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Abstract

How do we bring about goal-directed motor acts? Reaching for an object offers a
useful exemplary case around which the processes underlying human movement
behavior can be studied. Such reaching entails processes from scene and object
perception, target selection and movement initiation, to timing, and control.
These processes are typically studied in different sub-disciplines, using different
methods based on different theoretical concepts. Yet they are continuously cou-
pled online and evolve in closed loop. Understanding how they work together
thus requires an integrative theoretical framework. While abstract computa-
tional ideas are often invoked for such integration, we argue for a theoretical
account that is grounded in neural principles. We review the key concepts of
a neural theory of goal-directed reaching movements that draws on neural dy-
namic models of population activation in which recurrent connectivity provides
stability. For each component process, we discuss the key issues and empirical
constraints for a neural dynamic account. Although a complete neural architec-
ture of goal-directed movement behavior is still under development, the outline
we provide makes contact with a large set of empirical findings.

1 Introduction

How do we generate the movements that direct our hand toward objects in
our visual surround? This question touches upon many of the processes that
play a role in the generation of goal-directed action in general. At the same
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time, reaching movements are sufficiently circumscribed to be studied in the
laboratory (Kim et al., 2021; Rossetti et al., 1998). This makes reaching a good
model system for the study of movement generation. To sketch a neural theory
of reaching, we must address at least the processes illustrated in Figure 1. (1)
Before initiating a reach, we take in the visual scene and visually attend to
objects that may be relevant to our action. Not every object that is visually
attended will be the correct target given our movement intention. (2) We must
select the correct target and decide to initiate the movement. The hand moves
into the direction of the target from the very start, so the selection and initiation
processes must take into account the initial position of the hand. (3) Moving
the hand entails generating time courses of neural signals that are suitable to
bringing about the movement within a desired movement time. (4) These signals
must be distributed to the many muscles that actuate the limb, so that the
degrees of freedom of the arm are appropriately recruited for the motor act. (5)
Finally, muscle forces must be generated and controlled to physically move the
limb, stabilize it against any mechanical perturbation, and bring it to a new
postural position at the target location.

scene 
perception / 

attention

target selection / 
movement initiation
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Figure 1: The processes (left) and coordinate frames (right) entailed in reaching
for an object.

These processes are typically embedded in a behavioral context. For in-
stance, a reaching movement may be part of a sequence of motor acts (Herbort
& Butz, 2009) aimed at a behavioral goal, say preparing a cup of coffee. Each
individual motor act may be driven by a desired outcome (Kunde et al., 2004)
that is critical to the next motor act. While the style of neural theory we will
outline here is beginning to address such issues (Aerdker et al., 2022; Tekülve
et al., 2019), we will not further review those ideas in this chapter.

At first brush, Figure 1 suggests that the processes are sequentially orga-
nized from perception through cognition to motor control. We will argue that
this classsical conception of forward information processing is not a good ap-
proximation, however. Instead, the processes are tightly integrated. They are
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coordinated so that each is engaged at just the right time relative to the state of
another process. This may require anticipation as neural processes need a head-
start to accommodate delays before their physical consequences may be sensed.
The processes may also be continuously coupled to each other. Even after a
movement has been initiated, for instance, it continues to be updatable at any
time to accommodate changes in object pose or location (Prablanc & Martin,
1992; Prablanc et al., 2003). The processes unfold in closed loops (Weiler et al.,
2019), so that an ongoing movement may modulate movement generation.

The tradition of forward information processing has allowed separate theo-
retical frameworks and concepts to be used to study these different processes.
Scene perception and attentional selection of objects are part of visual cog-
nition and are studied through paradigms of visual search (Wolfe, 2021) and
visuo-spatial working memory (Henderson & Hollingworth, 1999). Motor plan-
ning is often addressed in terms of cortical representations of spatial vectors of
hand to target (Kim et al., 2021; Mahan & Georgopoulos, 2013). Motor timing
is addressed in terms of optimal control (Berret & Jean, 2016) or of coupled
oscillators (Schöner, 2002). Motor control is addressed in terms of spinal reflex
loops (Feldman, 2015; Tsianos et al., 2014) or of internal models (Shadmehr &
Mussa-Ivaldi, 2012; Wolpert & Kawato, 1998).

To understand how these different processes are integrated, coordinated, and
continuously coupled, a different theoretical language is needed, one that reaches
all processes with a unified set of theoretical concoepts. We propose that this
language should be framed in neural terms as it is the nervous system with its
constraints that brings about selection, initiation, time course generation, and
control. Principles of neural function may be what all processes share. But
what it does mean for a theory of movement behavior to be “neural”?

Coding and decoding by correlating recorded neural activity with stimulus
or motor conditions provides one route toward characterizing the neural basis of
motor function (Georgopoulos, 1986; Moran & Schwartz, 1999; Paninski et al.,
2004). This may help map models onto brain areas, but does not by itself suggest
how the neural activity comes about. Computational theories of motor control
use mathematical models of movement generation drawing from optimal control,
optimal feedback control, and estimation theory (Franklin & Wolpert, 2011) to
provide models of movement generation at an abstract level. Although such
models also do not explain how neural activity comes about, their components
may be mapped onto brain areas (Shadmehr & Krakauer, 2008). This provides
potential accounts for functional deficits when specific brain areas are lesioned
or perturbed (Agostino et al., 1996; Beer et al., 2000; Miall et al., 2007).

Neurally reductionist accounts provide detailed models of neural mechanisms
and circuits to explain movement. The most far-reaching attempts in this di-
rection have been made for invertebrate and very simple vertebrate systems
(Grillner, 2003). It is difficult to scale such reductionistic models to human
movement, as the neural circuitry and its modulation are not known at compa-
rable levels of detail. A strength of such detailed mechanistic accounts is that
they may provide process models that go beyond description and functional
interpretation of neural circuits by being capable of actually generating time
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courses of neural activity and potentially even of motor activity, through mod-
els of muscles, biomechanics, sensory systems, and the environment (Ijspeert,
2008). Because process models provide the strongest integrative accounts, we
will focus this Chapter on such models.

The theory we will outline in this Chapter overlaps with some of these ideas,
but takes a somewhat different stance. The idea is to postulate a small set of
functional neural principles that are consistent with what we know about the
neural networks of the brain. These functional neural principles then provide the
theoretical language in terms of which we outline a neural theory of movement
generation. Such a theory does not aim to fully identify in each case the specific
brain circuitry that implements a specific neural function. The account may,
however, predict behavioral and neural signatures of the functional principles.
It provides a process account that makes it possible to understand how different
sub-functions are continuously coupled to each other in closed loop. The outline
we provide builds on earlier work on various subsystems of the overall architec-
ture (Martin et al., 2009; Martin et al., 2019; Schöner et al., 2019; Zibner et al.,
2015).

2 Functional principles for a neural theory of
reaching movement

The core assumption of the proposed neural theory is that activity in small
populations of neurons generates thought and behavior (Schöner, 2019). Ar-
guments for populations as the privileged level at which neural activity and
behavior are linked are based various ways to estimate the covariation of neural
and behavioral measures (see (Saxena & Cunningham, 2019) for recent review).
The population hypothesis has a prominent history in the motor domain due
to the foundational work of David Sparks (Lee et al., 1988) and Georgopoulos,
Schwartz, and colleagues (Georgopoulos et al., 1986; Schwartz, 1994).

