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Gregor Schöner (gregor.schoener@ini.rub.de)
Institut für Neuroinformatik, Ruhr-Universität Bochum

44780 Bochum, Germany

Abstract

How may intentionality, the capacity of mental states to be
about the world, emerge from neural processes? We propose
a set of theoretical concepts that enable a simulated agent to
have intentional states as it perceives, acts, memorizes, plans,
and builds beliefs about a simulated environment. The con-
cepts are framed within Dynamic Field Theory (Schöner et al.,
2015), a mathematical language for neural processes models
at the level of networks of neural populations. Inspired by
Searle’s analysis of the two directions of fit of intentional states
(Searle, 1980), we recognize that process models of intentional
states must detect the match of the world to the mind (for “ac-
tion” intentions) or the match of the mind to the world (for
“perceptual” intentions). Neural representations of Searle’s
condition of satisfaction implement these detection decisions
through dynamic instabilities that are instrumental in enabling
autonomous switches among intentional states.

Keywords: Dynamical systems modeling; Mathematical
modeling; Neural networks; Intelligent agents; Cognitive Ar-
chitectures

Introduction
How are neural processes organized to create coherent, com-
plex cognitive function? For instance, how are sequences of
actions and processes of active perception generated to orient
actions at objects to achieve a desired outcome? How may
the nervous system switch between actions and mental states
that are driven by current sensory information and actions or
mental states that are driven by memory and knowledge?

Philosophers of mind have framed related questions in
terms of the notion of intentionality: How may an organ-
ism with its nervous system generate intentional states that
are about objects in the world? How may an organism act
to change the world according to its intentional states? The
logical structure of this problem has been analyzed in depth
by John Searle (Searle, 1980). He postulates that intentional
states come in two directions of fit (DoF), the world-to-mind
direction of fit, in which an intentional state’s content repre-
sents a desired state of the world, capturing the intuitive “ac-
tion” flavor of intention. The mind-to-world DoF comprises
states in which the state’s content matches circumstances in
the world, a “perceptual” flavor of intention. Each intentional
state can be described through its condition of satisfaction
(CoS), which determines whether the fit between mind and
world is achieved. Searle has conjugated these two forms of
intentionality through three layers of psychological modes:
intention-in-action (IiA) and perception are intentional states

directly linked to the motor or sensory systems. Prior inten-
tion and memory are intentional states with a more indirect
form of linkages, in which additional steps are needed to act
out or bring about the intentional state. Beliefs and desires are
more abstract forms of intentionality, typically thought to take
propositional forms, with an inherent generalization beyond
the immediately accessible perceptual or motor experience.

We come to these questions from the theoretical frame-
work of Dynamic Field Theory (DFT) (Schöner et al., 2015),
a mathematical language for neural processes models at the
level of networks of neural populations. Here, we take inspi-
ration from Searle’s concepts to address the neural processes
required to autonomously switch between intentional states
in these six psychological modes. A key idea has been that
there must be neural processes that explicitly represent a CoS
and whose activation controls the transitions from one in-
tentional state to another (Sandamirskaya & Schöner, 2010).
Specifically, for world-to-mind intentional states, activation
of the neural representation of the CoS signals the success-
ful achievement of an intentional state that leads to its deac-
tivation and opens the system to switch to a subsequent in-
tentional state. In mind-to-world intentional states, it is the
representation of the content of the intention itself that forms
the CoS, which is activated when a detection decision is made
and remains activated as long as the intentional state persists.

In this paper we develop this idea into a systematic account
of how intentional states can be organized to autonomously
generate goal- and object-oriented behavior. We simulate a
rudimentary toy scenario, in which an agent explores its sim-
ple environment containing colored objects and buckets of
paint. The agent may move towards objects and direct an ef-
fector to them, either taking up paint (for a bucket) or painting
the object (for the colored objects). The agent detects ob-
jects, may attentionally select objects, may build scene mem-
ories, generate sequences of actions to paint particular objects
with a particular paint, and learn and exploit beliefs about
which paint applied to which surface generates which out-
come. Simple desires (to seek particular outcomes of paint-
ing acts) drive the agents goal-oriented and exploratory be-
haviors. The scenario is chosen such that the amount of time
each action or mental operation takes varies, and that during
that time the agent is exposed to other perceptions or sen-
sory states that could distract from its current intention. The
inherent stability of its intentional states and the capacity to
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release these states from stability under the right conditions
is thus probed in this scenario.

