Neural Dynamics For Embodied Cognition: Dimensions, binding

Gregor Schöner Institute for Neural Computation (INI) Ruhr-University Bochum

Survey

Foundations I: Neural dynamics [GS]

- Introduction to Cedar/Instabilities in DFT [Stephan Sehring]
- Foundations 2: Dimensions/Binding [GS]

Cedar architecture: visual search [Raul Grieben]

Foundations 3:Toward grounded cognition [GS]

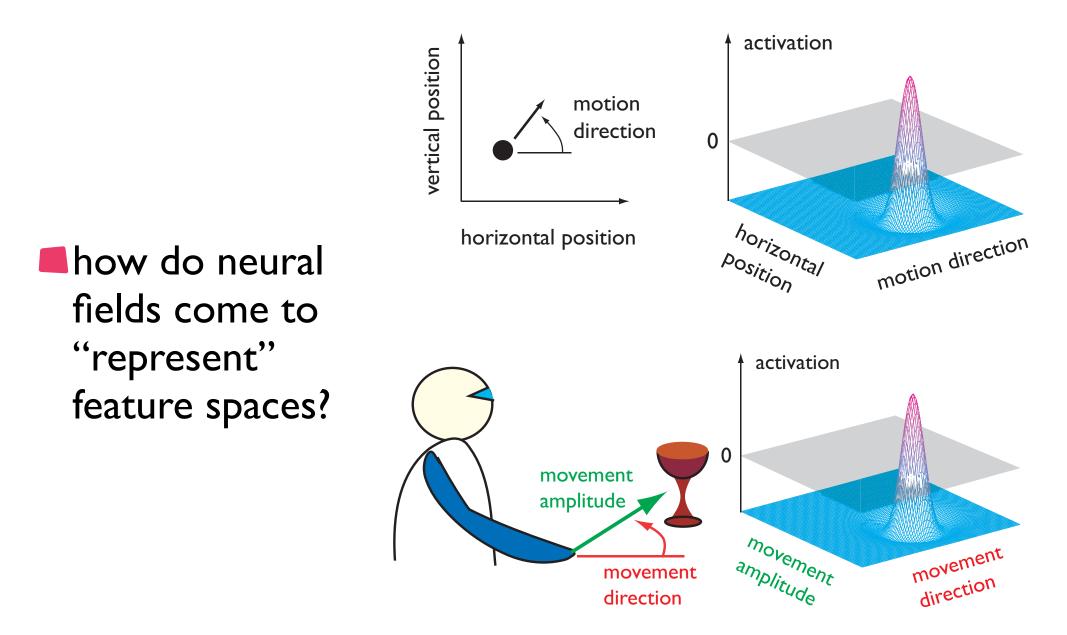
Cedar architecture: relational grounding [Daniel Sabinasz]

Foundations 4: Sequence generation [GS]

Cedar architecture sequence generation [Minseok Kang]

the dimension of neural fields two forms of binding scene representations visual search

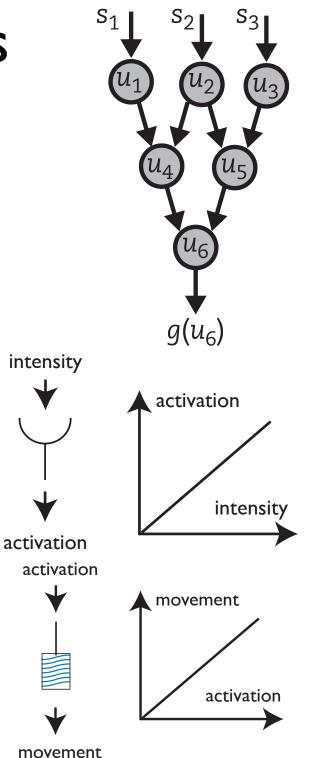
Where do the dimensions of neural fields come from?



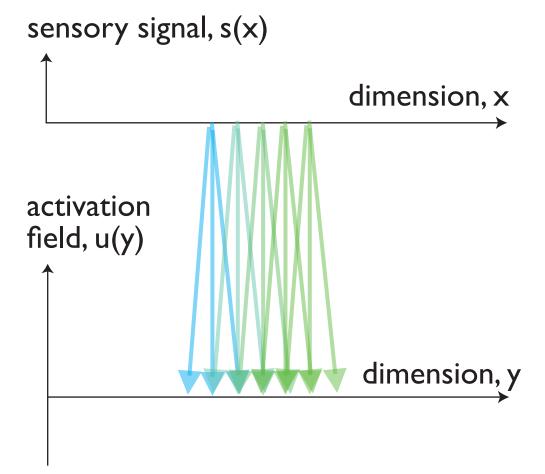
Neural networks

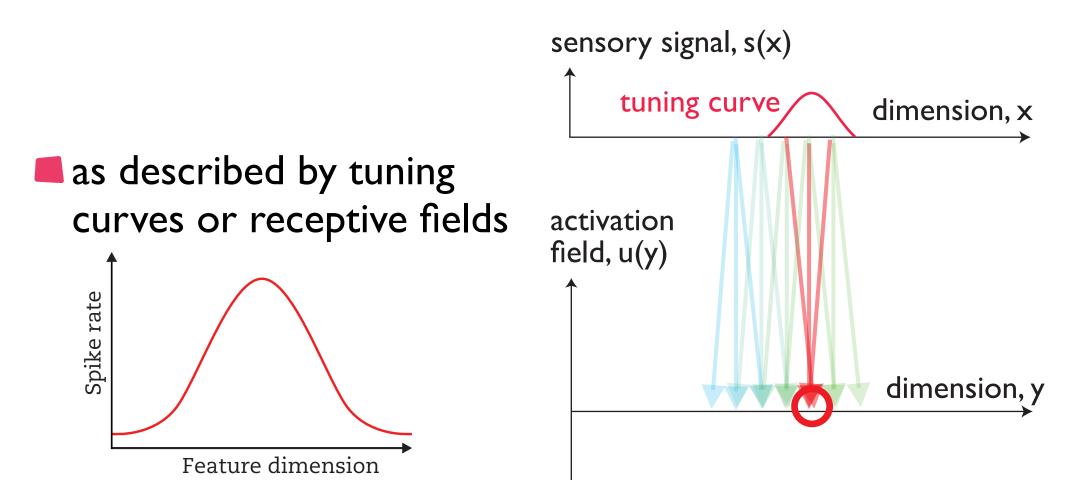
forward connectivity determines "what a neuron stands for"= space code (or labelled line code)

- while the activation level may "stand for" intensities =rate code
- generic neural networks combine both codes