Dynamic Field Theory (DFT) mathematically models the temporal evolu-
tion of activity in such neural populations (Schöner et al., 2016). DFT is based
on the notion of neural fields that dates back to (Wilson & Cowan, 1973). These
provide a mesoscopic level of description at which neurons with overlapping for-
ward connectivity from sensory surfaces and to the motor system are embedded
in a continuous space and their spiking activity is replaced by a continuous
activation variable. The threshold function of neural spiking is approximated
through a sigmoidal function that passes on only positive levels of activation
(see (Gerstner et al., 2014), Part 3, for review). Neural fields can be directly
estimated from neural spiking data in small populations using the method of
the distribution of population activation (Erlhagen et al., 1999).

While neural fields provide a convenient mesoscopic approximation to the
complex dynamics at more fine-grained anatomical levels, the key strength of
the concept of neural fields lies in its capacity to describe the dynamics of localist
neural representations. In neural fields, peaks of activation, localized along the
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dimensions of the field, are stable states (or attractors) of the neural dynamics
(Figure 2). These localized activation patterns are hypothesized to drive deci-
sions and behavior. The population vector for movement direction constructed
from populations of neurons in motor and pre-motor cortex (Georgopoulos et
al., 1986), for instance, is essentially an estimate of the location of a peak of ac-
tivation in the space of movement directions as well as of its amplitude (Bastian
et al., 1998).
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Figure 2: Left: A neural field with self-excitation and lateral inhibition has
localized peaks of activation as attractor states. Right: The excitatory layer
(top) of a two-layer neural field self-excites and excites the inhibitory layer
(bottom), which in turn inhibits the excitatory layer. Localized peaks may be
stable, may oscillate, or may go through active transients.

To understand how peaks play a central role in DFT, we briefly review the
basic notions of the dynamics of neural activation. The activation, u(x, t), in a
neural field over a dimension, x, evolves in time according to

τ u̇(x, t) = −u(x, t) + h+ input(x, t) + interaction(x, t) (1)

Apart from the interaction term, this equation is inherited from the dynamics
of neural membranes in the way described, for instance, in integrate-and-fire
models (Gerstner et al., 2014) (Part 2). Without input, this model has a stable
stationary state, u(x, t) = h, at the resting level, h < 0 (solve u̇ = 0 to see
this). Constant input shifts this attractor to u(x, t) = h + input(x). From
any initial value, activation converges to these attractors on a time scale, τ , of
approximately 10 mesc. Time varying input is tracked, so the neural dynamics
acts as a low-pass filter. It is through the dependence of input on some feature
dimension, x, that a neural field comes to depend on and thus represent that
dimension.
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The interaction component is critical to the capacity of dynamic neural fields
to generate localized activation states that are stable. Interaction is excitatory
among field sites close to each other and inhibitory among field sites at larger
distances from each other (Figure 2). Formally

interaction(x, t) =

∫
dx′w(x− x′)σ(u(x′, t)) (2)

where the strength of recurrent connectivity, w(x−x′), depends on the distance
between field locations as described. Such interaction patterns are common in
cortical and subcortical structures (e.g. (Georgopoulos et al., 1993; Jancke et al.,
1999)). The sigmoid threshold function, σ(u) = 1/(1 + exp(−βu)), approaches
zero for large negative activation levels, approaches one for large positive acti-
vation levels, and transitions between these limits with a maximum slope of β
which is attained at u = 0. Because all down-stream neural systems onto which
a given field, u(x, t), projects are driven by the output, σ(u(x, t)), the slope of
the threshold function determines the range over which changes in activation
make a difference.

To see how interaction creates localist representations, consider a field at
resting level that then receives spatially structured input, here as a bimodal
input distribution (Figure 3). Activation grows where input is provided, ap-
proaches threshold near the location that receives the strongest input. Output,
σ(u(x, t)), around that location becomes positive, engaging interaction. Local
excitatory interaction further amplifies activation at that location, while global
inhibitory interaction limits the growth of activation at the competing locations
with smaller input. The field converges to a peak of above threshold activation
centered on the local maximum of input. This event, the formation of an above-
threshold peak of activation, results from the detection instability in which the
sub-threshold activation pattern becomes unstable. Through the detection in-
stability, discrete events emerge out of continuous time courses of input and
activation. This is the basis for the generation of initiation decisions and of
sequences in neural dynamics (Sandamirskaya & Schöner, 2010).

Detection decisions typically entail selection decisions as well. Figure 3 il-
lustrates how this happens. As a peak is formed, it begins to inhibit other field
locations, and thus prevents a peak from forming over other local maxima of
input. This is exactly what is observed neurophysiologically (Cisek & Kalaska,
2010). Again, it is the spatially organized form of neural interaction that enables
selection among different localist representations.

Detection and selection illustrate how dynamic neural fields make decisions,
amplifying and reweighing activation, rather than merely transmitting input
patterns. Neural fields are therefore less dependent on inputs than the feed-
forward neural networks that are the basis of much current neural modeling.
This fact is perhaps best illustrated through the notion of sustained activation,
the possibility of an above-threshold activation peak remaining stable after the
inducing localized input has been completely removed. Here is how this works:
Without localized input, the resting level is a stable activation state. Localized
input reshapes that state until it becomes unstable at the detection instability.
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Figure 3: An illustration of detection and selection in a neural field. Left:
Input with two local maxima along the field’s dimension, x, is provided to
the neural field at the initial moment in time. Center: The time course of
activation, u(x, t), is shown using a color code (light blue: negative levels, light
red: levels near threshold, strong red: levels above threshold). Right: The
output, σ(u(x, t)), is shown with a similar color code (blue: zero, red: near
one).

The above threshold peak of activation persists as a stable state when localized
input is removed. The reverse detection instability marks the lower limit of
this bistable regime. This occurs when input induced activation boosted by
local excitatory interaction falls below the threshold. For sufficiently strong
interaction, this never happens, so the peaks remain stable even after localized
input has been completely removed.

Neural dynamic fields may generate oscillations or active transients (Amari,
1977). To understand these, we must take into account Dale’s law, the fact
that neurons have only one type of synapse, either excitatory or inhibitory.
The dynamics of neural fields described above is in apparent violation of this
principle, as the field locations both excite nearby locations and inhibit locations
further removed. This formulation is actually a simplification of a more complete
description that has separate populations of excitatory and inhibitory neurons,
which can be visualized as a two-layer neural field (Figure 2). The excitatory
field receives external input, has excitatory local interaction, and projects onto
down-stream neural populations. It also drives the inhibitory field, which in
turn inhibits the excitatory field, both projections organized locally.