Dynamic Field Theory
Dynamic Field Theory (DFT) (Schöner et al., 2015) is a the-
oretical framework for understanding perception, motor be-
havior, and cognition based on neural principles.The activity
in neural populations is modeled by activation fields, u(x, t),
spanned across the metric dimensions, x, to which the popu-
lation is tuned. The neural dynamics of the activation fields,

τu̇(x, t) =−u(x, t)+h+ s(x, t)+
∫

ω(x− x′)σ(u(x′, t))dx

describes the time-continuous evolution of neural activation
on the time scale τ. Activation u(x) below the sigmoidal
threshold σ relaxes to the stable solution h+ s(x), defined by
the field’s resting level h and its localized inputs s(x). Field
sites, where activation strength surpasses the threshold level,
will engage in lateral interaction defined by the field’s ker-
nel ω(x− x′), which is locally excitatory and inhibitory over
longer distances x− x′. This leads to the formation of self-
stabilized peaks of supra-threshold activation, which are the
unit of representation in DFT (see figure 1).
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Figure 1: A dynamic neural field spanned across the metric-
dimension x representing value x0 through a supra-threshold
activation peak.

Depending on the individual strength of excitatory and in-
hibitory interaction, fields may allow the formation of mul-
tiple peaks (self-stabilized), single peaks (selective) or they
may sustain peaks once localized input is removed (self-
sustained). Multi-dimensional fields may represent conjunc-
tions of feature dimensions, for example, the conjunction of
color and space. Zero-dimensional fields are dynamic neural
nodes that represent categorical states.

Two fields usrc and utar may be coupled by adding a field’s
output σ(usrc) to the other field’s rate of change u̇tar, weighted
with a homogeneous connection kernel ωsrc,tar. Such pro-
jections may preserve the dimensionality of the fields, or
may expand or contract the field dimensionality (Zibner &
Faubel, 2015). Dimensionality expansions may take the form
of ridges (or tubes, or slices), in which input along one or
several of the receiving field’s dimension is constant. Di-
mensionality contractions typically entail integrating along
the contracted dimension. Dynamic neural nodes that project
homogeneously onto a field by expansion are called boost
nodes. They may alter the dynamic regime in the target field

and induce the formation or vanishing of peaks. Within field
architectures such boost nodes may effectively modulate the
flow of activation by enabling or disabling particular branches
of an architecture to create units of representation. Concept
nodes project a specific pattern on a higher dimensional field
to elicit a peak representing the concept, e.g. a blue-concept
node activates neurons tuned to blue hue in a field spanned
across the color dimension.

The transition from a stable sub-threshold solution to a
new supra-threshold activation pattern marks a discrete event
in the presence of time-continuous input variations and is
labelled detection instability. In the context of intentional
states the detection instability is utilized to determine a state’s
condition of satisfaction, the discrete point in time where a
successful match between world and mind representations is
achieved.

In the world-to-mind DoF a matching field (CoS field) re-
ceives sub-threshold input from an intention-field represent-
ing the desired world-state and sub-threshold input from a
perception-field representing the current world-state. Due to
the resting level h in relation to the strengths of both field in-
puts, a supra-threshold peak will only form in the matching-
field, if both input patterns overlap sufficiently, thus signaling
the states CoS through a detection instability. Representation
of a world-to-mind CoS is thus independent from the planned
timing of the underlying action and signals its termination
on a perceptual basis. The formation of a CoS may thus
be used to terminate the action and activate the next action
in a planned sequence (Richter, Sandamirskaya, & Schöner,
2012).

