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8;; Abstract

Despite considerable progress in the field of automatic multi-target
079 . L .

tracking, several problems such as data association remained challeng-
080 ing. On the other hand, cognitive studies have reported that humans
081 can robustly track several objects simultaneously. Such circumstances
082 happen regularly in daily life, and humans have evolved to handle
083 the associated problems. Accordingly, using brain-inspired processing
084 principles may contribute to significantly increase the performance of
085 automatic systems able to follow the trajectories of multiple objects. In
086 this paper, we propose a multiple-object tracking algorithm based on
087 dynamic neural field theory which has been proven to provide neuro-
088 plausible processing mechanisms for cognitive functions of the brain.
089 We define several input neural fields responsible for representing previ-
090 ous location and orientation information as well as instantaneous linear
091 and angular speed of the objects in successive video frames. Image pro-

cessing techniques are applied to extract the critical object features

092
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including target location and orientation. Two prediction fields antic-
ipate the objects’ locations and orientations in the upcoming frame
after receiving excitatory and inhibitory inputs from the input fields
in a feed-forward architecture. This information is used in the data
association and labeling process. We tested the proposed algorithm
on a zcbrafish larvae segmentation and tracking dataset and an ant-
tracking dataset containing non-rigid objects with spiky movements
and frequently occurring occlusions. The results showed a significant
improvement in tracking metrics compared to state-of-the-art algorithms.

Keywords: multiple-object tracking, dynamic field theory, brain-inspired
algorithms

1 Introduction

Multiple-target tracking (MTT) is a key part of many applications in different
scientific areas. In human surveillance systems, it is necessary to know the exact
location of humans in every moment [1-7]. Traffic monitoring systems should
continuously determine the vehicles’ loci [8-10]. In the analysis of biological
systems, the exact location of animals and organisms is required on a fine tem-
poral scale [11-16]. Therefore, developing accurate MTT algorithms is of great
interest in many application areas. However, despite the significant progress
achieved in the last decade [17, 18], the research for robust and efficient online
MTT methods remains a valid goal due to various challenges. Some challenges
depend on environmental conditions. For example, background artifacts such
as rainfall or snowfall in traffic videos or water impurity and bubbles in micro-
scopic videos should be excluded. Other challenges are related to the objects.
For example, the objects in many real-world scenarios are often non-rigid. This
makes it hard to correctly extract the fine details and all parts of the objects.
Particularly relevant for biological organisms, their movements might be very
spiky and therefore difficult to follow. Still other challenges affect the data
association process which may reduce the accuracy of the algorithm because
of wrong labeling. For example, the objects may go under partial or complete
occlusion from time to time.

On the other hand, cognitive MTT studies have revealed that human show
good performance in attending and tracking multiple objects simultaneously
[19, 20]. This ability emerges very early in childhood [21] suggesting that the
basic brain mechanisms supporting its development are already in place at an
early age. This is perhaps not surprising given the evolutionary pressure in
environments with multiple predators and preys. Nowadays, we drive a car on
a highway keeping track of multiple vehicles around us to avoid collision or take
care of groups of children on a playground by monitoring their movements. It
can be thus expected that a realization of the cognitive tracking capacity in a
brain-inspired manner will improve the performance compared to other non-
brain inspired algorithms.
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In this paper, we present an approach to MTT which combines image
processing techniques for object segmentation and feature extraction with
neuro-inspired processing principles for the real-time prediction of the objects’
locations (and orientations). The core part is based on the theoretical frame-
work of Dynamic Neural Fields (DNF, [22]) which describes the activation
dynamics of neuronal populations selective to continuous input dimensions
such as object location or orientation. The DNF model of MTT consists of sev-
eral input fields encoding the information about the location, orientation and
instantaneous linear and angular speed of all moving objects in two successive
frames. In addition, two prediction fields integrate excitatory and inhibitory
inputs from the connected feature fields. The readout of the peak positions of
the evolving activity patterns in the two fields is taken as prediction of the
objects’ locations and orientations in the next frame. This information is then
used in the data association and labeling process, and the field activities con-
tinue to evolve with the updated information as inputs.

