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Basic Terminology
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In the classical view of Anne Treisman, visual search was either parallel or serial.
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Jeremy Wolfe, on the other hand, described the efficiency of visual search as
forming a continuum.
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He defined the slope of the RT against set size function as the measure of
efficiency.



single feature search
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By this measure, single feature search is efficient as the reaction times are
independent of set size.



single feature search
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The target pops out.
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In the conjunctive condition RTs are proportional to the number of distractor items.




single feature search conjundiive search
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Conjunctive search is, therefore, considered inefficient.



Understanding the interplay between
bottom-up processing and top-down
guidance in visual search




Bottom-Up and Top-Down Attention

e Attention can be categorized into two distinct functions

Bottom-up attention Top-down attention

) ﬂ Where keys should be /

X




Bottom-Up and Top-Down Attention
e Attention can be categorized into two distinct functions

Bottom-up attention
e Attentional guidance driven
purely by external factors




Bottom-Up and Top-Down Attention
e Attention can be categorized into two distinct functions

Bottom-up attention

e Attentional guidance driven
purely by external factors

e Saliency of stimuli depend on
their inherent properties relative
to the background




Bottom-Up and Top-Down Attention
e Attention can be categorized into two distinct functions

Bottom-up attention

e Attentional guidance driven
purely by external factors

e Saliency of stimuli depend on
their inherent properties relative
to the background

* E.g., local feature contrasts like
red/green or sudden movement




Bottom-Up and Top-Down Attention
e Attention can be categorized into two distinct functions

Bottom-up attention

e Attentional guidance driven
purely by external factors

e Saliency of stimuli depend on
their inherent properties relative
to the background

 E.g., local feature contrasts like
red/green or sudden movement

* Is the phylogenetically older
system
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Bottom-Up and Top-Down Attention

e Attention can be categorized into two distinct functions

Top-down attention

e Attentional guidance driven by
internal factors

* Like prior knowledge, current task
or goal, etc...

* Guidance of visual search: e.g.
the location of a known object is
unknown in the current scene
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s visual search a
top-down or
bottom-up process?



Found (1998) - Parallel coding of conjunctions in visual search
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Proulx (2007) - Bottom-Up Guidance in Visual Search for Conjunctions

A Target is present and is a size singleton: TSing B Size distractor shares target orientation: NS-O C Size distractor shares target color: NS-C
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Nordfang and Wolfe (2014) - Guided search for triple conjunctions
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Nordfang and Wolfe (2014) - Guided search for triple conjunctions
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The interaction between a target of one type
and different mixtures of distractors is
systematic, but not trivial to Model.

Nordfang and Wolfe (2014)
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Model Results - Nordfang and Wolfe (2014)
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Model Results - Nordfang and Wolfe (2014)

Experiment Nordfang and Wolfe (2014), Ex. 1b: mean reaction times
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Model Results - Nordfang and Wolfe (2014)

Experiment Nordfang and Wolfe (2014), Ex. 4: mean reaction times
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Model Results - Nordfang and Wolfe (2014)

Experiment Nordfang and Wolfe (2014), Ex. 6: mean reaction times
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Model Results — Proulx (2007)

Experiment Proulx (2007): mean reaction times
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Model Results — Proulx (2007)

900 Experiment Proulx (2007): mean reaction times 560 Model (CoD regulation boost = 0.1, top-down only)
-8~ TSing y = 18x + 624, r2 = 0.9842 -e- TSing y = 27x + 270, r2 = 0.9993
NS-Cy = 33x + 589, r2 = 0.9759 NS-Cy=27x+273,r2=1.0
- NS-Oy =29x + 613, r2 = 0.9631 -e- NS-Oy = 27x + 270, r2 = 0.9999