In the mind-to-world DoF the CoS is determined through
the formation of a peak in a field that is connected to sen-
sor or memory substrates. The detection instability may be
the result of salient input alone or of the combination of sen-
sor/memory input and top-down attention input from within
the neural architecture. Representations of a mind-to-world
CoS are made available to the rest of the architecture and
may be used in further cognitive processing, e.g. determin-
ing a world-to-mind CoS.

Transforming Searles logical analysis of intentional states
into a process account has led us to a number of new insights.
One is a difference in the time structure of world-to-mind vs.
mind-to-world intentional states. World-to-mind intentional
states are active before the corresponding state of the world
has been achieved and are deactivated once the CoS detects a
match between the expected and the sensed state of the world.
Mind-to-world intentional states, in contrast, often persist be-
yond the detection of a match, which is an essential charac-
teristic of memories and beliefs. But what if memories or
beliefs (and even percepts) are false? Then they must be de-
activated. This is controlled by a condition of dissatisfaction
(CoD), which detects a mismatch between current sensory or
internal information and an intentional state. Upon activation,
a CoD inhibits that intentional state. The CoD responds to ev-
idence against the intentional state, not to the mere absence

1091



of evidence supporting the intentional state.

Model/Scenario
We illustrate how intentional states can be organized to gen-
erate autonomous goal- and object-oriented behavior in a
minimal scenario requiring Searle’s six major psychological
modes. The scenario contains a simulated agent engaged in
an artificial painting task controlled by a dynamic field ar-
chitecture connected to the robots sensorimotor surface (see
figure 2 for a sketch).

Mind-to-World States

Intentional states of the mind-to-world DoF are the prerequi-
site to engage in meaningful actions in a given environment
as any action at least aims to achieve a perceivable outcome.

Perception The virtual environment contains cuboids of
different height and color, which are arranged in an array
along a single dimension facing the robotic agent. The agent’s
visual perception fields are therefore spanned across horizon-
tal retinal space and the two feature dimensions height and
color. A selective spatial attention mechanism causes peaks
to form in the same spatial location in the space/color and

space/height perception fields, representing a perception of
the particular height and color features at that particular loca-
tion (see Grieben et al. (2018) for details on the attentional se-
lection). To detect successful interaction with the world, the
agent perceives changes in the environment through a two-
layer transient detector that forms peaks in response to sudden
changes in visual input (see Berger et al. (2012) for details).

To monitor its own actions the agent requires self-
perception of the task-dependent “body parts”, which in-
cludes an estimate of the agent’s position in the world. A
simulated sensor provides input to a one-dimensional current
position field, as the agent’s movement is restricted to driving
in parallel to the cuboid array. Arm movement is restricted
to two Cartesian dimensions, lateral and forward translation,
which leads to a two-dimensional representation of the cur-
rent end effector position in the proprioception field. The
painting device is located at the robot’s end effector and can
either be filled with color or not. This categorical perceptual
state is represented through a neural node that is activated if
the device is filled.

Attention directed towards particular self-perceptions is
modeled through a homogeneous resting level boost, which
causes the sub-threshold sensor information to form a peak
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Figure 2: Schematic overview of the dynamic fields and nodes representing the agent’s intentional states grouped according to
their psychological modes. For clarity’s sake only the most relevant connections are shown and parts of the architecture relevant
to autonomous learning and exploration are hidden. Prior intentions are depicted as precondition nodes with labels describing
the inhibiting CoS followed by the inhibited IiA.
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in the respective perception field. Neural interaction in per-
ception fields is strong enough to prevent the destabilization
of perceptions through noise, but retains its input coupling
such that a continuous change in input induces a drift in peak
position.

Memory To allow the agent to engage in more sophisti-
cated actions that are not purely based on current perceptions,
the agent stores past perceptions of cuboids in memory. Each
visual perception of the agent leaves a slowly decaying two-
dimensional memory-trace spanned across world-space and
feature, modeling a memory process that is subject to inter-
ference (Erlhagen & Schöner, 2002). The trace is forwarded
as sub-threshold activation to a space/feature memory field
analog to the visual perception fields. Memory states rep-
resented as peaks in the memory field may emerge through
either spatial or feature cues overlapping with the memory
trace substrate.