The rest of the paper is organized as follows: The relevant literature is reviewed
in Section 2. Section 3 introduces basic concepts of DNF. The details of the pro-
posed algorithm are explained in Section 4. Section 5 discusses practical aspects
of the DNF-based algorithm and compares its performance with state-of-the-
art MTT methods. Finally, a critical discussion of results and conclusions are
presented in sections 6 and 7.

2 Literature review

Multiple target tracking involves finding the exact location of objects in succes-
sive frames. There is a close relationship between MTT and object detection,
object-background discrimination, and segmentation. The idea behind most
MTT algorithms consists of incorporating the following steps: First, detect-
ing the location of to-be-tracked objects using either an object detection or
an object-background discrimination method. Second, using objects’ previous
motion information such as velocity to predict its location in the next frame.
Third, looking for the targets in the previously predicted area when the new
frame arrives and label the matches. Forth, updating both objects’ motion and
appearance information for use in future anticipations. Based on what strat-
egy is applied in each step, different MTT algorithms have been proposed.
Due to numerous applications of MTT in research and industry, the literature
is rich in this area. Also, there are multiple reviews on MTT algorithms with
focus on deep learning [23] or on particle filters [24]. For a thorough review of
different aspects of MTT, we refer to [18].

MTT is also a field of study in the area of cognitive neuroscience. A branch
of MTT algorithms is inspired by specific brain mechanisms when a human
tracks multiple targets simultaneously. For example, experimental studies have
shown that attention and memory are two cognitive processes that play fun-
damental roles during MTT. There are multiple studies on how humans divide
attention and use foveal and peripheral vision to handle MTT challenges such
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as occlusion and crowding [19, 25, 26]. Accordingly, some brain-inspired MTT
algorithms benefit from attention or memory modules. Also, there are several
MTT methods based on neural networks reflecting aspects of the neural archi-
tecture of the brain. For a review on recent findings in the cognitive sciences of
MTT and how these findings help improving MTT algorithms we refer to [17].
Dynamic field theory is a theoretical framework to model brain function. It has
been widely employed in the past to model cognitive functions including visual
attention, single object tracking and motion extrapolation, working memory
or the learning of object pose and identity [27-31].

The theory is also used in cognitive robotics for decision making, action
understanding and observational task learning [32-34]. Several hardware
implementation studies on this theory have used neuromorphic approaches [35]
and FPGA [36, 37].

In the area of MTT, a DNF-based model has been proposed based on our
understanding of the visuospatial cognitive system [38, 39]. This model has
a three-layer structure mimicking perception, working memory, and a shared
layer with inhibitory interneurons. It is applied to a classical MTT task
containing multiple solid circles moving randomly on a plain background. Sev-
eral circles are designated as targets and others as distractors. Subjects are
instructed to follow the targets simultaneously and remember their location
at each moment. A DNF-based method has been also applied for smooth pur-
suit tracking of several solid objects with distinct colors in the workspace of a
cooperative robotics assistant [40].

These DNF-based approaches to MTT in relatively controlled environments
implement a reactive processing mechanism. It ensures that the neural posi-
tion representation of a target is able to continuously follow the sensory input
up to a certain speed limit. However, limitations of this reactive tracking have
not been tested with displays in which targets come close to each other, leading
to direct spatial interactions of their neural representations [41]. We benefit-
ted from the movements of biological organisms such as zebrafish larvae and
ants in real time and under realistic experimental conditions. They are non-
rigid objects with continuously changing appearance and spiky movements.
Here, we show that the proposed DNF model of MTT implementing predic-
tive processing mechanisms based on past trajectory information is able to
cope with the often irregular locomotive characteristics of zebrafish larvae and
the occurrence of numerous occlusions when the larvae or ants approach each
other. Before explaining the details of the algorithm, a brief introduction to
DNF theory is given in the next section.

