objective was to determine how an unanticipated ve- 
locity-dependent field affected the execution of reaching move- 
ments. The forces in the field (e.g., Eq. 1, as shown in Fig. 3.4) 
vanished when the hand was at rest, that is, at the beginning 
and at the end of the movement. However, as shown in Figure 
4B, a significant force was exerted midway, when the hand 
velocity was near maximum. How would this force influence 
the execution of a movement? Would subjects follow a pre- 
planned trajectory that was scarcely influenced by this pertur- 
bation or would they modify the movement and the final po- 
sition in response to the perturbing force? To answer this question, 
we compared reaching movements in the null field with those 
in a force field. Trajectories in the null field are shown in Figure 
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Figure 7. Performance during initial exposure to a force field. Shown 
are hand trajectories to targets at the right workspace while moving in 
the force field shown in Figure 3. Movements originate at the center. 
All trajectories shown are under no-visual feedback condition. Dots are 
10 msec apart. 

6. As observed in previous reports (Morasso, 1981; Flash and 
Hogan, 1985), the hand path was essentially along a straight 
line to the target. The velocity profile (see Fig. 1OA) had one 
peak, with approximately equal times spent to accelerate and 
decelerate the hand. 

Once our subjects were familiar with the task of reaching 
within the null field, we began to introduce a force field in 
random trials. Note that subjects could not anticipate the pres- 
ence of the field before the onset of the movement because the 
force field was not effective when the hand was at rest and no 
other clues were available. Furthermore, during the movement, 
the cursor indicating hand position was blanked, eliminating 
visual feedback. Figure 7 shows the hand trajectories ofa typical 
subject when the movements were executed under the influence 
of the field shown in Figure 3A (Fig. 10B shows the tangential 
velocity of hand trajectories in this field). This field was designed 
to have opposing effects along two directions. At approximately 
30” and 210” the field produced resisting forces that opposed 
movement as a viscous fluid would do. At approximately 120” 
and 300” the forces assisted the movement, thus producing a 
destabilizing effect. 

Note that the effect of the field on the hand trajectory was 
quite significant and may be divided into two parts. In the first 
part, the hand was driven off course by the field and forced 
toward the unstable direction of the field. Movements to targets 
at o”, 225”, 270”, and 3 15” are pulled toward the unstable region 
at 300”, while movements to the remaining targets are pulled 
toward the unstable region at 120”. At the end of this first part, 
the field had caused the hand to veer off the direction of the 
target and the hand decelerated and stopped before making a 
second movement to the target. The pictorial effect of these two 
parts of the hand trajectory appeared as a “hook” that was 
oriented either clockwise or counterclockwise. The orientation 

[Shadmehr, 
Mussa-Ivaldi, 1994]
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velocity dependent 
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a reaching movement, with practice the subjects tended to con- 
verge upon this straight-line trajectory. This recovery of the 
original unperturbed response constitutes a clear example of an 
adaptive behavior. 

Further evidence of motor adaptation is offered by the sig- 
nificant change that occurred in the hand velocity profile at the 
onset of exposure to the force field, and after completion of the 
practice trials. Figure 10A shows the hand tangential velocity 
traces obtained when the hand was moving in a null field (cor- 
responding to the hand position traces of Fig. 6). Consistent 
with previous studies (cf. Flash and Hogan, 1985) these velocity 
traces are approximately along straight lines and symmetric in 
time. The hand velocity traces at the initial stage of practice in 
the force field (corresponding to the hand position traces of Fig. 
7) are shown in Figure 1 OB. In Figure 1 OC we have the velocity 
traces near the end of the practice trials (corresponding to the 
hand position traces of Fig. 9D). Although the average velocity 
of the hand trajectory is now larger (as compared to Fig. lOA), 
the velocity trace for each target has essentially the same pattern 
as that observed for movements in a null field. 

practiced in the force field. This comparison was made through 
computation of a correlation coefficient between pairs of tra- 
jectories (see Appendix). We found that the average correlation 
between a trajectory in the null field and one in the force field 
increased with the amount of practice movements performed 
by the subject in the force field. The computed correlation co- 
efficients for trajectories performed by all subjects are shown in 
Figure 11. Remarkably, all the subjects displayed a strictly 
monotonic evolution of the correlation coefficient. 