Self-sustained fields retaining task-relevant information,
such as the recently collected color, represent working mem-
ory, which is functionally closer to the mode of perception
than memory, as self-sustained peaks resemble lasting per-
ception representations and do not need an additional detec-
tion mechanism to form.

Belief Meaningful interaction with the world also relies on
general knowledge or beliefs about the world represented in
propositional form. In the toy scenario, beliefs are about rela-
tions between the three color concepts: the color of a canvas,
the color of the paint, and the color that results from coating
the canvas with the paint. Each painting action contributes
to the formation of a belief about that relation. The relation
is represented through a neural node with reciprocal connec-
tions to three color concept nodes, each linked to a differ-
ent color role field. An activated belief state is represented
through a supra-threshold belief node that leads to the forma-
tion of three peaks, each in one self-sustaining color role field,
which provide working memory representations to guide the
painting process. The color concept nodes ensure a degree
of generalization, as different shades of hue activate the same
concept node, while the activation of the concept node acti-
vates the mean hue value of the particular color.

A belief is activated when color nodes in either of the three
roles become active, to which the belief has learned synaptic
connections. For instance, a belief linking the red point on a
blue canvas to a yellow result may become activated, if the re-
sult color node yellow is activated by a corresponding desire.
Inhibitory coupling among belief nodes ensures that only a
single belief may be activated at any time. The belief with
most matching color role input will typically win the compe-
tition and can then be used to guide action. If an active color
role does not match the learned projections of any belief, no
belief is activated.

The learning of new beliefs is organized by a neural dy-
namic architecture inspired by Adaptive Resonance Theory
(Carpenter & Grossberg, 2016) illustrated in Figure 3. It as-
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Figure 3: Detailed sketch of the belief learning architecture
shown in Figure 2.

sociates color concepts in the three roles coating, canvas and
result color with a single belief node. Such learning steps oc-
cur whenever the transient detector registers a change of color
during a painting action. This happens under two possible
conditions. In one case, a belief has previously been activated
that predicts the expected color change. If that prediction is
confirmed, a Hebbian learning mechanism consolidates the
connectivity. If that prediction is not confirmed, the CoD is
activated, and the belief is inhibited. This leaves the system
without any activated belief. That second case, no activated
belief, may also arise because there was no matching belief to
begin with. In this case, a belief note is recruited for learning
the new association between coating, canvas, and resulting
color. This happens through a homogeneous boost of all be-
lief nodes. Only a previously uncommitted belief node has a
chance to become activated, because each belief node is in-
hibited by a dedicated “commit node” that represents that this
belief node is committed to a particular belief it has learned.

The actual learning processes is modulated by a transient
reward signal, r(t), that is generated in the presence of an ac-
tive belief node and a detected color change in the scene. The
reward modulated Hebbian learning rule adapts the connec-
tions, lrole

i,k , between belief nodes, bi, and color-role concept
nodes, urole

k (where k is color and role ∈ {coat, canvas, re-
sult}):

l̇role
i,k = η r(t) σ(bi)σ(urole

k ).
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The learning rate, η, is chosen such that a new belief is
learned within a single transient epoch of reward in a form
of one-shot learning. For a more detailed analysis of the
mechanisms of autonomous learning see (Tekülve & Schöner,
2019).

World-to-Mind States

Intentional states of the world-to-mind DoF are instrumental
in bringing about a desired state of affairs in the world, which
includes the agent’s own body. All world-to-mind states share
the representation through the pair of intention and CoS (or
match) field. Outgoing connections from the intention field
specify the actions driven by a supra-threshold activation
peak, while the outgoing inhibitory connection from the CoS
field terminates the action once the desired state is detected.

Intention in Action The painting scenario provides several
elementary actions that may take a variable amount of time
and thus require a representation of a CoS to verify their suc-
cessful execution. Reaching to a particular location in the vi-
sual array is realized through a neural field architecture for
generating arm movements (see Zibner et al. (2015)). Its
duration depends on the relative distance between the agent
and the target location. The target location is defined through
spatial input from the visual perception fields, which classify
reaching as an object oriented action.