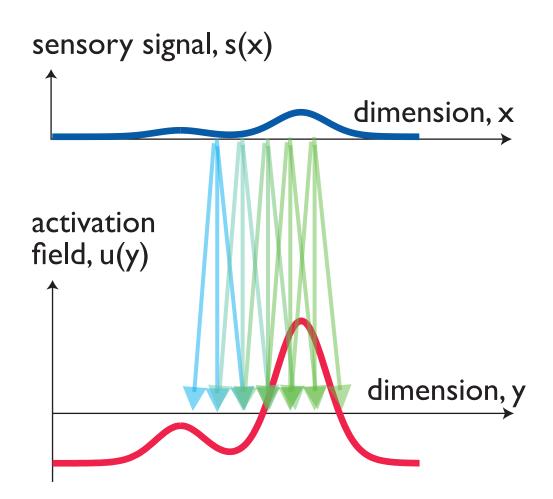


forward connectivity from the sensory surface extracts perceptual feature dimensions

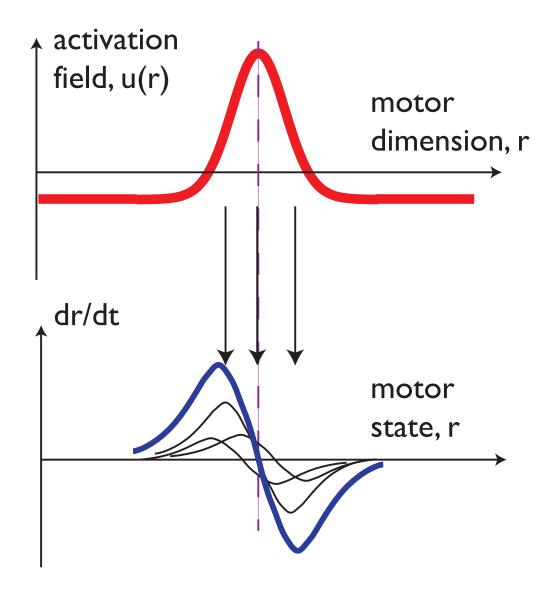




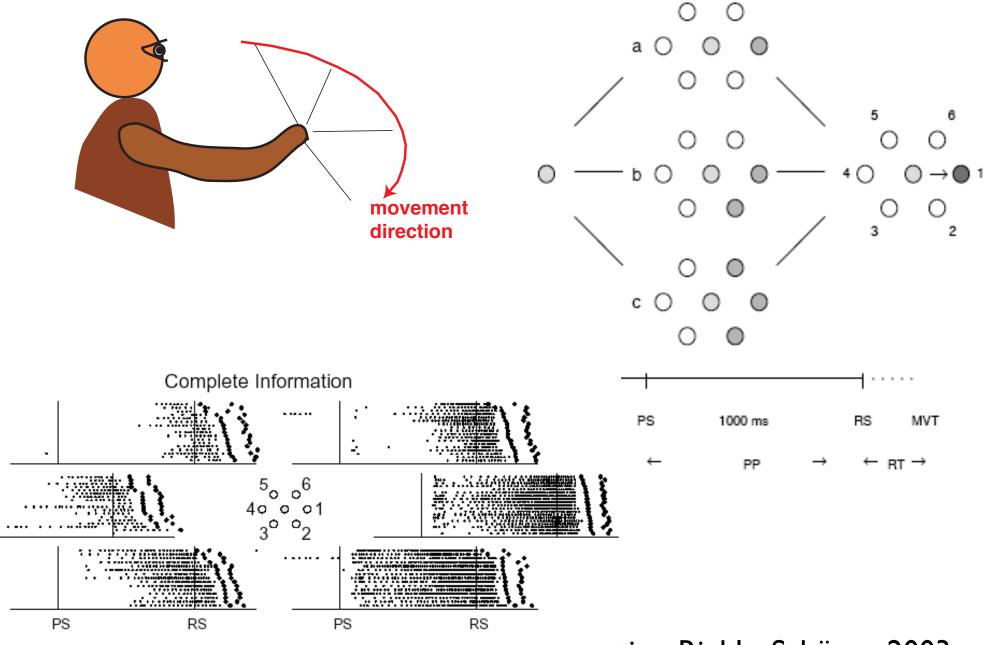
- => neural map from sensory surface to feature dimension
- neglect the sampling by individual neurons => activation field



- analogous for projection onto to motor surfaces...
- which actually involves behavioral dynamics (e.g., through neural oscillators and peripheral reflex loops)