Our subjects did not seem to be aware of the process of ad- 
aptation and of the change in their performance. The only sub- 
jective indication that some adaptive change had occurred was 
given by a reduction in the sense of effort associated with the 
task: during the first batch of 250 movements within the force 
field, some subjects reported an intense sense of effort. Para- 
doxically, this sense of effort diminished drastically after about 
500 movements. At the end of the training period many com- 
mented that they were “not feeling” the field anymore. 

Aftereffects 
In order to quantify the time course of adaptation, we studied One way-although by no means the only way-for the subjects 

how the hand trajectories evolved as compared to those ob- to recover the initial motor performance (what we have called 
served in the null field. For each subject, we compared the the desired trajectory) after the exposure to the test field was by 
trajectories in the null field to those obtained as the subject developing an internal model of this field. This internal model 
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verge upon this straight-line trajectory. This recovery of the 
original unperturbed response constitutes a clear example of an 
adaptive behavior. 

Further evidence of motor adaptation is offered by the sig- 
nificant change that occurred in the hand velocity profile at the 
onset of exposure to the force field, and after completion of the 
practice trials. Figure 10A shows the hand tangential velocity 
traces obtained when the hand was moving in a null field (cor- 
responding to the hand position traces of Fig. 6). Consistent 
with previous studies (cf. Flash and Hogan, 1985) these velocity 
traces are approximately along straight lines and symmetric in 
time. The hand velocity traces at the initial stage of practice in 
the force field (corresponding to the hand position traces of Fig. 
7) are shown in Figure 1 OB. In Figure 1 OC we have the velocity 
traces near the end of the practice trials (corresponding to the 
hand position traces of Fig. 9D). Although the average velocity 
of the hand trajectory is now larger (as compared to Fig. lOA), 
the velocity trace for each target has essentially the same pattern 
as that observed for movements in a null field. 

practiced in the force field. This comparison was made through 
computation of a correlation coefficient between pairs of tra- 
jectories (see Appendix). We found that the average correlation 
between a trajectory in the null field and one in the force field 
increased with the amount of practice movements performed 
by the subject in the force field. The computed correlation co- 
efficients for trajectories performed by all subjects are shown in 
Figure 11. Remarkably, all the subjects displayed a strictly 
monotonic evolution of the correlation coefficient. 

Our subjects did not seem to be aware of the process of ad- 
aptation and of the change in their performance. The only sub- 
jective indication that some adaptive change had occurred was 
given by a reduction in the sense of effort associated with the 
task: during the first batch of 250 movements within the force 
field, some subjects reported an intense sense of effort. Para- 
doxically, this sense of effort diminished drastically after about 
500 movements. At the end of the training period many com- 
mented that they were “not feeling” the field anymore. 

Aftereffects 
In order to quantify the time course of adaptation, we studied One way-although by no means the only way-for the subjects 

how the hand trajectories evolved as compared to those ob- to recover the initial motor performance (what we have called 
served in the null field. For each subject, we compared the the desired trajectory) after the exposure to the test field was by 
trajectories in the null field to those obtained as the subject developing an internal model of this field. This internal model 
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Figure 6.1: Sketch of the Dynamic Field architecture that implements the move-
ment model. Boosts and neural nodes are depicted as circles. Inputs have black
peaks and fields have red peaks. Arrows correspond to forward connections,
while more extensive feed forward networks are compacted into thick black
blocks. Connections that terminate in a dot act inhibitorily.

6.2 Inputs to the system

We define the higher-order inputs to the system, the provenance of which are not
inherently part of this architecture. These provide external executive functions
as well as perceptual information:

The movement intention boost is the trigger that engages movement:

bmov =

(
1 to trigger motion

0 otherwise

It is externally controlled by the user. It signals the intent to begin the move-
ment and will push the bank parameter fields into supra-threshold activation,
where appropriate. This ultimately produces motion. If it is still active when
the motion terminates, it will trigger another movement.

The cyclic intention boost will induce the Transport oscillator banks to op-
erate in periodic mode:

bcyc =

(
1 to cycle Transport

0 otherwise

An active cyclic boost bcyc will produce continuous alternating motion along the
Transport direction, essentially moving forward, then backwards, then forwards,
and so on. Note that Lift always operates in alternating mode to consistently
produce upwards and downwards movements.