Such pairs of excitatory and inhibitory fields provide a generic description of
the population dynamics in cortical and subcortical layered structures (Wilson
& Cowan, 1973). Neural oscillations occur under a broad set of conditions in
such two-layer fields (Amari, 1977). An intuition for how oscillations arise is
suggested in the “mental simulation” of Figure 4: Input to the excitatory field
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Figure 4: Time course of the output of a pair of excitatory (top) and inhibitory
(bottom) fields. The excitatory field initially receives an input (not shown) that
induces an active transient.

drives its activation up. Once above threshold, output from the excitatory field
begins to induce activation in the inhibitory field. As that activation reaches
threshold, its output begins to exert inhibitory influence on the excitatory field,
whose activation level falls. If it falls below threshold, the input to the inhibitory
field falls away, leading to a decay of activation in that field. If activation in the
inhibitory field falls below threshold, its inhibitory influence on the excitatory
field falls away. That allows the excitatory field to again generate activation in
response to its input. And the cycle begins again.

Active transients are a variant of this capacity of two-layer fields to au-
tonomously generate time courses. Such active transients may be important to
a neural theory of movement generation. In the mental simulation of Figure 4,
an active transient emerges if the input that starts activation growth in the
excitatory field has fallen away by the time the cycle returns to low levels of
activation in both fields. This will prevent excitatory activation from arising
again, so that the two fields will remain in their sub-threshold resting states
(Figure 4). The time course itself and its amplitude are largely determined by
the recurrent connectivity within and across the two layers, not by the time
course of input to the excitatory field. The only constraint on the time course
of input is that it must fall away within one cycle of the neural oscillation.

Two-layer fields are a simplest example of a neural dynamic architecture.
Architectures are more generally built by coupling fields in a variety of different
ways (Zibner et al., 2011). Peaks as attractor states, the detection and reverse
detection instability, the capacity for selection and for sustained activation all
persist when fields are coupled in this way (within limits). This makes it possible
to understand how properties of component fields remain relevant to the neural
dynamics that emerge from a complete neural dynamic architecture.

If neural fields are embedded in such neural dynamic architectures, how are
they still defined over some feature dimensions, x? How do these dimensions
come about to begin with? Of course, the neural fields are just dynamical sys-
tems, in which activation is driven up or down by inputs and interactions. The
dimensions are merely a way to describe the coupling patterns in the fields. The
fields do not “know” about the dimensions other than through these coupling
patterns. It is us, the modeler, who interprets the field dimensions by relat-
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ing them to things outside the neural architecture either in terms of sensory
stimuli or in terms of motor behavior. That is done in the manner of “coding”
and “decoding” as in all neural network models. In other words, as a stimulus
parameter is varied, an induced activation pattern in a given field varies and a
systematic analysis of these dependencies enables the interpretation of the field’s
dimensions. The forward connectivity from sensory surfaces to a given field or
from a given field to the motor system ultimately determined these dependen-
cies and thus, the meaning of a field’s dimensions. In many cases, these align
with known dimensions of cortical maps such as the retinotopic feature maps
in visual cortex or the known population encoding of movement parameters
in motor and premotor cortex. The localist nature of representation in neural
fields is most consistent with forward connectivity that induces space code in
which the location within a neural field determines what is being encoded. Fi-
nally, when fields simultaneously represent dimensions that have qualitatively
different meanings (e.g. color and visual space), new functions are enabled as
we shall see next in the context of visual search.

3 Skeleton of a neural theory of reaching move-
ments

The skeleton of a neural theory for goal-directed reaching movements is a neu-
ral dynamic architecture (Figure 5) that includes the five component processes
entailed in such movements. We step through each component and sketch the
neural dynamic elements and the empirical evidence to which each component
is linked.

3.1 Scene perception and selective attention

Reaching to objects is based, of course, on perceptual information about objects
in the reachable environment. Humans tend to quickly build scene representa-
tions of their immediate environment by attending to objects and storing these
in memory (Henderson & Hollingworth, 1999). Given a scene representation, an
object relevant to a given task can be brought into the attentional foreground
through a process of visual search, supported both by online visual information
and by the scene representation (Peelen & Kastner, 2014).

In neural dynamic thinking, such a scene representation is a neural activation
pattern defined not only over visual space, but also over feature dimensions such
as color, orientation, size, or shape (Zibner et al., 2011). Figure 6 illustrates a
simple case, a joint representation of visual space (along only one spatial dimen-
sion) and color. The scene consisting of four colored objects is thus represented
by four localized activation peaks that bind color to space (see Chapter 5 in
(Schöner et al., 2016)).

Visual search selects one of the objects for visual attention based on a top-
down cue to the object’s visual features, here the color “blue”. This cue may
be represented in a neural field defined over the feature space, color. It projects
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Figure 5: A schematic illustration of the component processes (light-blue el-
lipses) involved in targeted reaching movements. Their couplings are indicated
by arrows, with a label next to some coupling structures that will be descussed
in the Chapter). A rough mapping onto neural structures is suggested by the
labels in light red. Many component processes may be supported by circuitry
in different brain areas, however.
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color cue

visual scene

spatial attention
Figure 6: A sketch of the visual selection portion of the model. Left: A one-
dimensional neural field represents the color cue. Bottom: A one-dimensional
neural field represents the spatial location in visual space that is selectively at-
tended. Center: A two-dimensional field defined over color and visual space
receives direct input from the visual array shown on top (along only one spatial
dimension). Here, activation is illustrated using a color code (light blue: nega-
tive levels, light red: levels near threshold, strong red: levels above threshold).
The color cue field provides input to the two-dimensional attentional field that is
constant along the spatial dimension. A peak in the color cue field thus induces
a horizontal ridge in that field. When input from the visual array, localized
along both color and space, overlaps with such a ridge, a peak forms, leading to
the attentional selection of the corresponding spatial location.
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as ridge that is homogeneous across the spatial, but localized along the color
dimension into the two-dimensional neural field that jointly represents color
and space. Where the ridge overlaps with one the peaks generated by visual
input, activation is boosted. Projection out to a spatial attention field, the
corresponding location receives stronger input and wins the competition, so
that it is selected for attention. A more complete account for visual search takes
into account multiple feature dimensions for conjunctive search, their binding
through space, and the sequential selection for attention of objects that overlap
with the cue (Grieben et al., 2020).

Building on earlier work (Lins & Schöner, 2019), we have recently studied
empirically, how visual search for a potential target of a reaching movement
interacts with the generation of that movement (Hummert, Schöner, unpub-
lished). The experiment made use of the mouse tracking paradigm, in which
participants began to move a visual cursor from a starting location into the
general direction in which targets lay. Once the mouse movement began, an ar-
ray of visual objects was displayed, only one of which matched the conjunctive
feature cue of the target (e.g. “red” and “diagonal”). The array contained one
distractor object that matched the feature cue along one, but not the other di-
mension (e.g. “red” but not “diagonal”). All other objects did not match either
feature cue. We observed the online-updating of the mouse-trajectory from its
initial default direction toward a movement directed at the target (similar to
how goal-directed reaching movements are updated when a target is abruptly
shifted (Prablanc et al., 2003)). Critically, we also found an attraction of the
mouse trajectory toward the distractor object! This means that not only the
final outcome of the visual search process, the target, was passed on to the neu-
ral processes that select the motor goal and generate the reaching movement,
but also the potentially sub-threshold representation of the distractor object.