800 460
) )
] [}
n (2]
E E
(] Q
= £
= =
C c
e he)
© ©
© [3)
3] [0}
o o

700 360 -

600 T T T 260 | | T

3 5 9 3 5 9

Set Size Set Size



Reaction Time (msec)
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Experiment Found (1998): mean reaction times, correlated conditions
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Experiment Found (1998): mean reaction times, uncorrelated conditions
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The Role of Memory
in Visual Search
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Experiment

condition 1 condition 2 condition 3

(1) 200 ms
(2) - 800 ms
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Grieben et al. Scene memory and spatial inhibition in visual search. Atten Percept Psychophys (2020)



Undisputed —the no memory case

In a special case of inefficient conjunctive
search it is well known that the average
number of visited items is:
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In this special case each item in the search
array has the same selection probability
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Reason 1 — Target is In memory

* The probability that the target is in memory:
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Reason 2 — Location of objects in memory are
inhibited if target is not in memory

The set size is now reduced by the capacity
limit:
s—CL+1
2

CL is the capacity limit of working memory
S is the set size (total number of items)
s>0

The average number of visited items is now:

s—CL+1
2
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The effect on the y-intercept is
The effect on the slope is
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Experiment 1 - RT
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19 participants

the search slope in condition 3 was significantly

steeper than in condition 2
(t(17)=2.639; p=.017; d=.593)

Calculated ratio for CL=3 was:
0.4256
0.5

Ratio from experimental data is:

29.40653
34.42764

This is the first experimental observation of
the combined effect of guidance (Reason 1)
and inhibition (Reason 2) from working
memory in this kind of task

= 0.8512

= 0.8542

Grieben et al. Scene memory and spatial inhibition in visual search. Atten Percept Psychophys (2020)



Experiment 2

Grieben et al. Scene memory and spatial inhibition in visual search. Atten Percept Psychophys (2020)
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Experiment 2 - RT
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The lower set sizes (4, 6, 8) of condition 2
showed the typical signature of an in-memory
search.

So we analyzed slopes separately for the three
lowest set sizes (4, 6, 8) and the higher set sizes
(8, 14, 18).

Grieben et al. Scene memory and spatial inhibition in visual search. Atten Percept Psychophys (2020)



Experiment 2 - RT

1400

e Cond. 2a,y=43.85x+38940,r*=1.000
o Cond.2b,y = 22.88x +566.15, 12 = 0.971
= Cond. 3a,y = 28.97x +655.51, 2= 1.000
= 12001 o Cond. 3b,y = 22.49x +703.60, r = 0.993
3
o i ——
2 1000
— 3 )
S = -
g 8004 .
o A
6004
-

KA

1 1 1 1 1 1 1 1 1
4 5 6 7 8 9 10 11 12 13 14 15 16 17
Set Size

18

Experiment 2 showed that the inhibitory effect
of working memory on the efficiency of visual
search can easily be disrupted, without
interfering with the content and guidance from
working memory.

=> same slope, different y-intercept
Supporting the notion that inhibition comes
from a separate memory subsystem.
Experiment 2 also suggested that this separate
(spatial) memory subsystem is less stable than
scene memory.

Grieben et al. Scene memory and spatial inhibition in visual search. Atten Percept Psychophys (2020)
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Model Results — Experiment 1

Experiment 1: mean reaction times Model (CoD regulation boost = 0.03)
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Reaction Time (msec)

Model Results — Experiment 2

Experiment 2: mean reaction times

1400
-e- Cond. 1y =0.7507x + 695.21, r2 = 0.1844
1300 4 Cond. 2y = 28.4757x + 481.48, r2 = 0.9681
-~ Cond. 3y = 23.7432x + 684.66, r2 = 0.9957
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Model (CoD regulation boost = 0.15)
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Model Results — Experiment 2

Experiment 2: mean reaction times

1400
-e- Cond. 2ay = 43.8498x + 389.4,r2=1.0
1300 Cond. 2by = 22.8819x + 566.15, r2 = 0.9707
-e- Cond. 3ay = 28.9662x + 655.51, r2 = 0.9998
Cond. 3by = 22.4866x + 703.6, r2 = 0.9933
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Questions?

Thank you for your attention!
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