[Jean-Stéphane Jokeit, dissertation 2022]
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Implications

kinematics invariant in space (=scales with 
speed)

kinetics (biomechanical dynamics) not invariant 

=> kinematic regularity is an “achievement” 



Muscle activation
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Muscle activation patterns

are not invariant across movements 

not invariant across speed



Reflexes are critical

the core idea of the 
Feldman/Latash school of 
thought: 

muscle activations are not 
“computed” from the 
timing signals… 

but emerge both 
descending activation and 
feedback signals

Figure 2: Sketch of the model used for estimation of descending activation
patters. Adapted from [8], the model comprises a reflex, muscle, biomechani-
cal, and sensor component. The input to the model is descending activation,
u(t). The output of the model are the predicted joint trajectories ✓(t), ✓̇(t).
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[Hummert, Zhang, Schöner, submitted] 
Estimate descending activation by inverting model



Descending activation
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Descending activation patterns

are qualitatively different from 
muscle activation patterns 

1) do not return to initial level: to 
solve the Posture-Movement 
problem (Feldman, Latash)

2) deviate early in movement: 
reflex contributes substantially 
during movement
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Figure 9: Time courses of interaction torques, descending activation, and
muscle activation for the elbow joint for the eight different movements (rows).
Same conventions as in Figure 8.
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muscle activation for the elbow joint for the eight different movements (rows).
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Descending activation patterns

are “ramp-like” for slow 
movements

with additional time structure 
overlaid over ramp for fast 
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DoF problem: Hand space vs. muscle space
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Figure 7: The coordinate of the hand’s position along the line connecting ini-
tial to target position is plotted as a function of time for all eight movements
(rows) in the slow (left column) and fast (right column) condition. Human
data averaged over participants and trials are shown in red, the data pre-
dicted from the estimates of the descending activation pattern (at a C-signal
of 0.55 rad) are shown in blue. The R-signal transformed into hand-space
and projected onto the same lines is shown in gray.

26

To
rq

ue
 [N

m
]

Ac
tiv

at
io

ns

-1

0

1

-0.02
-0.01

0

-1

0

1

0
0.01
0.02

-1

0

1

0
0.01
0.02

-1

0

1

-0.02
-0.01

0

-1

0

1

-0.01
0

0.01

-1

0

1

-0.01
0

0.01

-1

0

1

0
0.01
0.02

0 50 100
-1

0

1

0 50 100
Time [%]

-0.02
-0.01

0

0
0.01
0.02

-0.02
-0.01

0

-0.02
-0.01

0

0
0.01
0.02

-0.01
0

0.01

-0.01
0

0.01

-0.02
-0.01

0

0 50 100

0
0.01
0.02

descending activation in 
hand space (grey)

slow fast slow fast



Classical synergy

to account for observed dimensionality 
reduction at the muscle/joint level… 

observed across time/movements

muscles

neural
timers synergies

Figure 9: In the classical neural picture of synergies, the output of a relatively
small number of neural timers is projected onto a larger number of muscles,
leading to characteristic patterns of co-activation.

consider two possible sources of trial-by-trial variability. One source could be
stochastic variation at the level of the timer neural field. Such variation would
be transformed by the forward projection into the same pattern of co-variation
that characterizes synergies. The other source would be stochastic variation at
the level of the muscles (or the spinal networks driving muscles). These sources
of variation would be independent for each muscle (or at least not structured
by the forward projections).

When variability across trials or cycles is studied separately from variation
across time and movement condition, a broad set of studies has found patterns
of co-variation that are roughly orthogonal to the patterns predicted from the
forward model. To explain this without going into technical details, we use
a kinematic variant of the degree of freedom problem in Figure 10. In this
simplified picture, think of neural timer signals as being about the hand’s tra-
jectory in two-dimensional space. The degree of freedom problem is about how
to distribute these timing signals to the three joint angles of this kinematically
redundant arm. At any moment in time, there is a manifold of possible joint
configurations that may realize the current hand position in space. The figure
illustrates such uncontrolled manifolds (UCM) (Schöner, 1995) for di↵erent po-
sitions of the hand in space. As the hand moves through space, these manifolds
shift in joint space. The direction of this shift in joint space is what classical
synergies describe, the co-variation of joint angles as the hand moves. Variance
at the timing level would shift the manifolds along that general direction and
thus predict co-variation consistent with the classical synergies. Co-variation
among joint angles that shifts joint configurations within or along the manifolds
would, by contrast, keep the hand’s trajectory in space una↵ected. This form
of co-variation is not predicted by the forward model.