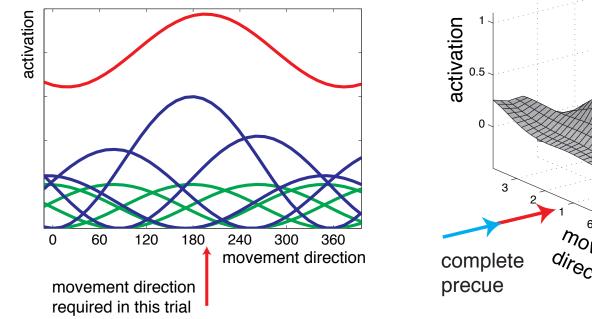
Neural estimation of fields

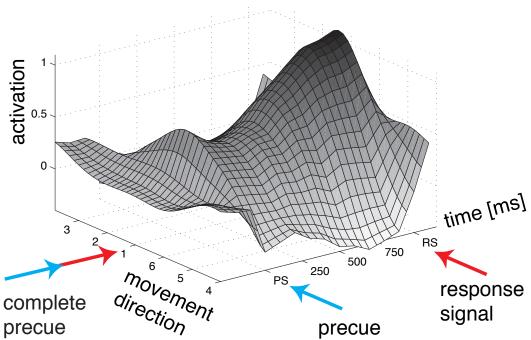


Bastian, Riehle, Schöner, 2003

Distribution of Population Activation (DPA) <=> neural field

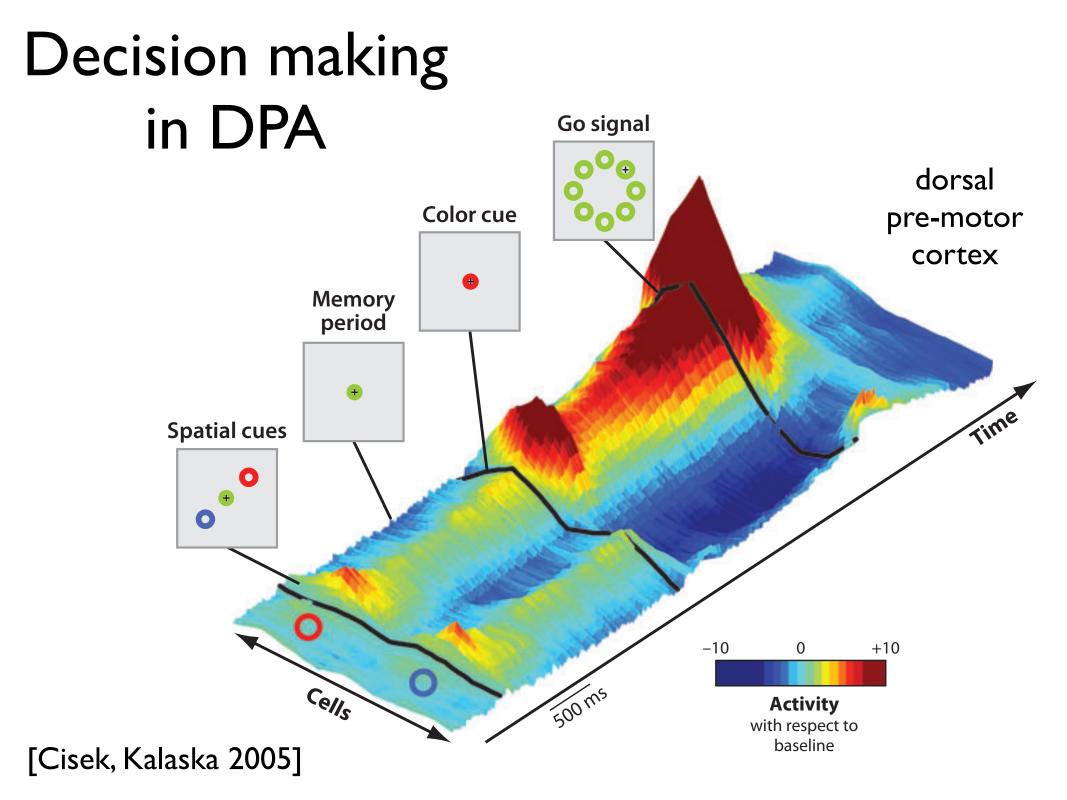
Distribution of population activation =





note: neurons are not localized within DPA!

[Bastian, Riehle, Schöner, 2003]

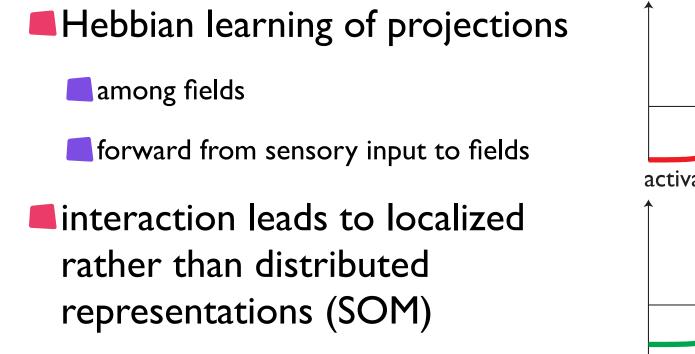


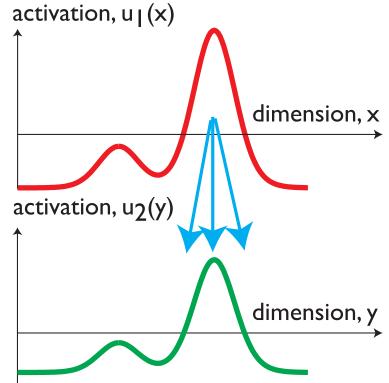
Patterns of connectivity gives neural fields meaning

how does the connectivity arise?

morphogenesis... modeled by fixed connectivity

Hebbian learning





$$\tau \dot{W}(x, y, t) = \epsilon(t) \Big(-W(x, y, t) + f(u_1(x, t)) \times f(u_2(y, t)) \Big)$$

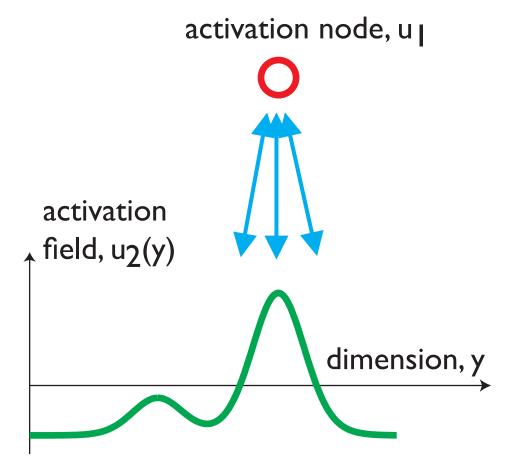
[Sandamirskaya, Frontiers Neurosci 2014]

Hebbian learning

learning reciprocal connections between zerodimensional nodes and fields

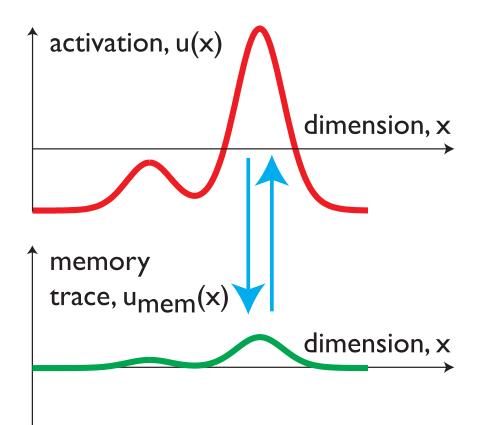
analogous to the output layer of DNN

=> ensembles of such nodes coupled inhibitorily form the basis for conceptual thinking...



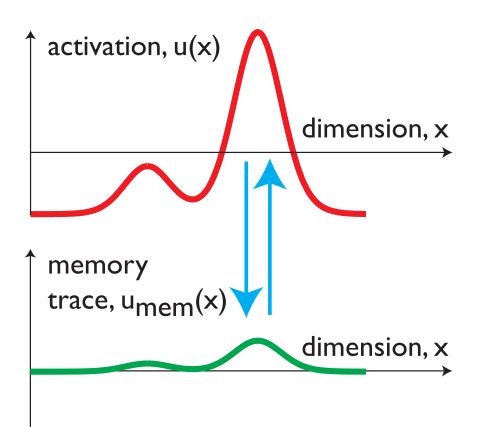
The memory trace

- facilitatory trace of patterns of activation
- in excitatory field: leads to sensitization
- in inhibitory field: leads to habituation

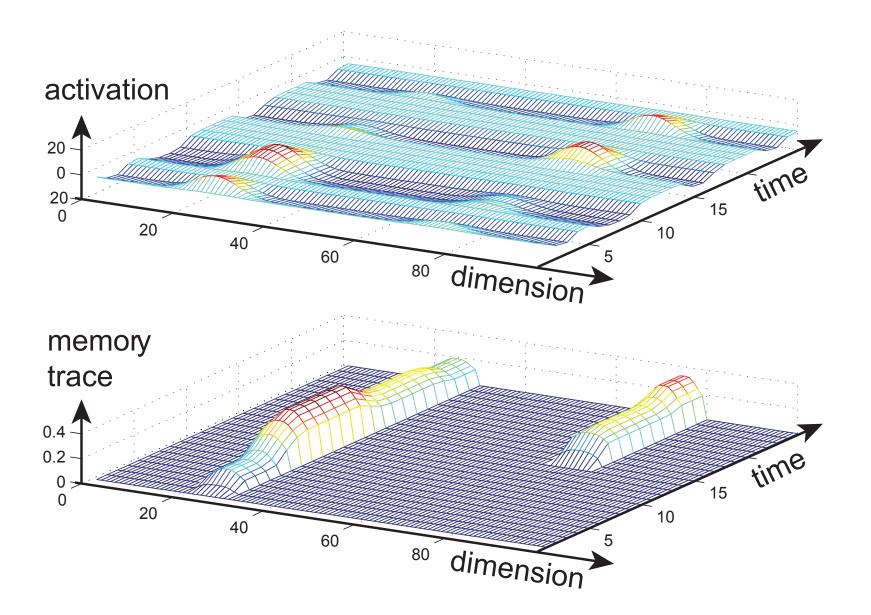


The memory trace

$$\tau \dot{u}(x,t) = -u(x,t) + h + s(x,t) + \int dx' w(x-x') \ \sigma(u(x',t)) + u_{\text{mem}}$$
$$\tau_{\text{mem}} \dot{u}_{\text{mem}}(x,t) = -u_{\text{mem}}(x,t) + \sigma(u(x,t))$$
$$\tau_{\text{mem}} \dot{u}_{\text{mem}}(x,t) = 0 \quad \text{if} \int dx' \sigma(u(x',t)) \approx 0$$