3.2 Target selection and movement initiation

Visually attending to an object is not identical to the decision to select and
initiate a reaching movement. The decision to initiate a movement is often
viewed as reflective of a selection decision among different choices because many
classical reaction time experiments are set up this way (Rosenbaum, 1980). A
classical theoretical picture from mathematical psychology describes two-choice
selection tasks by postulating a hypothetical decision dimension along which
the two choices lie at some distance from an initial starting value (Ratcliff &
Rouder, 1998). The decision is made by integrating random input (diffusion)
that has a deterministic component (drift) until one of the two choice locations is
reached. This is meant to model the accumulation of evidence until significant
certainty about the choice has been reached. Models of this nature, called
diffusion models, provide parameters that describe the different reaction time
distributions observed when tasks are varied.

In spite of its abstract nature, this picture has been used to interpret neural
data obtained while animals made selection decisions (Gold & Shadlen, 2007).
The decision dimension is separated for different choices and represented by
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the firing rate of neurons tuned preferentially to a particular choice. Response
initiation is typically aligned with particular levels of neural firing, as is natural
given the threshold property of neural transmission. The rate of increase of
firing rate is found, in some cases, to vary with task difficulty and response time
consistent with diffusion models.

This theoretical picture is unsatisfactory in many ways, however. First, input
information about the upcoming choices is itself provided by neural processes
that have a characteristic time course rather than providing “evidence” at a
constant rate. So the integration of a time-invariant drift is unrealistic. Studies
manipulating the time course of information about an upcoming choice have
indeed demonstrated the need to modulate this purported mechanism by a
temporally structured neural “urgency” signal (Cisek et al., 2009).

Second, motor decisions need to generate macroscopic neural states that can
drive downstream systems and ultimately behavior. Merely reaching a threshold
does not explain how movement initiation is achieved.

In a sense, the sensori-motor decision is first a decision to initiate action and
only secondarily a decision to select a particular action. In fact, participants
can modulate the relationship between initiation and selection decisions. In the
timed movement initiation paradigm participants learn to initiate an action at a
fixed point in time, specified by a metronome. Information about the requested
choice is provided at a variable time before that moment of initiation (Ghez
et al., 1997; Ghez et al., 1990). When that stimulus-response time is short,
movement is thus initiated before the selection has been made. The responses
of participants are distributed over the possible choices either mono-modally
(if choices are metrically close) or multi-modally (if choices are metrically far
from each other). With increasing stimulus-response times, these distributions
reshape gradually into distributions centered on the correct choice.

In DFT, initiation decisions come, of course, from the detection instability
that leads to the formation of an above-threshold peak of activation (Erlhagen &
Schöner, 2002). The instability may be induced by a localized input that would
model, for instance, an imperative signal provided in a reaction-time experi-
ment. But it may also be induced by a homogeneous boost of activation across
the field, which will amplify any small inhomogeneity in the field. Such small in-
homogeneities may represent prior information about upcoming choices, which
may have been acquired by learning or from pre-cues (Erlhagen & Schöner,
2002). Preshaping of this kind has in fact been directly observed neurophysio-
logically by estimating the distribution of population activation over movement
direction from many neurons in motor and pre-motor cortex (Bastian et al.,
2003). Providing the animals with different pre-cues about upcoming move-
ment targets, a broad pattern of activation centered on the mean movement
direction to the pre-cued targets was observed before the go-signal specified the
actual movement target. Once that information was provided, the distribution
gradually reshaped until it was centered on the actual target, very similar to
how the probability density evolved as a function of stimulus-response time in
the timed movement initiation paradigm. The neural dynamic model captured
this temporal evolution (Bastian et al., 1998). Paul Cisek and colleagues have
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similarly observed distributions of population activation in pre-motor and mo-
tor cortex for tasks in which the possible choices are metrically further removed
from each other (Cisek & Kalaska, 2005). They found a transition from a bi-
modal pattern of pre-activation to a monomodal distribution centered on the
selected target (see Figure 2 in (Cisek & Kalaska, 2010)), very similar to what is
shown in Figure 3. Paul Cisek also used DFT to model this data (Cisek, 2006).

The neural and behavioral data on movement initiation are ambiguous with
respect to whether selection is about the movement target or the movement
itself. This is because these studies do not typically vary the initial position of
the hand. Functionally, selection must reside at the level of movement targets.
For instance, sequences of movements can be planned to reach for multiple
targets in a particular serial order. A later target may affect an earlier movement
(Hansen et al., 2018), evidence that its representation must already have been
active, even though the initial position of the hand for the later target had not
yet been reached. The capacities to update movements online in response to
target shifts (Prablanc & Martin, 1992; Prablanc et al., 2003; van Sonderen et
al., 1988) or in the mouse tracking paradigm are also consistent with this view.
It is difficult to imagine how the update could happen at the level of movement
parameters given that the initial hand position is changing.

On the other hand, movements reflect the relative configuration of initial
hand position and reaching target from the very start (Figure 1): The hand
begins moving into the right direction and the initial acceleration profile of the
hand reflects the distance and movement time. How may a neural architecture
compute these movement parameters based on the coordinates of the target and
the initial hand position? Dating back to the Vector-Integration-To-Endpoint
(VITE) model (Bullock & Grossberg, 1988), researchers have assumed that some
form of vector subtraction is performed (see (Kim et al., 2021) for illustration).
Neurons cannot perform such arithmetic operations without some special ma-
chinery. That machinery can be understood by recognizing that what is needed
is a coordinate transform. The target is initially represented in some visual ref-
erence frame and must be transformed into a frame centered in the hand, from
which projections may directly activate the adequate neural pattern of move-
ment generation. The observation that neurons in the motor cortex are tuned
to the hand’s movement direction in space is consistent with this assumption.

The neural machinery for coordinate transforms is known under the label of
gain fields (Pouget & Snyder, 2000) which were discovered around the analogous
problem of the transform from eye-centered to body-centered spatial reference
frames (Andersen et al., 1985). Gain fields can be understood within DFT as
steerable neural maps (Schneegans & Schöner, 2012) based on a joint repre-
sentation of the original space (the target in body-centered coordinates) and
of the steering variable (the initial position of the hand). Peaks in this joint
representation can be shifted through “ridge input” from the steering variable
(Figure 7). Projecting out from the joint representation, the movement param-
eters can be determined (Schöner et al., 2019). There is a complex literature
about the neurophysiological foundations for such joint representations of vi-
sual target and hand position that is overall compatible with this framing of the
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Figure 7: Sketch of the coordinate transformation in the model. Knowledge of
both the position of the hand and the target in the body centered frame allows
to compute the position of the target relative to the hand. Only where the
input from the two input fields overlap can a peak form and the output field
can learn the position of the appropriate response in the end effector centered
representation.

problem (Orban et al., 2021). Note that the neural implementation of coordi-
nate transforms can run in parallel to the selection process as multiple possible
targets can be transformed into multiple possible movement parameters as long
as the steering dimension has a unique value (Schneegans & Schöner, 2012).