To empirically isolate the variability across trials or cycles from variance
across time or movements, one needs to study each moment in time of each
movement condition separately. This requires time-normalization (Schöner &
Scholz, 2007). It is then possible to examine the cloud of points in joint (or
muscle) space that is generated at a given time within a given movement across
trials/cycles by projecting the cloud onto the subspace parallel to the UCM and
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Classical synergy makes the 
wrong prediction for variability

muscles

neural
timers synergies

Figure 9: In the classical neural picture of synergies, the output of a relatively
small number of neural timers is projected onto a larger number of muscles,
leading to characteristic patterns of co-activation.

consider two possible sources of trial-by-trial variability. One source could be
stochastic variation at the level of the timer neural field. Such variation would
be transformed by the forward projection into the same pattern of co-variation
that characterizes synergies. The other source would be stochastic variation at
the level of the muscles (or the spinal networks driving muscles). These sources
of variation would be independent for each muscle (or at least not structured
by the forward projections).

When variability across trials or cycles is studied separately from variation
across time and movement condition, a broad set of studies has found patterns
of co-variation that are roughly orthogonal to the patterns predicted from the
forward model. To explain this without going into technical details, we use
a kinematic variant of the degree of freedom problem in Figure 10. In this
simplified picture, think of neural timer signals as being about the hand’s tra-
jectory in two-dimensional space. The degree of freedom problem is about how
to distribute these timing signals to the three joint angles of this kinematically
redundant arm. At any moment in time, there is a manifold of possible joint
configurations that may realize the current hand position in space. The figure
illustrates such uncontrolled manifolds (UCM) (Schöner, 1995) for di↵erent po-
sitions of the hand in space. As the hand moves through space, these manifolds
shift in joint space. The direction of this shift in joint space is what classical
synergies describe, the co-variation of joint angles as the hand moves. Variance
at the timing level would shift the manifolds along that general direction and
thus predict co-variation consistent with the classical synergies. Co-variation
among joint angles that shifts joint configurations within or along the manifolds
would, by contrast, keep the hand’s trajectory in space una↵ected. This form
of co-variation is not predicted by the forward model.

To empirically isolate the variability across trials or cycles from variance
across time or movements, one needs to study each moment in time of each
movement condition separately. This requires time-normalization (Schöner &
Scholz, 2007). It is then possible to examine the cloud of points in joint (or
muscle) space that is generated at a given time within a given movement across
trials/cycles by projecting the cloud onto the subspace parallel to the UCM and
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Figure 10: Right: A planar arm with three joint can realize the same hand
position in space with a continuum of joint configurations, of which two are
shown. Left: In the three-dimensional joint space, the black lines are the man-
ifolds on which the hand-position remains invariant. Three di↵erent manifolds
are shown for three di↵erent positions of the hand in space. Joint angle co-
variation orthogonal to the manifolds correspond are predicted from classical
synergies. Joint-angle co-variation along the manifolds is predicted from the
concept of the uncontrolled manifold (UCM).

onto its orthogonal complement. The UCM structure of variance in which the
cloud of joint configurations is elongated along the UCM has been found in a
large collection of studies for di↵erent tasks, di↵erent task relevant variables,
and di↵erent e↵ector systems. Examples include UCM structure for hand posi-
tion during reaching (Yang et al., 2007), hand-target alignment during shooting
(Scholz et al., 2000), or center of mass/pressure in whole-body posture stabi-
lization (Krishnamoorthy et al., 2003; Park et al., 2016). The UCM structure
of variance reflects compensatory co-variation in which a variation in one de-
gree of freedom is compensated for by co-variation in another degree of freedom
to keep the system on the manifold and thus, to keep the hand’s position in
space invariant. This compensatory co-variation is roughly orthogonal to the
co-variation predicted by the forward model.