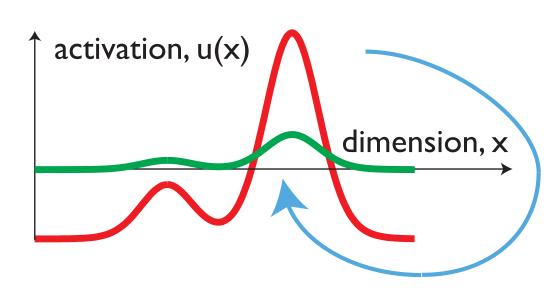


=> the memory trace reflects the history of detection decisions



Memory trace ~ first-order Hebbian learning

- increases local resting level at activated locations
- the bias input in NN
- boost-driven detection instability amplifies small bias => important role in DFT

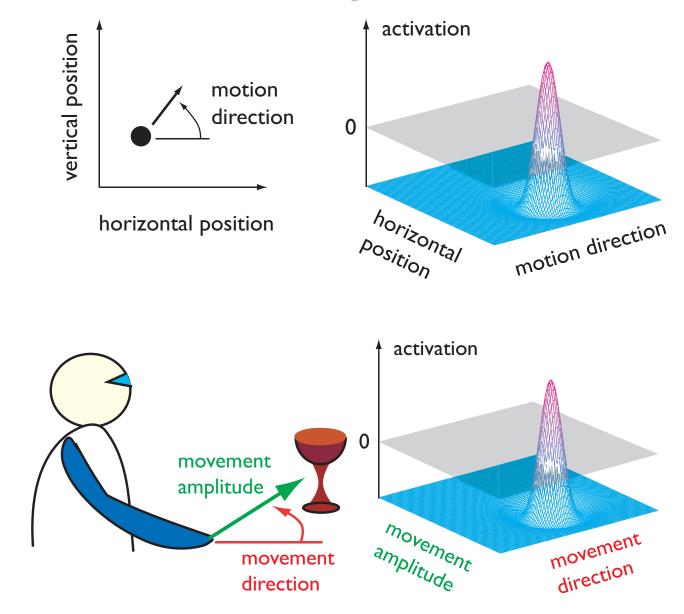


The memory trace is functionally different from conventional Hebbian learning

- the memory trace enables the re-activation of a past pattern of activation even when the input that caused the past pattern of activation is absent
- this is the basis for cued recall in DFT

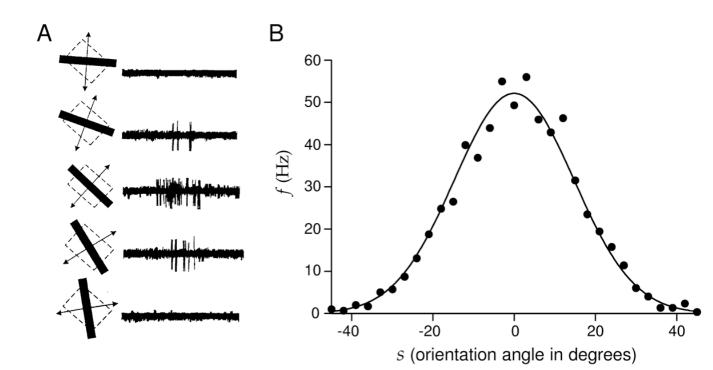
the dimension of neural fields two forms of binding scene representations visual search

Fields may jointly represent different dimensions: examples



Neurons may be tuned to multiple different feature dimensions

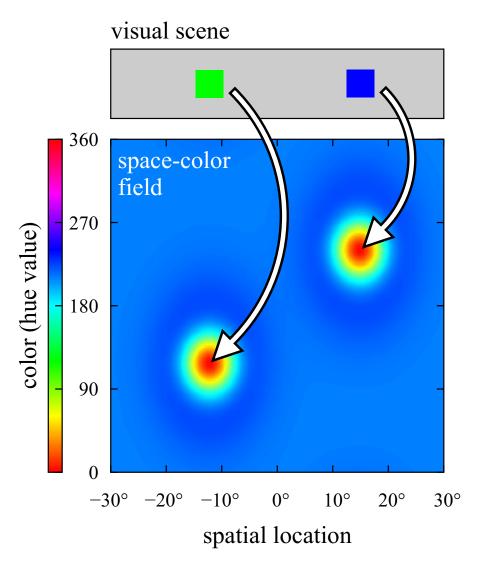
- example: receptive field + direction tuning
- => combines visual space and orientation
- => "anatomical" binding



[Hubel, Wiesel, 1962]

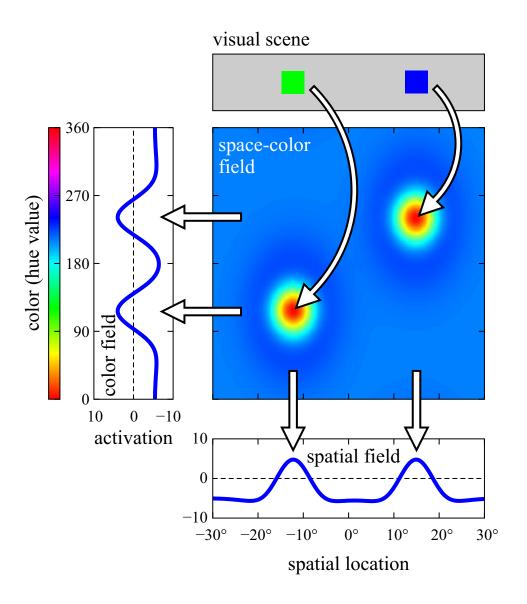
Combining different feature dimensions

example: a joint representation of color and visual space "binds" these two dimensions