3 Introduction to Dynamic Neural Fields

Dynamic field theory is a brain-inspired modeling language that has been
extensively used in the past to explain experimental findings in perception,
action, and cognition (for an overview see [22]). The theoretical concepts are
based on the theory of nonlinear dynamical systems, emphasizing attractor
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states and their bifurcations. The theory explains the emergence of stable
representations of continuous-valued information, such as for example the
direction of heading during navigation or the position of an object in space, by
assuming a distance-dependent neuronal connectivity pattern in feature space.
Typically, neurons tuned to similar values of a continuous variable excite, and
those tuned to dissimilar values inhibit each other. When the neurons are
ordered along a line by their selectivity, the activity pattern, which evolves
continuously in time in response to transient inputs, is visualized as a spatially
localized activity bump. Since bumps are only neutrally stable, their position
can be shifted along the continuous field by a weak external input that over-
laps partly with the bump position [42]. This property can be exploited to
explain the capacity of the CNS to track the position of a moving object in
real time [38, 43].

In the simplest case, a field representing the 2D position (z,y) of an object
evolves independently at each site governed by the following equation:

Tu(x,y,t) = —u(x,y,t) + h + s(z,y, t) + £(t) (1)
where u(x,y,t) denotes the activity at time ¢ of a neuron representing
the coordinates (x,y). The rate of change, u(x,y,t) = %, is a smooth
function of the current activation, the localized external input s(z,y,t) and a
homogeneous inhibitory input A < 0. The parameter 7 defines the time scale
of the evolution of activation. In the absence of external input, s(z,y) = 0,
the linear dynamical system has a stable solution at the resting level, h < 0,
whereas for s(z,y) > 0 the attractor shifts to the larger level of activation
u(z,y) = h+s(x,y). Both attractor states appear to be perturbed by additive
white noise, £(t), which is assumed to be weak, ¢ < 1.
The additional term, cg(v(Z,7,t)), in the following equation

Ti(z,y,t) = —u(z,y,t) + h+ s(z,y,t) + cg(v(Z,7,1)) + £(1) (2)

represents the integration of the activation at position (Z, ) from a con-

nected field v with the strength parameter ¢ > 0. The classical choice of the
sigmoidal nonlinearity

1
M) = e (A —w) )
with steepness parameter 5 > 0 and threshold vy = 0 ensures that only
sufficiently positive levels of activation, v(Z,y) > 0, have a significant impact
on the evolution of activation in the u field.

4 Multiple-target tracking using dynamic
neural fields

The proposed MTT method benefits from both computer vision techniques and
dynamic field theory. We assume that the input video is recorded using a fixed
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camera, and the background remains unchanged. Accordingly, its flowchart is
given in Figure 1.

4.1 Background subtraction

Each frame is passed through a background subtraction module to extract the
foreground, which consists of the objects. The background of the input video
has been estimated previously in an off-line manner. It is created by assigning
the most frequent value of each pixel among the first 50 frames of the video.
The result of background subtraction is the foreground image which represents
the input to the next module.

Since objects in our datasets are in general darker than the background, it
is worth-noting that in principle an alternative method to extract foreground
based on thresholding could be used. We used this alternative method to
process videos from the ant tracking datasets. Since one or more ants may
stay stationary for the entire video which challenges most of the background
estimation methods. We classify pixels with the intensity lower than 100 as
foreground. The intensity of a pixel is processed after converting the RGB
image to a gray-level image by eliminating the hue and saturation information
while retaining the luminance.

4.2 Blob extraction

Some morphological operations are applied to the binary version of the fore-
ground image. First, we remove all connected components that have fewer than
100 pixels to ignore small noisy parts. Second, closing operation using a disk
with 5-pixels radius is applied to remove small holes within the foreground.
Finally, we extract connected components and consider each as an object that
should be tracked. We assume that no occlusion occurs between the objects
in the first frame of the video. Moreover, we consider the number of objects
in this frame as the number of to-be tracked objects in the entire video. The
centroid of each blob is considered as the location of the corresponding object.
In addition to objects’ loci, we extract the objects’ orientation. For each larva,
the orientation is defined as the angle of the line connecting the larva’s cen-
troid to its head. To find the larva’s head position and reduce noise, we apply
the morphological erosion operation to the blob with a disk of 5-pixels radius
as structuring element [44]. The centroid of the resulting image is considered
as the head. Orientation information is not helpful for the ant-tracking dataset
since the angle cannot be determined precisely enough due to the symme-
try of the ant’s morphology. Therefore, we utilized in the data association
module both location and orientation information for the larvae tracking and
benefitted from only location information for the ant tracking.