Moving to a particular position in the world is motivated
through memory instead of perception. The drive IiA field
thus receives its spatial input from peaks formed in the
space/feature memory fields. In absence of a particular tar-
get location the agent may also move to either direction until
a previously unattended cuboid is perceived. The explore IiA
realizes this behavior and its CoS is represented through a bi-
nary neural node receiving excitatory input from the visual
transient detector. The actions explore, pick up and dispense
represent a family of IiAs, where the desired world state is
categorical and represented through the activation of a neural
node.

Another family of IiAs is represented by the actions visual
search, recall and activate belief, which treat the current state
of the neural system as part of the world and try to induce par-
ticular states of the mind-to-world DoF. Visual search guides
the attentional system to achieve a perceptual state matching
an intended feature cue, while recall tries to achieve a mem-
ory state matching an intended feature cue and activate belief
intends to activate a belief node that matches certain color-
roles.

Prior Intention Most goal directed actions comprise a se-
quence of actions such as the painting task in this scenario
which requires: Searching for a “color bucket” (high cuboid),
collecting color from it, searching for a “canvas” (small
cuboid) and applying the collected color on it. Those actions
themselves may be described as sequences of more elemen-
tary actions, e.g. searching comprises the sequence of recall-
ing a cuboid’s position, driving to the position and visually

searching for the cuboid, while collecting and applying com-
prise reaching followed by picking up or dispensing color.

Such a sequence of actions (or composite IiA) is realized
through an intention-field that simultaneously activates all
IiAs involved in the sequence and an inhibiting precondition
node for each IiA. The combination of activating and speci-
fying the input of an IiA, while simultaneously inhibiting it,
represents a prior intention. The prior intention turns into an
IiA once the precondition node is destabilized by the CoS of
a preceding IiA which releases the IiA-field from inhibition
(Richter et al. (2012)). These CoS fields may sustain activa-
tion in a working memory representation of the current stage
within a sequence.

The CoS of a composite IiA is activated through a subset
of CoS representations of comprising IiAs determining the
successful completion of the composite IiA’s goal. This will
inhibit the composites IiAs intention field and subsequently
destabilize all working memory representations of the com-
prising IiAs, thus allowing the same sequence of actions to be
activated again, which is required in the scenario as searching
for a cuboid is part of both collecting and applying color.

Prior intentions may also represent alternative action plans
that may occur when a precondition node is destabilized by a
CoD, for example, due to failing to recall a specific cuboid.

Desire The agent’s desire to observe the change of a cube’s
color into a desired color is the drive for all actions it ex-
ecutes. The desire specifies the agent’s prior intentions of
collecting and applying color through the activation of a be-
lief that matches the desired result color. The desire CoS is
activated through a match between a changing color detected
by the visual transient detector and the desired color, which
leads to a subsequent inhibition of the desire returning the
field architecture to its initial state.

Results
Figure 4 shows activation snapshots of selected fields display-
ing the formation of CoS peaks during a successful painting
sequence. In snapshot t1 the desire to paint a cube yellow
feeds into the result-role field (left column), which triggers a
detection instability in belief node B4 leading to a complete
belief representation through the emergence of peaks in the
canvas and coat role fields (right column). The coat color
leads to an activation of the collect IiA to retrieve blue color
and a prior intention to apply the color to a purple canvas,
which is represented through a sub-threshold peak in the ap-
ply IiA field.

At t2 the IiA collect activates the “bucket” concept, a high
cuboid, which is forwarded as a recall cue to the space/color
and space/height memory fields respectively. The collect
color also forms the prior-intention to visually search for blue
color (left column). The color/height cue leads to the emer-
gence of a single memory peak at the location of the blue/high
cuboid, which is read out across space and leads to the forma-
tion of a peak in the IiA drive (right column).