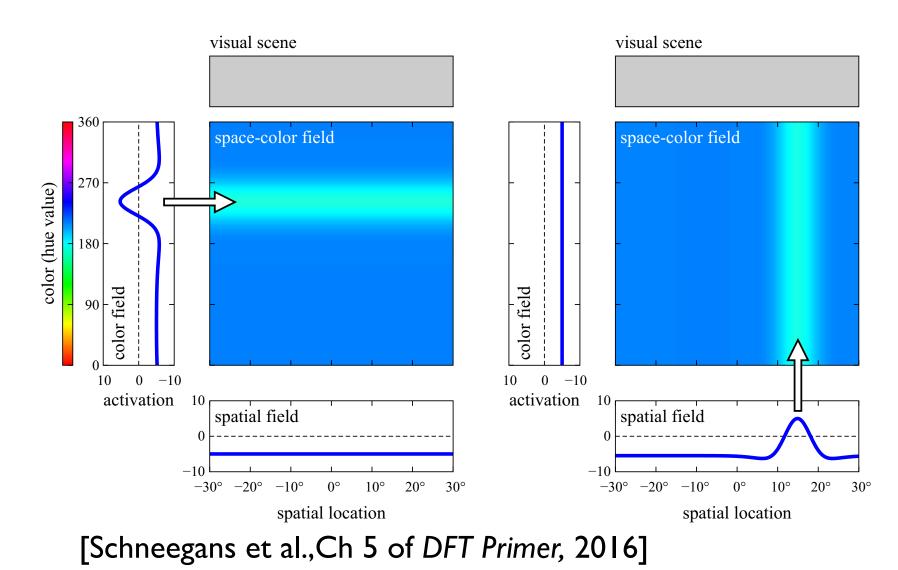
Extract the bound features

- project to lowerdimensional fields
- by summing along the marginalized dimensions
- (or by taking the softmax)

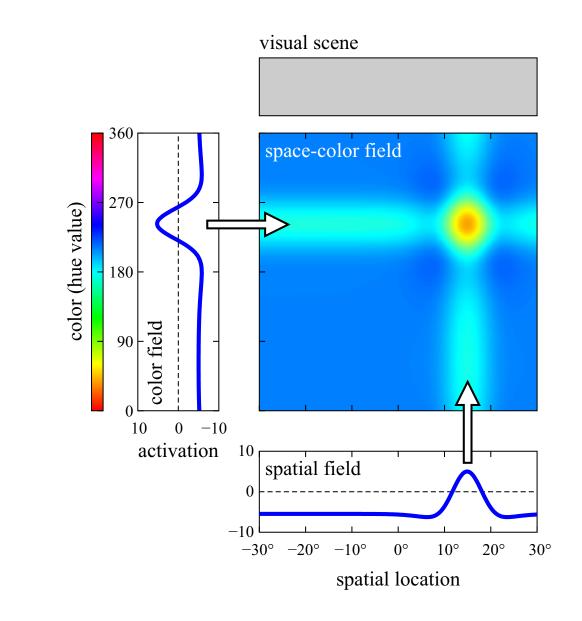


Assemble bound representations

project lower-dimension field onto higherdimensional field as "ridge input"

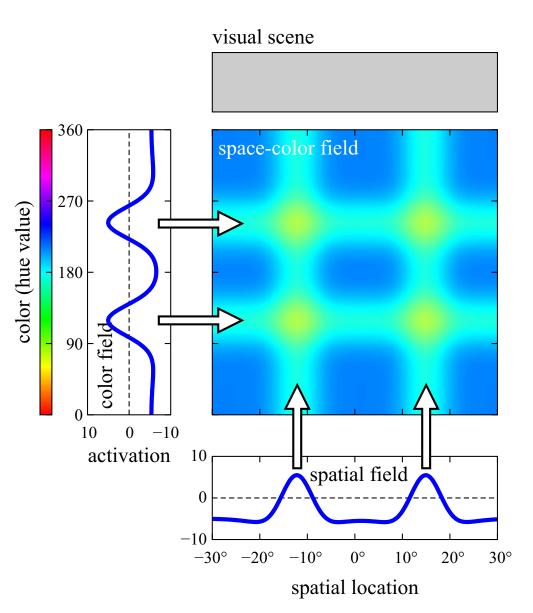


Assemble bound representations



Assemble bound representations

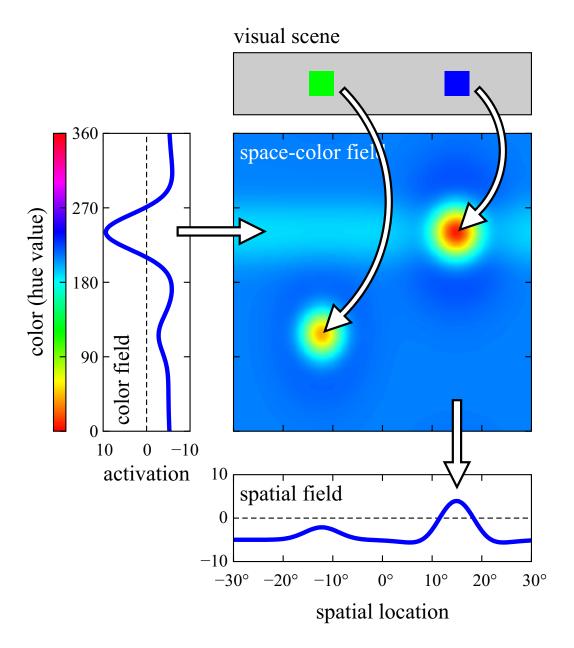
- binding problem: multiple ridges along lower-dimensional space lead to a correspondence problem
- => assemble one object at a time...
- => sequentiality bottleneck!



Search

- ridge input along one dimension extracts from bound representation matching objects
- other dimensions of those objects can then be extracted

e.g. visual search



Scaling feature dimensions

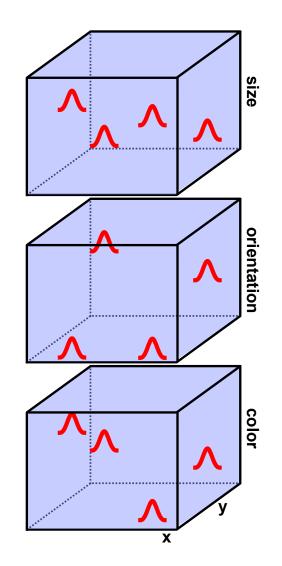
=>

- 2 spatial dimensions
- depth 🛋
- orientation
- color
- texture 🗧
- movement direction
- size

- e.g. 8 dimensions
- 100 neurons per dimension
 - $= 10^{2*8} = 10^{16}!$
 - more than there are in the entire brain!
 - > only small sets of feature dimensions can be bound "anatomically"