3.3 Movement timing and coordination

The essence of movement is that it unfolds in time. Upon initiation, a time
course of neural activation must be generated to drive forward the movement.
Human reaching movements are timed (Schöner, 2002) in the sense that their
time courses are stabilized against perturbations and are potentially coordi-
nated with other movements or with perceptual data (Turvey, 1990). Although
often studied in the context of rhythmic movement, coordination is observed for
discrete motor acts as well (Kelso et al., 1979; Schöner, 1990). During a reach
for an object, for instance, the transport of the hand toward the object and the
opening and closing of the hand are coordinated (Jeannerod, 1984). Delaying
the transport component leads to a slowing down of the hand opening gesture

15



inhibitory
exitatory

time

ou
tp
ut

time

ou
tp
ut

inhibitory
exitatory

Figure 8: Two schematic examples of the time courses generated by a two-layer
neural field dynamics (excitatory activation, u, and inhibitory activation, v).
Depending on the coupling parameters, shorter (left) or longer (right) durations
may emerge, as well as different amplitudes.

as well (Savelsbergh et al., 1993). Timing a reaching movement is obviously
critical for tasks such as catching or hitting moving objects (Schöner, 1994). In
such tasks, the timed movement compensates for any acceleration or slow-down
of the object (Bootsma & van Wieringen, 1990).

So how would a neural theory address timing? We have already discussed
neural time course generation in the form of neural oscillation and active tran-
sients. In fact, when animals perform a periodic task, activation in motor cortex
reflects that periodicity. This has given rise to the notion that the motor cortex
forms a neural oscillator (Churchland et al., 2012), although this may be a bit
too global a statement to help develop a neural theory.

A more specific idea is that the neural activation from the initiation deci-
sion provides input into reciprocally coupled populations of excitatory and in-
hibitory neurons which are then induced to generate an active transient. Such
active transients can be coupled across populations, providing mechanisms for
coordination (Schöner, 2002). The precise time course generated depends on
the coupling constants, so that a whole set of such neural timers could be con-
structed by varying these constants across the dimensions of the coupled pair
of neural fields (Schöner et al., 2019). A slower and a faster active transient are
illustrated in Figure 8. Any particular set of time courses could be selected by
providing input into the excitatory field at the appropriate locations. In recent,
as yet unpublished, work (Jokeit, Schöner, unpublished) we have assembled dif-
ferent movement primitives from such a field of neural oscillators to explain the
coupled time courses of the transport and lift components of reaching move-
ments during obstacle avoidance (Grimme et al., 2012). A neural timer system
of this general form could remain coupled to the initiating inputs during the
initial phase of the transient. This may provide the neural substrate for online
updating (Zibner et al., 2015), although a precise account of online updating
is still needed. The notion of batteries of timers could be viewed as a special
case of the concept of “reservoir computing” (or echo state networks) (Buono-
mano & Laje, 2010). How projections from the battery may select appropriate
components of the timing signals to drive muscles is addressed next.
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3.4 Degree of freedom problem

Time course generation is neurally costly. So the idea that every muscle could
have its own field of neural timers does not scale well. Instead, the field of neural
timers must be of reduced dimensionality, perhaps linked to the time courses of
the hand in space. That would be consistent with neurophysiological findings
that showed that the hand’s speed along its path covaries with the amplitude
of the population vector (Schwartz, 1994). This would also be consistent with
much behavioral evidence about the spatio-temporal regularity of hand trajec-
tories (Morasso, 1981), with evidence that coordination occurs at the level of
spatial timing relationships rather than at the level of muscle timing relation-
ships (Mechsner et al., 2001), and with evidence that the timing of the hand in
space is controlled during catching (Peper et al., 1994).

The ensemble of neural timers may thus be low-dimensional and to some ex-
tent aligned with characteristics of the hand’s movement in space, while specific
and varied timing signals may be needed to supply the descending activation
patterns that drive the many muscles involved in generating the hand’s tra-
jectory. This is the degree of freedom problem, famously discussed by Nikolai
Bernstein decades before the referenced neural and behavioral data were known
(Gurfinkel & Cordo, 1998; Latash, 2008).

What form of projection from neural timers to muscles may solve this prob-
lem? A classical idea is the notion of synergies (d’Avella & Bizzi, 2005; Tresch et
al., 1999) according to which muscles are bound into groups within which acti-
vation co-varies. Recording from sets of muscles while participants perform a set
of different movements, numerous studies have documented such co-variation of
muscle activation. The reliable finding can be visualized by thinking of the acti-
vation of each muscle as a separate row of a matrix. The columns are formed by
tracking muscle activation across time, concatenating the time series obtained
from different movements (d’Avella & Lacquaniti, 2013; d’Avella et al., 2006;
Ting & McKay, 2007). This matrix has many more columns than rows. The
key finding is that the long rows are not independent: The rank of the matrix
is considerably smaller than the number of muscles tracked. So the activation
patterns of all muscles can be predicted from a smaller set of synergies, often
as little as four to six “principle components” or feature vectors.

A possible neural account for such co-variation is illustrated in Figure 9.
A smaller set of neurons (really, of neural populations) projects onto a larger
set of muscles (really, the associated spinal networks). In our framework, that
smaller set of neurons represents activation in the neural fields of timers. They
vary across a small set of dimensions that reflect movement parameters such
as direction, extent, and speed. In this picture, the characteristic co-variation
among muscle activation patterns comes from the pattern of forward projection.
Inserting variation in time or across movement at the top predicts co-variation
at the bottom of the network due to the spread of activation from the few to
the many dimensions.

Do such forward neural projections solve the degree of freedom problem?
It turns out that there is a problem with this account that comes from the
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Figure 9: In the classical neural picture of synergies, the output of a relatively
small number of neural timers is projected onto a larger number of muscles,
leading to characteristic patterns of co-activation.

structure variance from trial to trial (or from cycle to cycle in rhythmic move-
ment). Many empirical studies of synergies include repetitions of movements
in the data matrix, but these contribute little compared to the variation across
time and across different movements. The account of the few-to-many forward
projection predicts that variability across repetitions should lead to the same
pattern of co-variation as variation across time and movement. To see this,
consider two possible sources of trial-by-trial variability. One source could be
stochastic variation at the level of the timer neural field. Such variation would
be transformed by the forward projection into the same pattern of co-variation
that characterizes synergies. The other source would be stochastic variation at
the level of the muscles (or the spinal networks driving muscles). These sources
of variation would be independent for each muscle (or at least not structured
by the forward projections).

When variability across trials or cycles is studied separately from variation
across time and movement condition, a broad set of studies has found patterns
of co-variation that are roughly orthogonal to the patterns predicted from the
forward model. To explain this without going into technical details, we use
a kinematic variant of the degree of freedom problem in Figure 10. In this
simplified picture, think of neural timer signals as being about the hand’s tra-
jectory in two-dimensional space. The degree of freedom problem is about how
to distribute these timing signals to the three joint angles of this kinematically
redundant arm. At any moment in time, there is a manifold of possible joint
configurations that may realize the current hand position in space. The figure
illustrates such uncontrolled manifolds (UCM) (Schöner, 1995) for different po-
sitions of the hand in space. As the hand moves through space, these manifolds
shift in joint space. The direction of this shift in joint space is what classical
synergies describe, the co-variation of joint angles as the hand moves. Variance
at the timing level would shift the manifolds along that general direction and
thus predict co-variation consistent with the classical synergies. Co-variation
among joint angles that shifts joint configurations within or along the manifolds
would, by contrast, keep the hand’s trajectory in space unaffected. This form
of co-variation is not predicted by the forward model.
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Figure 10: Right: A planar arm with three joint can realize the same hand
position in space with a continuum of joint configurations, of which two are
shown. Left: In the three-dimensional joint space, the black lines are the man-
ifolds on which the hand-position remains invariant. Three different manifolds
are shown for three different positions of the hand in space. Joint angle co-
variation orthogonal to the manifolds correspond are predicted from classical
synergies. Joint-angle co-variation along the manifolds is predicted from the
concept of the uncontrolled manifold (UCM).