4.3 Dynamic neural field model

For each object i, a 2D Gaussian input, s;;(z,y,t), to the location fields j
is defined with the center at the object’s position (py ¢, py.i,t)(Equation 4)
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366 Fig. 1 Flowchart of the proposed MTT method. The green and red arrows represent exci-
367 tatory and inhibitory inputs, respectively. The blue arrows indicate data flow.
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which is found by converting the frame coordinates into the field coordinates.
The location information is updated in each frame of the video sequence. The

covariance matrix of the Gaussian shows how the object is oriented.
1 —1 |¥ = Pzt
sji(x,y,t) = ajexp(—= [T —peir v —pyid] X5 o =1,2,..m
5@y, t) = ajexp (=5 [2 = Prat ¥ = Pyae] ¥ [y o
(4)

where Zj_l is the inverse of the covariance matrix and a; adjusts the
strength of the input. Both Ej_l and a; are considered similar for all the Gaus-

0

/2
sian inputs to field j. We set an initial value Z;- = { LT } for >; before
the start of the algorithm. After processing each frame and extracting the

orientation of the object (o), E} is updated according to Equation 5.
cos(0)? sin(0)? sin(20) sin(20)
Y - 2(7;? + 2‘7/',21/ B 0;21 + 4(7/.? 5
J = _sin(20) + sin(20)  sin(0)? + cos(o)g ( )
o, | dofy, 207 T 207,

Since we assume that all objects are already extracted and no occlusion
occurs in the first frame, we always know the expected number, m, of objects
in the scene. The Gaussian inputs create m localized activation patterns in
the input location fields. We distinguish two fields, v and v, representing
the locations of all objects in frames n-2 (s, ;(z,y,t)) and n-1 (s,:(z,y,t)),
respectively. The input driven field dynamics is governed by the following

equations:
T’(:L(CC’ Y, t) - —U(I, Y, t) + h + Z 5u7i(xa Y, t) + ‘Sg(t) (6)
=1
Fo ) = —0@ )+t S ss(my,t) + <E(D) (7)
1=1

In Figure 1, the activation level at each field site is coded in a heat map. The

activation is higher for hotter parts and the red circles represent suprathreshold
activity.
An additional input field, w, is defined which represents the instantaneous
speed of all objects in frame n-1. The speed is given as the Euclidean distance
of the object location in frames n-1 and n-2. The activation level in this field
is higher for faster moving objects and lower for slower ones.

m
Tw(z,y,t) = —w(x,y,t) + h+ Z Sw,i(z,y,t) +£(t) (8)
i=1
where s, ;(z,y,t) is a Gaussian function similar to s;;(z,y,t), but with
time-dependent amplitude as, , (t).
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1 I
Sw,i(2,y,t) = as, , (t) exp (—5 [z — Dyt Y — pyﬂ-yt] Zw}i LJ - imj ),i=1,2,....,m
i,
(9)
axmax(0,d;,) B

as,, ;(t) = d; 1 (10)

where d;; represents the spatial displacement of object i between frames
n-1 and n-2. « > 0 is a constant.
Finally, field p is responsible for predicting the future location of objects in
frame n. It receives an excitatory input from the v field and inhibitory inputs
from the v and w fields. A Gaussian kernel is used for the spatial integration of
activity from the connected fields. A sufficiently strong excitatory input at the
location of the object in frame n-1 triggers the evolution of a suprathreshold
activity pattern whereas the inhibitory input of Gaussian shape from w has
a suppressive effect on this location. The inhibitory input from v suppresses
the location of the object in the preceding frame n-2. The main effect of the
two inhibitory inputs to the prediction field p is that the peak position of the
evolving bump does not appear centered at the object location in frame n-1
but shifted in motion direction (Figure 2). To achieve this predictive effect,
the spatial width of the input (defined by the standard deviation of the corre-
sponding kernel) from the u field should be sufficiently large to overlap with
the object location in frame n-1. The parameter o in Equation 10 defines the
strength of the inhibition from the velocity field w. For large « values, the
inhibition of the object location might be too strong and no suprathreshold
activity pattern will evolve. On the other hand, for smaller « values, the spa-
tial shift of the peak position might not be large enough to make an accurate
prediction. For the present application, the parameters of the input kernels are
set experimentally in order to minimize the prediction error.
Equation 11 governs the evolution of the prediction field p through time.