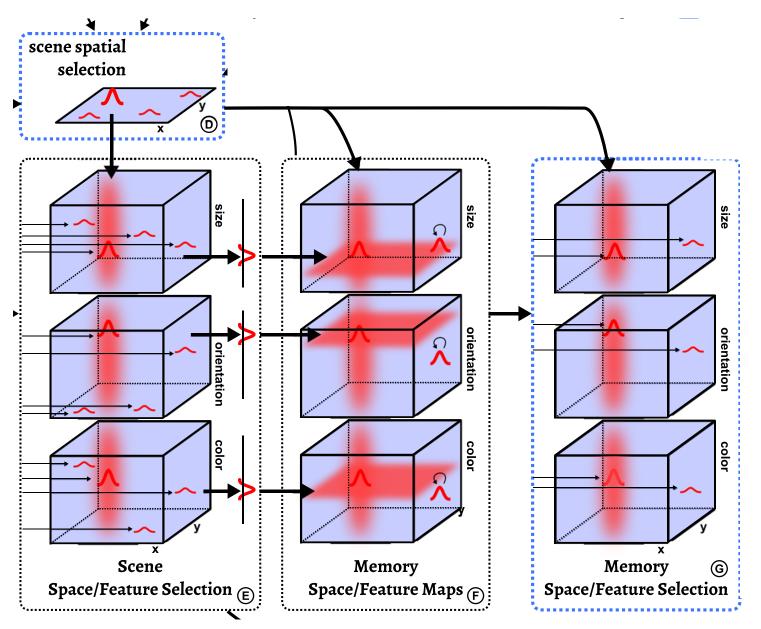
Binding through space

- many 3 to 4 dimensional feature fields
- all of which share the one dimension: visual space (~all neurons have receptive fields)
- bind through space à la Feature Integration Theory (Treisman)

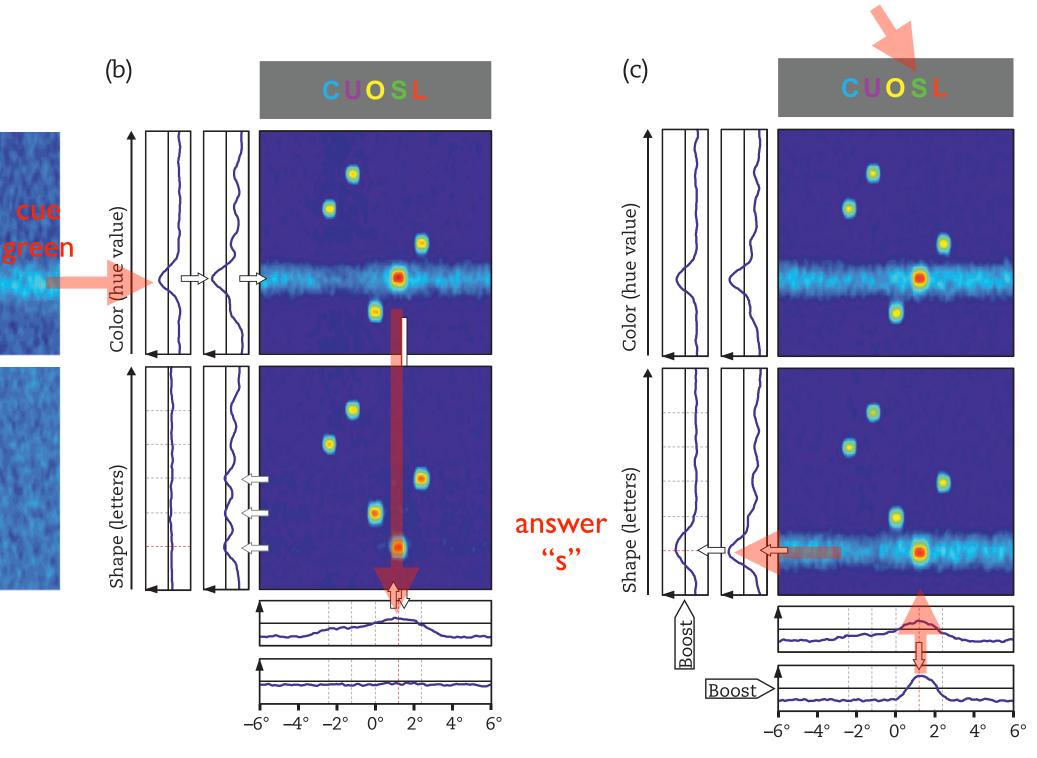


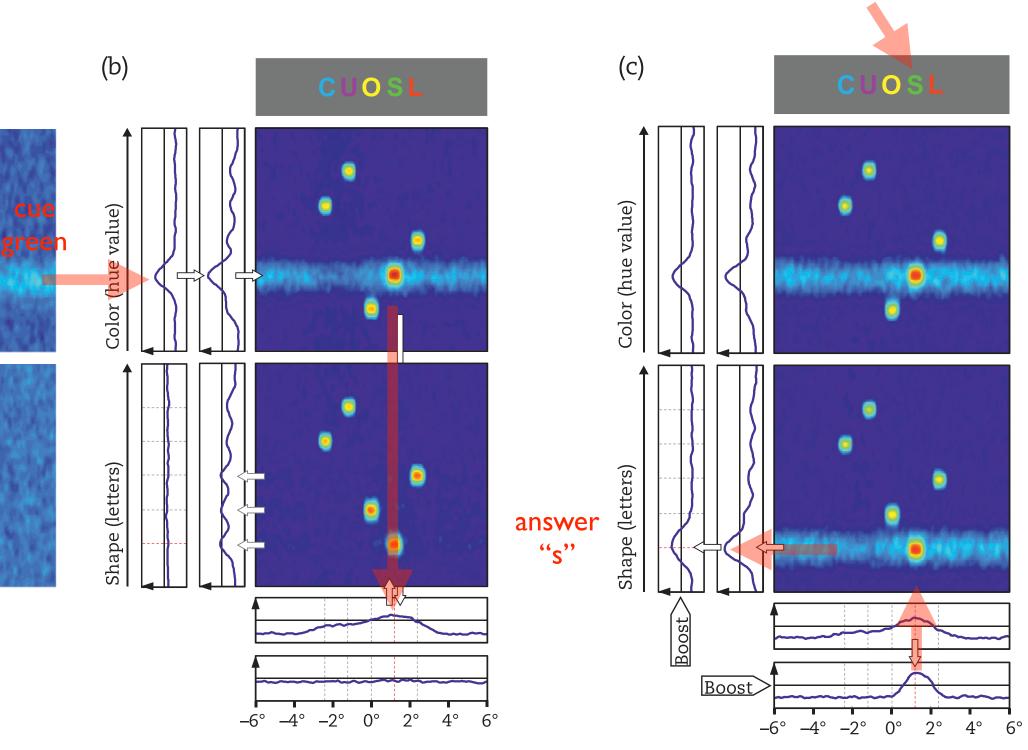
[Grieben et al. Attention, Perception & Psychophysics 2020]