To empirically isolate the variability across trials or cycles from variance
across time or movements, one needs to study each moment in time of each
movement condition separately. This requires time-normalization (Schöner &
Scholz, 2007). It is then possible to examine the cloud of points in joint (or
muscle) space that is generated at a given time within a given movement across
trials/cycles by projecting the cloud onto the subspace parallel to the UCM and
onto its orthogonal complement. The UCM structure of variance in which the
cloud of joint configurations is elongated along the UCM has been found in a
large collection of studies for different tasks, different task relevant variables,
and different effector systems. Examples include UCM structure for hand posi-
tion during reaching (Yang et al., 2007), hand-target alignment during shooting
(Scholz et al., 2000), or center of mass/pressure in whole-body posture stabi-
lization (Krishnamoorthy et al., 2003; Park et al., 2016). The UCM structure
of variance reflects compensatory co-variation in which a variation in one de-
gree of freedom is compensated for by co-variation in another degree of freedom
to keep the system on the manifold and thus, to keep the hand’s position in
space invariant. This compensatory co-variation is roughly orthogonal to the
co-variation predicted by the forward model.

How would a neural theory account for the two different signatures of co-
variation? A complete account is still missing, but a number of proposals have
been made (Goodman & Latash, 2006; Latash, 2021; Neilson & Neilson, 2010).
Here we focus on models that are somewhat aligned with the neural principles
discussed in this Chapter (Martin et al., 2009; Martin et al., 2019; Reimann
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& Schöner, 2017). We summarize three main ideas in Figure 11. First, the
forward projection of Figure 9 must be part of such a theory to account for
the classical signatures of synergy. Second, recurrent connectivity within a mo-
tor network may establish compensatory coupling. Such connectivity may, in
effect, decouple the subspaces parallel and orthogonal to the UCM, so that de-
viations from the manifold are counteracted, while deviations within the UCM
are resisted only weakly (hence the name “uncontrolled”). A mathematical
formulation for such decoupling was shown to account not only for the UCM
structure of variance (Martin et al., 2019), but also for a variety of other exper-
imental signatures including self-motion and motor equivalence (Martin et al.,
2009). That mathematical formulation was not entirely aligned with the neural
principles we outlined at the outset. A thoroughly neural theory of this form
of compensatory coupling still needs to be developed. Spinal neural networks
could potentially provide a substrate for such recurrent connectivity through
the Renshaw interneurons (Latash et al., 2005)1, but many other possibilities
exist (Windhorst, 2007). A third proposed mechanism is back-coupling, a form
of positive feedback from the muscle or joint level to the motor network. This
mechanism was proposed in (Martin et al., 2009) within a formalization that
represents the signals descending to the joints in terms of expected joint ve-
locities and joint configurations. Back-coupling is the notion that these signals
“yield” to sensed deviations from these expected time courses. Thus, for in-
stance, a joint that flexes less or more slowly than expected leads to an update
of the descending signal to that joint that shifts the expectation in the direction
of reduced flexion. This yielding was effective only within the UCM, so the
descending signals would still drive the hand to its desired state. Back-coupling
was critical in that model to understand motor equivalence, the realization of
the same hand position in space with a different joint configuration following
a phasic perturbation (Scholz & Schöner, 2014). Some empirical evidence for
a mechanism consistent with back-coupling has been obtained by Mark Latash
and colleagues in isometric tasks (Ambike et al., 2016; Ambike et al., 2015; Zhou
et al., 2015a; Zhou et al., 2014; Zhou et al., 2015b). Still, this idea needs further
elaboration.

A fourth mechanism for the emergence of a UCM structure of variance has
been proposed in (Reimann & Schöner, 2017) in the context of upright standing.
In that account, the outer sensory feedback loop stabilizing posture induces
compensatory co-variation. Postural sway is actually a movement behavior on
a slow time scale of seconds (Morasso & Schieppati, 1999) that is governed
by sensory feedback loops involving vision, foot pressure sense, proprioception
and vestibular sensors and more (Horak, 1996). These signals inform about
the kinematic state of the head in space, of the center of pressure, or of other
low-dimensional characterizations of the body’s motion in space. The feedback
control of posture (Collins & De Luca, 1995; Jeka et al., 1998; Peterka, 2002)
must distribute these signals to the degrees of freedom. The forward projection

1In this work, the term “back-coupling” is used for the recurrent connectivity that generates
compensatory co-variation. In the present Chapter we use this term in a different sense
explained below.
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Figure 11: Sketch of a neural account for the Degree of Freedom problem. Low-
dimensional neural timers send time courses through forward projection to a
motor network. Recurrent connectivity within that network creates compen-
satory co-variation. So does back-coupling from afferent muscle signals to the
motor network, through which descendant signals yield to perturbations.

model together with the outer feedback loop then predicts the UCM structure
of variance. Imagine that due to neural noise, the ankle joint is flexing more
than on average. The body’s forward motion is picked up by the sensors, and
the low-dimensional control law generates a movement signal that would pull
the body backward. That signal would be distributed to all joints, leading to an
effective compensatory reaction of the other joints to this particular excursion
of the ankle joint. This fourth mechanism for UCM effects is not included in
Figure 11 because the published models assumed that such outer feedback about
the state of the hand was too slow to be effective in reaching. The relatively
fast transcortical reflexes may, however, effectively bring about such a closed
loop mechanism (Pruszynski et al., 2011).

In summary, while neural dynamic mechanism have been proposed that may
create the two types of signatures of co-variation, a thoroughly neural theory of
the degree of freedom problem is still in need of development.
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3.5 Control

Muscles, the actuators of the human movement system, are very soft from the
point of view of control: Their stiffness and damping (or impedance) are small so
that conventional “PD” control would allow for slow movement only. The time
scale of muscle action, characterized in terms of eigenfrequency, is on the same
order of magnitude (100 ms) as the fastest movement times. So control, that
is, generating active torques through the muscles to bring about fast reaching
movements, is a substantial problem for the nervous system.

Keeping a limb in a specific posture is thus also a problem. Unlike the stiff
robot actuators, the visco-elastic properties of human muscles make human arm
soft actuator with relatively low impedance. This is a feature of sorts when our
arms and hands come into contact with surfaces and objects: The soft nature of
our muscular actuators limits the peak forces that may arise, protecting both our
limbs and the objects against mechanical damage. It also provides for a simple
strategy for compliant tasks, at which humans excel (Franklin et al., 2008). In
such tasks, target configurations of the hand or fingers inside a surface could
be planned (Bonilla et al., 2015). The deviation from the planned configuration
would then create elastic forces that may serve to grasp an object or exert force
on it. This idea has been adopted by researchers in robotics in the form of
variable stiffness actuators (Bicchi & Tonietti, 2004).