How would a neural theory account for the two di↵erent signatures of co-
variation? A complete account is still missing, but a number of proposals have
been made (Goodman & Latash, 2006; Latash, 2021; Neilson & Neilson, 2010).
Here we focus on models that are somewhat aligned with the neural principles
discussed in this Chapter (Martin et al., 2009; Martin et al., 2019; Reimann
& Schöner, 2017). We summarize three main ideas in Figure 11. First, the
forward projection of Figure 9 must be part of such a theory to account for
the classical signatures of synergy. Second, recurrent connectivity within a mo-
tor network may establish compensatory coupling. Such connectivity may, in
e↵ect, decouple the subspaces parallel and orthogonal to the UCM, so that de-
viations from the manifold are counteracted, while deviations within the UCM
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Solution: loopy neural map

motor
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Figure 11: Sketch of a neural account for the Degree of Freedom problem. Low-
dimensional neural timers send time courses through forward projection to a
motor network. Recurrent connectivity within that network creates compen-
satory co-variation. So does back-coupling from a↵erent muscle signals to the
motor network, through which descendant signals yield to perturbations.

of the ankle joint. This fourth mechanism for UCM e↵ects is not included in
Figure 11 because the published models assumed that such outer feedback about
the state of the hand was too slow to be e↵ective in reaching. The relatively
fast transcortical reflexes may, however, e↵ectively bring about such a closed
loop mechanism (Pruszynski et al., 2011).

In summary, while neural dynamic mechanism have been proposed that may
create the two types of signatures of co-variation, a thoroughly neural theory of
the degree of freedom problem is still in need of development.

3.5 Control

Muscles, the actuators of the human movement system, are very soft from the
point of view of control: Their sti↵ness and damping (or impedance) are small so
that conventional “PD” control would allow for slow movement only. The time
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[Martin, Scholz, Schöner, 2009; Martin, Reimann, Schöner, 2019]



Forward map depends on the 
current joint/muscle configuration

muscles

neural
timers synergies

Figure 9: In the classical neural picture of synergies, the output of a relatively
small number of neural timers is projected onto a larger number of muscles,
leading to characteristic patterns of co-activation.

consider two possible sources of trial-by-trial variability. One source could be
stochastic variation at the level of the timer neural field. Such variation would
be transformed by the forward projection into the same pattern of co-variation
that characterizes synergies. The other source would be stochastic variation at
the level of the muscles (or the spinal networks driving muscles). These sources
of variation would be independent for each muscle (or at least not structured
by the forward projections).

When variability across trials or cycles is studied separately from variation
across time and movement condition, a broad set of studies has found patterns
of co-variation that are roughly orthogonal to the patterns predicted from the
forward model. To explain this without going into technical details, we use
a kinematic variant of the degree of freedom problem in Figure 10. In this
simplified picture, think of neural timer signals as being about the hand’s tra-
jectory in two-dimensional space. The degree of freedom problem is about how
to distribute these timing signals to the three joint angles of this kinematically
redundant arm. At any moment in time, there is a manifold of possible joint
configurations that may realize the current hand position in space. The figure
illustrates such uncontrolled manifolds (UCM) (Schöner, 1995) for di↵erent po-
sitions of the hand in space. As the hand moves through space, these manifolds
shift in joint space. The direction of this shift in joint space is what classical
synergies describe, the co-variation of joint angles as the hand moves. Variance
at the timing level would shift the manifolds along that general direction and
thus predict co-variation consistent with the classical synergies. Co-variation
among joint angles that shifts joint configurations within or along the manifolds
would, by contrast, keep the hand’s trajectory in space una↵ected. This form
of co-variation is not predicted by the forward model.

To empirically isolate the variability across trials or cycles from variance
across time or movements, one needs to study each moment in time of each
movement condition separately. This requires time-normalization (Schöner &
Scholz, 2007). It is then possible to examine the cloud of points in joint (or
muscle) space that is generated at a given time within a given movement across
trials/cycles by projecting the cloud onto the subspace parallel to the UCM and
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Solution: an even loopier neural map

[work in progress Lukas Bildheim, GS]
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