Binding through space

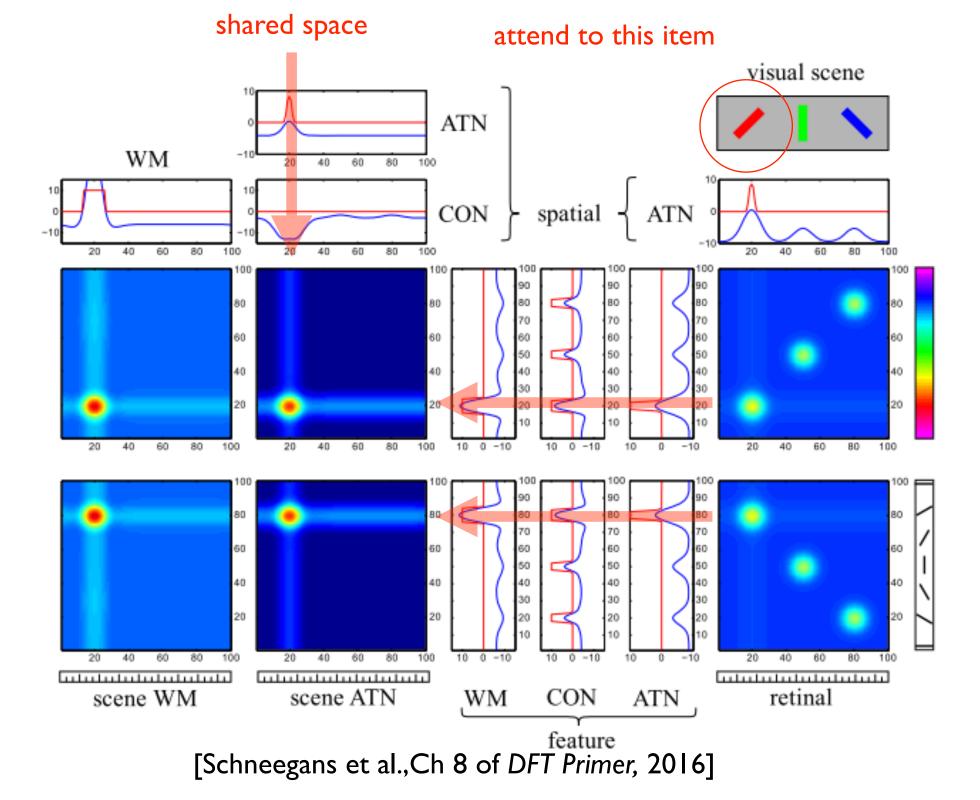


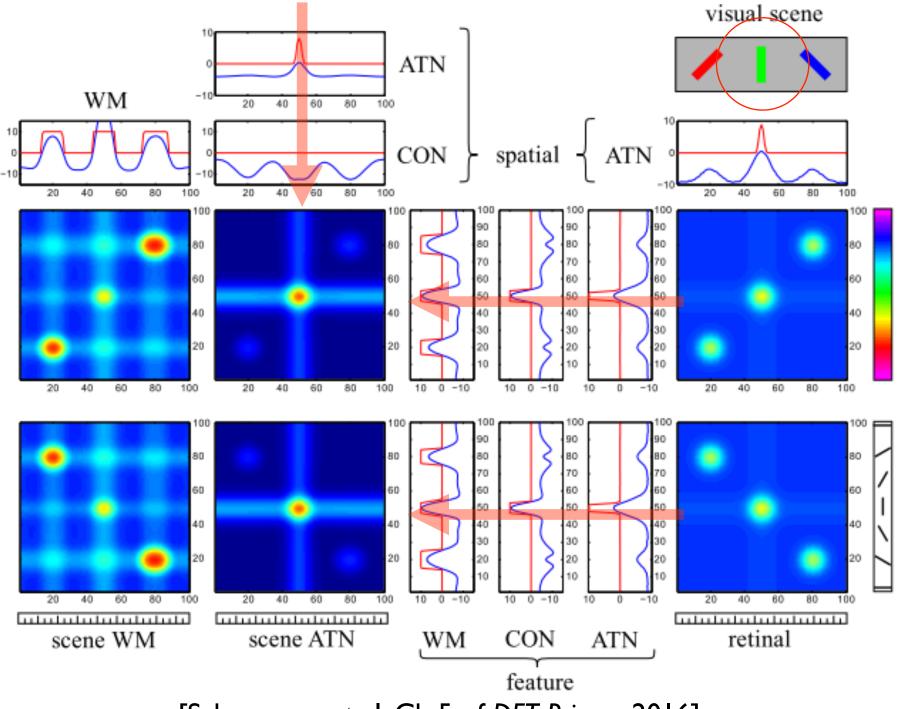
[Grieben et al. Attention, Perception & Psychophysics 2020]

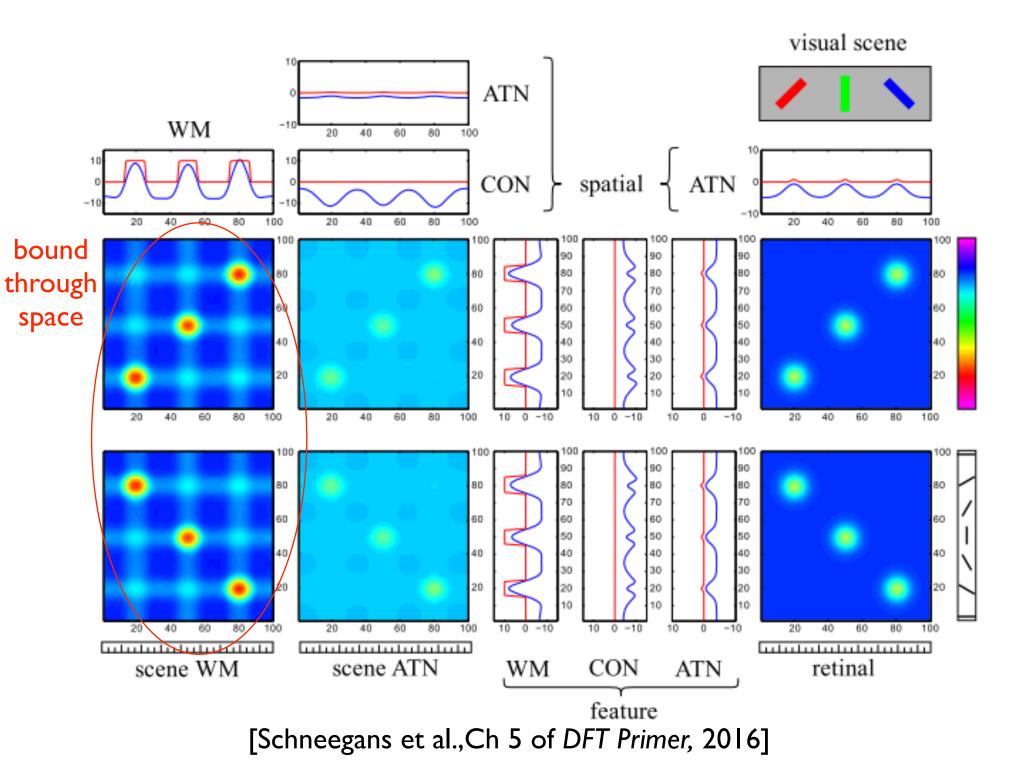




the dimension of neural fields two forms of binding scene representations visual search