The stability of joint postures is actively achieved through reflex loops and
neural control loops. The stretch reflex (Pierrot-Deseilligny & Burke, 2005)
is perhaps the most prevalent and generic contribution to postural stability
and we will use it to explain ideas here (Feldman, 2011). Figure 12 illustrates
schematically how the stretch reflex combines descending activation with the
afferent signals from muscle spindles that reflect muscle length and its rate of
change. The sum of these two forms of neural activation, passing through the
neural threshold mechanism, determines muscle activation and ultimately active
muscle force. To intuitively see how the stretch reflex stabilizes posture, consider
a single joint, say the elbow, with a flexor and an extensor muscle. Assume the
elbow is in a given posture, say at a right angle, while the arm is horizontal (so
we don’t need to think about gravity). A certain level of descending activation
is sent down to the spinal cord that, together with the afferent signal from the
muscle spindles, determines the amount of activation of the two muscles in this
postural state. Assume someone pushes against the hand, creating a mechanical
perturbation that extends the elbow. This lengthens the flexor muscle so that its
spindles send an increasing signal to the motor neuron. At constant descending
activation, this increases activation of the flexor muscle, which therefore resists
the extension movement of the elbow. The analogous reflex for the extensor
muscle reduces extensor activation in response to the shortening of that muscle.
In reality, spinal reflex networks for the control of posture are more complex
(Raphael et al., 2010; Windhorst, 2007), but this first approximation serves to
set up the problem.

The stabilization of posture by the stretch reflex poses a problem for move-
ment. This so-called posture-movement problem (Feldman & Latash, 2005;

22



muscle

muscle 
activation

afferent
feedback

descending
activation

motor
neurons

joint
force

Figure 12: A sketch of the stretch reflex. Afferent feedback depends on muscle
length and its rate of change.

Feldman, 2016) is illustrated in Figure 13. Assume you want to voluntarily
extend the elbow beyond its initial posture. To do this, you need to shorten
the extensor muscle and lengthen the flexor muscle. Initially, both muscles are
active at a certain level that reflects co-contraction, giving the elbow joint a
certain stiffness. The associated forces cancel exactly so that the elbow is at
rest. To shorten the extensor muscle, its activation must increase and generate
the appropriate force. Extensor activation can be brought about by sending in-
creased descending activation down to the extensor muscle. At the same time,
flexor activation should decrease to avoid resistance of the flexor muscle to the
extension movement. This can be brought about by sending decreased descend-
ing activation to the flexor muscle. As soon as the desired new joint posture
has been reached, the initial level of activation of both muscles needs to be
reinstated, so that there is no net torque at the new joint posture and that the
same level of joint stiffness prevails. Alas, the extensor is now shorter, the flexor
muscle now longer than initially. So the length feedback signals differ, smaller
for the extensor, larger for the flexor muscle. In order for the same muscle ac-
tivation to reign as initially, the descending activation for the extensor must be
larger than initially, and the descending activation for the flexor must be smaller
than initially. In other words, the descending activation patterns sent to the
muscles are not pure “movement signals”: They do not change from an initial
no-movement level to a movement level back to a non-movement level. Instead,
the descending activation patterns contain a postural component, so that they
end up at a different level from their initial level after the movement has ter-
minated. This is the key insight of equilibrium point theory (Feldman & Levin,
1995). There is no question that such a postural component is contained in the
descending activation signal (Albert et al., 2020). Debates have concerned the
more radical claim that the only thing that descending activation needs to do
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is shift the postural state, with movement simply tracking that shifting equilib-
rium point. Model simulations aligned with data have demonstrated that this
may be feasible for certain movements (Gribble et al., 1998; Pilon & Feldman,
2006; Zhang et al., 2022).
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Figure 13: A sketch of the lengths, descending and muscle activations of a
flexor and a extensor muscle during a voluntary extension movement. The
descending activation profiles were obtained by minimizing their change for a
given movement time and amplitude (Ramadan et al., 2022).

This debate may be more of an obstacle than an aid to understanding the
problems of human motor control. For one, the large literature on adaptation
to external force fields (Shadmehr & Mussa-Ivaldi, 2012) shows that partici-
pants can learn to generate approximately the same movement kinematics in
the presence of a force field as they do in its absence. This is true for force-
fields that vanish at the end of the movement, so that the final postural state is
unchanged across learning. The different demands on muscle forces during the
movement must come from modulated descending activation patterns, therefore.
It doesn’t really matter if we describe those in terms of hypothetical equilib-
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rium (or virtual) trajectories or in terms of the relevant neural activation signals.
Moreover, when the speed of reaching movements is varied, the kinematics scale
remarkably well, while the interaction torques between moving segments change
considerably and non-linearly (Hollerbach & Flash, 1982).

We have directly addressed the question of how descending activation pat-
terns scale when the speed of a reaching movement is varied (Ramadan et al.,
2022). For two-joint planar movements of the upper arm, we varied movement
speed to induces interaction torques of different strength (Hollerbach & Flash,
1982). We used a model of the stretch reflex, of muscle force generation, and
of the biomechanics of the arm that had previously been used to demonstrate
that simple shifts of equilibrium postures may predict movement patterns in
this same task (at a low movement speed) (Gribble et al., 1998). We found the
minimally changing descending activation pattern that moves the limb within
a given time from the initial to the target position using numerical optimiza-
tion techniques. For slow movements, descending activation patterns resembled
linear shifts of activation level from an initial to a target level that ended after
about two-thirds of the movement duration (consistent with empirical findings
(Ghafouri & Feldman, 2001)). For fast movements, the descending activation
patterns were temporally structured in more complex ways. The descending
activation patterns shown in Figure 13 were actually taken from the results ob-
tained at high movement speed. Clearly, that descending activation is not just
a rescaling of the ramp-like activation pattern that produces a slow movement.

We concluded that descending activation patterns generated by the neural
timing system must be specifically adapted to the dynamic properties of the
movement plant, the muscles, and the peripheral reflex loops. The required time
courses are not overly complex and limited in temporal frequency. It is quite
imaginable that they could be generated in the kind of neural timer systems
we have sketched and be selectively projected to the appropriate muscles. This
would be a simple neural solution to what has been framed in computational
theories of motor control as an “internal model”. Needless to say, this neural
account needs further elaboration.

4 Discussion

We have outlined a path toward a neural theory of goal-directed reaching move-
ments. The goal is an account that is consistent with a limited set of principles
of neural function rather than an account that links in detail to the specific
neural circuitry underlying each component process. We gave a short review
of these neural principles as framed in Dynamic Field Theory and then went
through five major component processes from scene perception to control. We
reviewed evidence that these component processes are continuously coupled in
a way that goes beyond the transmission of finished “computations”. This was
illustrated in the context of mouse-tracking in a visual search task, in which the
mouse trajectory is updated as the target is visually searched, while a distrac-
tor object also affects the mouse trajectory. The component processes are not

25



coupled only in a feedforward direction. We reviewed “back-coupling”, spinal
reflexes, and the closed loop of postural control to illustrate how closed loops
of coupling play a role. Recent evidence for closed loop components in reaching
(Weiler et al., 2019) is not yet addressed in the theoretical sketch even though
the language of neural dynamics may be well suited for providing an account.
Finally, we discussed how neural timing may need to “know” about control
problems, exemplifying an interdependence between the component processes
that may emerge from motor learning .