TZ')({E,y,t) - —p(:E,y,t) +h +g(v(I7y7t))_

J[ Funla =y = (a0 o’y - )

/ /Q Fup( — 2’y — o )g(w(a’ /1)) da’ dy + e€(t)

where the domain Q = [0, M] x [0, N] C R? satisfies periodic boundary
conditions. The domain size covers the frame size with M and N representing
the height and width of the input frame, respectively. We define a regular
400 x 400 spatial discretization grid for the numerical approximation. The
step size in horizontal and vertical direction is thus given by dx = % and
dy = EM()’ respectively. The choice of dz and dy affects the computational cost
and efficiency of the algorithm mainly because of the convolution operator.

g(.) is defined as a ReLU function:
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9(v) = max(0,v), g(w) = maz(0, w) (12)
Both kyp,(z,y) and kyp(z,y) are defined as Gaussian kernels as:
1 (,C2 y2 ]
kip(a,y) = ¢jexp(—5 (5= + =), j = v,w (13)
Jo Jy

The variances szz and 0J2» , show how the kernel varies alongside the = and

y axis, respectively, and ¢; controls the kernel amplitude. Figure 2 illustrates
for a single object how the integration of the excitatory and inhibitory inputs
predicts the object’s future location when reading out the peak position of
the evolving activity pattern (magenta line). When a certain object remains
stationary in two successive frames, the field predicts the same location (left
panel). Otherwise, when the object’s loci in the two successive frames have
moved by a spatial distance, D, the peak position appears to be shifted further
ahead in movement direction as indicated by the distance R (right panel).
The amplitude of the Gaussian input from the w field grows as the instanta-
neous speed of the object increases (blue line). Consequently, the summation
of this inhibitory signal and the inhibitory signal from the previous location
of the object in frame n-2 (red line) shapes the excitatory activity pattern,
causing the shift of the peak position.

Excitatory input from the location in frame n-1
—Inhibitory input from the instantaneous speed in frame n-1
——Inhibitory input from the location in frame n-2
‘—Activ‘ation of the prediction field

R= R=14
20 - 0 20 —
1 1
1 |
1 1
10 1 10 1
c . c
s . 5
E : § o .
g | © i i
© { © . 1
-10 | -10
|
| J
1
4 =
-20 -20
D=0 D=14
0 20 40 60 80 100 0 20 40 60 80 100
X X

Fig. 2 Prediction using excitatory and inhibitory inputs assuming a single object
located in the interval [0 100]. Green, blue, red and magenta lines indicate the con-
tribution of g(v(x,y,t)), ffﬂ kup(.'ll - xl7y - y’)g(u(zlvyl7t)) da’ dy,’ fo kwl’(z - zlvy -
y)g(w(z’,y’,t)) dz’ dy’, and their corresponding summation, respectively. “D” represents
object’s displacement between frames n-2 and n-1. “R” shows the distance between object’s
last location (in frame n-1) and its predicted location in frame n. The left panel shows a
scenario in which the object has not moved (R=D=0). The right panel represents an object
that has displaced about 14 pixels (from z = 36 in frame n-2 to z = 50 in frame n-1) and
the prediction field p anticipates its future location in frame n, 14 pixels ahead (R=14).

To further improve the performance of the DNF-based tracking algorithm,
we integrate in addition to the location prediction, the prediction of object
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orientation. Two 2D input fields, z and r, are defined representing the x-
coordinate of the object’s spatial position and its orientation, o. Note that
being able to represent in a single activity pattern simultaneously position and
orientation information of each object solves the binding problem which would
occur when the information is stored in separate fields. Using a 3D-field, which
represents both spatial coordinates and the orientation, would be in principle
possible but would significantly increase the computational cost.