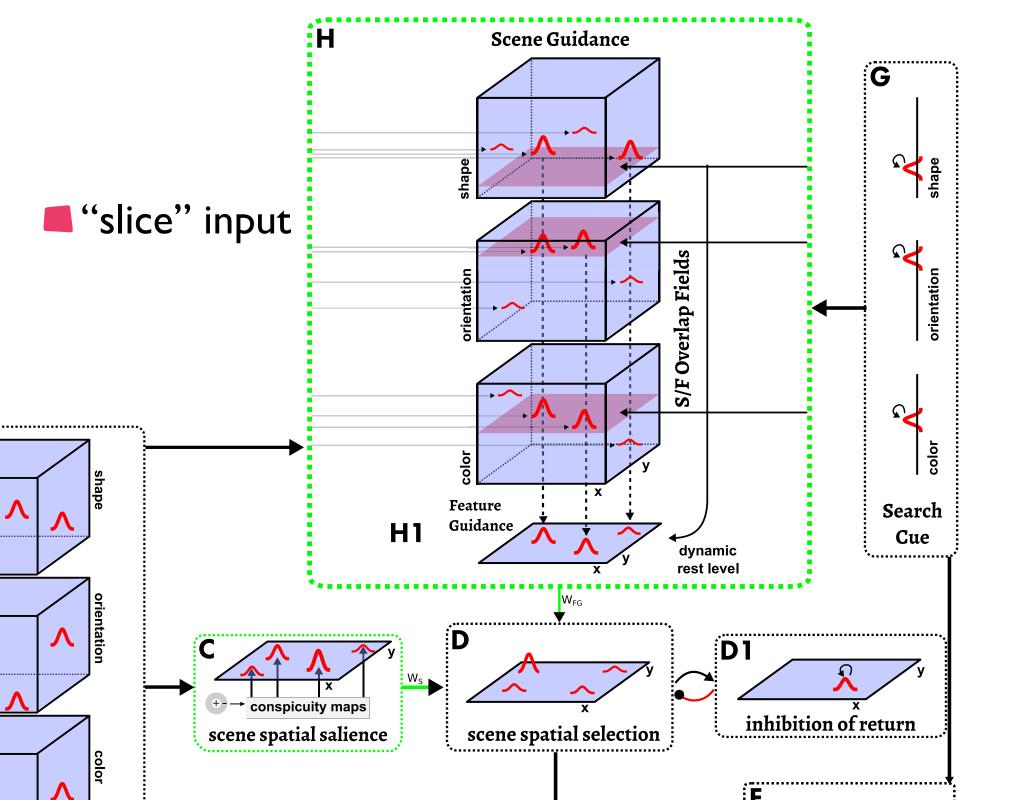


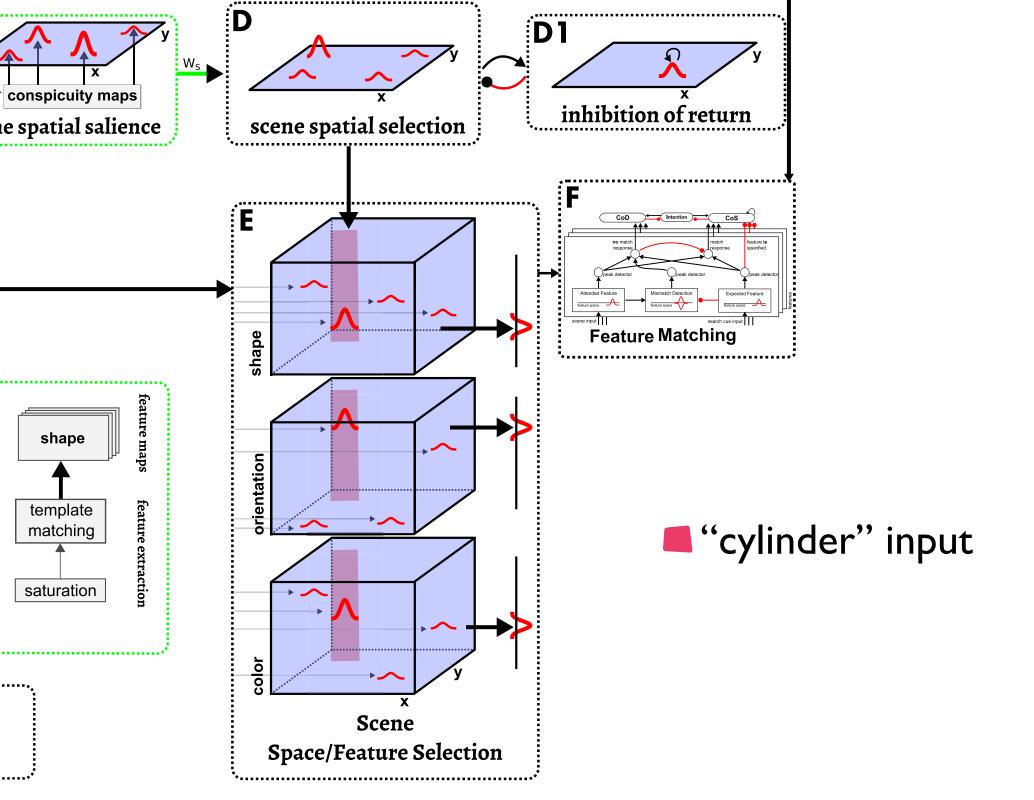
the dimension of neural fields two forms of binding scene representations visual search

Conjunctive visual search

H **Scene Guidance** G hai S/F Overlap Fields orientatio ŧΒ č Feature Л Search Guidance H1 Cue dynamic rest level D D1 Q conspicuity maps inhibition of return scene spatial salience scene spatial selection έE Scene Space/Feature Maps shape Feature Matching A2 orientation color shape ientati template $\Theta O O \Theta$ rate to matching space code hue value saturation saturation **Camera Processing** A1 的出出 Scene **Space/Feature Selection Camera** Image

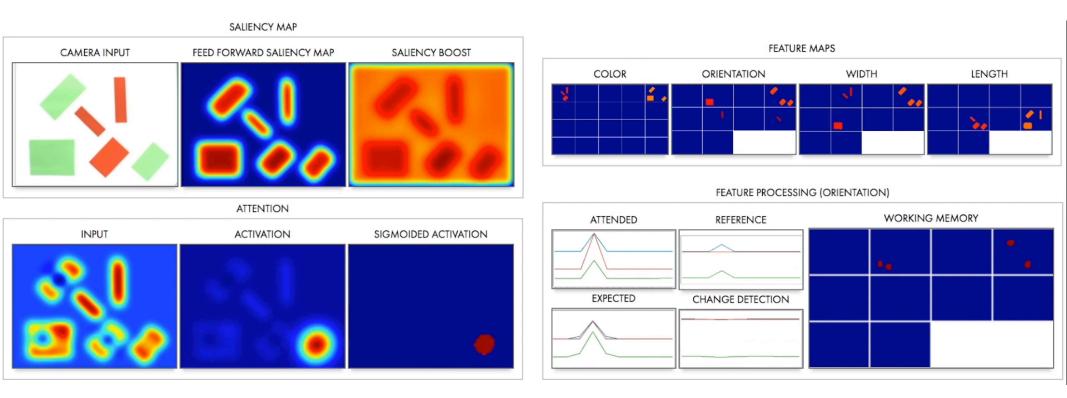
[Grieben et al. Attention, Perception & Psychophysics 2020; CogSci 2021]





Visual search

=> hands on exericse



[Grieben et al. Attention, Perception & Psychophysics 2020]

the dimension of neural fields two forms of binding scene representations visual search