The left column of snapshot t3 shows the IiA drive-field
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Figure 4: Activation snapshots of selected fields displaying the formation of CoS peaks during a successful painting sequence.

representing the desired goal in the center of the world space,
which does not match the currently perceived position. Once
movement causes a match between desired and perceived po-
sition, a peak emerges in the CoS field causing the termina-
tion of the drive IiA (right column).

The detection instability in the drive CoS leads to an au-
tonomous transition to the visual search IiA, which is released
from inhibition through the precondition node at t4 (left col-
umn). Ridges of searched color and height are induced in the
perception fields causing the emergence of supra-threshold
peaks at overlapping positions. (right column).

A match of height and color is detected through the vi-
sual search CoS (not shown), which leads to an autonomous
transition to the reaching IiA at t5 by forming a peak at the
perceived retinal position in the two dimensional reach IiA
field (left column). The reaching IiA is destabilized after a
successful arm movement leads to detection instability in the
reach CoS-field due to an overlap between proprioception of
the eef and the reach goal position (right column).

Snapshot t6 shows the detection of a color change in the
visual scene by the transient detector after the agent success-
fully collected the color and dispensed it on the purple cube
(left column). Activation of the dispense IiA (not shown)

changes the color of the purple cube to yellow, which forms a
supra-threshold in the transient detector at the conjunction of
left and yellow. The color of the perceived change matches
with the desired color and leads to the emergence of a peak
in the desire CoS which causes a subsequent destabilizing of
the desire to paint a cube yellow (right column).

Discussion
We present a neural dynamic architecture that endows a
robotic agent with the capability to generate intentional states
of the six major psychological modes. Self-stabilized peaks
of activation within neural populations determine the content
of an intentional state while the state’s psychological mode
is determined by how the neural population is positioned
within a neural dynamic architecture. The CoS of intentional
states is modeled through the detection-instability of dynamic
neural fields with the DoF determining under which circum-
stances the instability emerges.

The architecture is demonstrated in a toy scenario, where
the agent seeks particular perceptual states (desires), and uses
beliefs about contingencies of which paint transforms which
color into which new color, to plan sequences of action (prior
intentions) based on its current scene representation (mem-
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ory). The agent follows these plans by driving towards ob-
jects and interacting with them (intention-in-action), if they
visually match specified feature combinations (perception).
Beliefs about the three different color roles are learned au-
tonomously during each painting sequence.

Similar goals are pursued by Schrodt and colleagues
(Schrodt & Butz, 2016; Schrodt et al., 2017), who learn
production rules within a cognitive architecture. That work
is framed within a probabilistic approach, which is par-
tially embedded in neural networks. Our methods to achieve
autonomous sequencing overlap with techniques developed
in (Kazerounian & Grossberg, 2014). Globally speaking,
we pursue similar aims as the research program of cogni-
tive architectures (Anderson, 1996). Our emphasis is to
be pervasively consistent with neural principles, generating
the sequence of processing steps autonomously from neural
dynamics alone. Although the functions fulfilled by por-
tions of the neural dynamics can be described using con-
cepts of information processing, the system is simply a set
of integro-differential equations that generate time courses
of activation. These integro-differential equations capture
the time-continuous evolution of activation in populations of
cortical and subcortical neurons (Erlhagen, Bastian, Jancke,
Riehle, & Schöner, 1999). It remains a challenge to pro-
vide direct neural support for a complex model like ours (see
(Wijeakumar, Ambrose, Spencer, & Curtu, 2017) for an out-
line of how that may happen). Empirical support for a model
like ours may also be sought in the form of behavioral signa-
tures of the neural dynamics, an approach that has been suc-
cessful for past DFT models. The highly integrative nature of
the model makes this difficult, but perhaps not impossible.

Future modeling tasks include scaling the demonstrated
principles to more complex task-environments, elaborating
the simplistic account for desires, and addressing how be-
lieved propositions may be both true and false.

In conclusion, we have explored the requirements on neu-
ral processes that arise when embodied cognitive systems are
endowed with intentional states of the two directions of fit
and the six psychological modes that provide a foundation
for intentionality.
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