We referenced neural dynamic models of various sub-architectures of our
overarching picture (Erlhagen & Schöner, 2002; Grieben et al., 2020; Schöner
et al., 2019; Tekülve et al., 2016). In some cases (Martin et al., 2009; Martin
et al., 2019; Reimann & Schöner, 2017), the mathematics of the models are not
entirely consistent with the neural principles yet. This is also true for the work
of Rokni and Sompolinksi (Rokni & Sompolinsky, 2012) that is otherwise closely
related in spirit to our outline. Older work from the Bullock and Grossberg labs
overlaps partially with our ambition (Bullock & Grossberg, 1988; Cisek et al.,
1998), aligned with some of the principles we emphasize, but not all. A similar
partial overlap of the neural principles characterizes the models of (Butz et al.,
2007) and (Caligiore et al., 2014).

Another line of theoretical work uses the neural principles of DFT, but differs
in specific assumptions about the neural architecture of reaching (Fard et al.,
2015; Strauss et al., 2015). The core difference in this modeling line is that the
timing of movement generation is postulated to derive from peaks of activation
that move within a spatial representation of the end-effector.

We have begun to move beyond the scenario of reaching for a single object
in a DFT architecture for serially ordered sequences of reaching movements
(Tekülve et al., 2019). Combining different functional components, lift and
transport as well as obstacle avoidance, is the goal of a yet unpublished work
(Jokeit, Schöner, unpublished).

Under more natural conditions, reaching movements are parts of overall
action intentions. For instance, a human operator may reach for a tool in
order to act on another object to achieve a particular outcome. This provides
constraints relevant to the architecture we have outlined, for instance, in that
selection of a particular grasp would be informed by the future action (Herbort,
2013; Zhang & Rosenbaum, 2008). Guidance toward objects and action selection
based on desired outcomes may be a general principle as postulated in ideomotor
theory (Herbort & Butz, 2012; Hommel et al., 2001; Shin et al., 2010). We have
begun to think about that principle in neural dynamic terms (Aerdker et al.,
2022; Tekülve & Schöner, 2019), but have yet to link all this together into an
integrated theory.

In conclusion, we believe that a principled neural theory of goal-directed
reaching movement is possible. Many components have been recognized, and the
theoretical framework of DFT enables their integration. Many open questions
remain. The main strength and interest of such an integrated neural account
may ultimately lie in interesting new questions which may stimulate discovery,
and interesting ways the models may fail, which may stimulate insight.
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G. (2020). Scene memory and spatial inhibition in visual search: A neu-
ral dynamic process model and new experimental evidence. Attention,
Perception, & Psychophysics, 82 (2), 775–798. https://doi.org/10.3758/
s13414-019-01898-y

Grillner, S. (2003). The motor infrastructure: From ion channels to neuronal
networks. Nature Reviews Neuroscience, 4 (7), 573–586. https ://doi .
org/10.1038/nrn1137
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Schöner, G. (1994). Dynamic theory of action-perception patterns: The time-
before-contact paradigm. Human Movement Science, 3, 415–439.
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Tekülve, J., Zibner, S. K. U., & Schöner, G. (2016). A neural process model of
learning to sequentially organize and activate pre-reaches. Joint IEEE
International Conferences on Development and Learning and Epige-
netic Robotics (ICDL-Epirob), (September).

Ting, L. H., & McKay, J. L. (2007). Neuromechanics of muscle synergies for
posture and movement. Current Opinion in Neurobiology, 17, 622–628.

Tresch, M. C., Saltiel, P., & Bizzi, E. (1999). The construction of movement by
the spinal cord. Nature Neuroscience, 2 (2), 162–167. https://doi.org/
10.1038/5721

Tsianos, G. A., Goodner, J., & Loeb, G. E. (2014). Useful properties of spinal
circuits for learning and performing planar reaches. Journal of Neural
Engineering, 11 (5), 056006. https://doi.org/10.1088/1741-2560/11/5/
056006

Turvey, M. T. (1990). Coordination. American Psychologist, 45 (8), 938–953.
van Sonderen, J. F., van der Gon, J. J., & Gielen, C. C. A. M. (1988). Conditions

determining early modifications of motor programmes in response to
changes in target location. Experimental Brain Research, 71, 320–328.

Weiler, J., Gribble, P. L., & Pruszynski, J. A. (2019). Spinal stretch reflexes
support efficient hand control. Nature Neuroscience, 22 (4), 529–533.
https://doi.org/10.1038/s41593-019-0336-0

Wilson, H. R., & Cowan, J. D. (1973). A mathematical theory of the functional
dynamics of cortical and thalamic nervous tissue. Kybernetik, 13, 55–80.

Windhorst, U. (2007). Muscle proprioceptive feedback and spinal networks.
Brain research bulletin, 73 (4-6), 155–202.

Wolfe, J. M. (2021). Guided Search 6.0: An updated model of visual search.
Psychonomic Bulletin & Review, 28 (4), 1060–1092. https://doi.org/10.
3758/s13423-020-01859-9

Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse
models for motor control. Neural Networks, 11, 1317–1329.

Yang, J.-F., Scholz, J. P., & Latash, M. L. (2007). The role of kinematic re-
dundancy in adaptation of reaching. Experimental brain research, 176,
54–69.

35

https://doi.org/10.1016/j.neunet.2015.10.005
https://doi.org/10.1016/j.neunet.2015.10.005
https://doi.org/10.3389/fnbot.2019.00095
https://doi.org/10.1038/5721
https://doi.org/10.1038/5721
https://doi.org/10.1088/1741-2560/11/5/056006
https://doi.org/10.1088/1741-2560/11/5/056006
https://doi.org/10.1038/s41593-019-0336-0
https://doi.org/10.3758/s13423-020-01859-9
https://doi.org/10.3758/s13423-020-01859-9


Zhang, L., Straube, A., & Eggert, T. (2022). Control of arm movements in
friedreich’s ataxia patients: Role of sensory feedback. Experimental Brain
Research, 240 (5), 1411–1422.

Zhang, W., & Rosenbaum, D. A. (2008). Planning for manual positioning: The
end-state comfort effect for manual abduction-adduction. Experimental
Brain Research, 184 (3), 383–389. https://doi.org/10.1007/s00221-007-
1106-x

Zhou, T., Zhang, L., & Latash, M. L. (2015a). Intentional and unintentional
multi-joint movements: Their nature and structure of variance. Neuro-
science, 289, 181–193. https://doi.org/10.1016/j.neuroscience.2014.12.
079

Zhou, T., Solnik, S., Wu, Y.-H., & Latash, M. L. (2014). Unintentional move-
ments produced by back-coupling between the actual and referent body
configurations: Violations of equifinality in multi-joint positional tasks.
Experimental Brain Research, 232 (12), 3847–3859. https://doi.org/10.
1007/s00221-014-4059-x

Zhou, T., Zhang, L., & Latash, M. L. (2015b). Characteristics of Unintentional
Movements by a Multijoint Effector. Journal of Motor Behavior, 47 (4),
352–361. https://doi.org/10.1080/00222895.2014.986045

Zibner, S. K. U., Faubel, C., Iossifidis, I., & Schöner, G. (2011). Dynamic Neural
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