Field z contains several localized activation patterns, each representing the
x-coordinate and the orientation of a specific object in frame n-2. Field r
contains the same information in frame n-1. The input fields are governed by
the following dynamics:

T2(x,0,t) = —z(z,0,t) + h + i s.i(x,0,t) +€£(1) (14)
i=1

m
7i(x,0,t) = —r(z,0,t) + h + Z Sri(x,0,t) +€(t) (15)
i=1
where s, ;(x,0,t) and s, ;(x,0,t) are Gaussians given in Equation 4. An
additional input field b is defined which represents the object’s instantaneous
angular speed in frame n-1. It is defined as the difference of the object’s
orientations in frames n-1 and n-2.

m
Tb(x,0,t) = —b(x,0,t) + h + Z spi(x,0,t) +€(t) (16)
i=1
where s; (2, 0,t) is a Gaussian function with variable amplitude similar to
Equations 9 and 10. We use an orientation prediction field, ¢ to anticipate the
future orientation based on the integration of excitatory and inhibitory inputs
from fields r, z and b.

T¢(xz,0,t) = —q(x,0,t) + h + g(r(z,0,t))—

//kaq(a:—x,o—o)g(z(a:,o,t))dx do'— (17)
//Q kpg(z — 2,0 — 0" )g(b(x', 0, t)) dz’ do’ + £&(t)

where, g(z) and g(r) are again ReLU functions (Equation 12) and k,, and
kyq are Gaussian kernels defined according to Equation 13.
Similar to the prediction mechanism of Equation 11, the information about
the change in orientation in two successive frames is used to extrapolate this
change to the next frame. Since all fields share the x-dimension, the posi-
tion and orientation information can be easily combined in the correspondence
mapping of the multi-object tracking.
As can be seen in Figure 1, the bumps in the location and orientation fields
have the form of an ellipsoid and a circle, respectively. The reason is that the
covariance matrix for the Gaussian inputs to the orientation field is the identity
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matrix. However, to improve the visualization in the prediction field p, we use
the predicted orientation information to update the covariance matrix of the
inputs. Accordingly, in the results section, we only depict the activation pat-
terns in the location field p since they visualize both location and orientation
information.

4.4 Retrieving predicted location/orientation

The bumps in the prediction fields, p and ¢, show the predicted location and
orientation of the objects. We extract the peak positions of the activity pat-
terns and convert their coordinates to the frame coordinates. This information
is used for labeling the objects in the next module.

4.5 Labeling objects

When the new frame, n, arrives, all blobs are extracted by applying the back-
ground subtraction and blob extraction modules. We use two criteria to label
these blobs. First, the predicted location should be near to the blob’s location.
Cognitive studies showed that human subjects use proximity information dur-
ing MTT [45]. Second, the blob’s orientation should be similar to the object’s
predicted orientation. In fact, we assume that the objects change their loca-
tion and orientation gradually in successive frames. These assumptions are
not too restrictive since we solve a linear assignment problem that consid-
ers the proximity-orientation criteria for all the objects simultaneously. The
cost function used in this matching process considers the weighted sum of the
two criteria. Usually, the weight of location is about 1.5 times higher than
the weight of orientation. If an occlusion occurs, we apply the inverse ratio.
This strategy considerably decreases the occurrence of mismatch errors and
improves data association during occlusion. We detect occlusion events by
monitoring the number of blobs in the frame. If it is less than the initial num-
ber of objects in the video, at least two blobs corresponding to two objects
appear to be merged. Reliable information about the location and orientation
of the different objects can thus not be extracted anymore and the prediction
fields are not updated for the merged objects. Importantly, the activation pat-
terns representing the information from the last frame before occlusion can
still be used for object labeling when the blobs start separating again due to
the assumed gradual change of the objects’ positions and orientations. During
occlusion, we consider the centroid of each object before the start of occlusion.
A circle with a predetermined radius and the center on the centroid is defined.
Then, the intersection of this circle with the blob is reported as the object.
To visualize the output of the DNF model (see Figure 1), we color each object
with a distinct color in the output frame. Finally, the new locations and
orientations of the objects are updated in the input fields.
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5 Evaluation

We implemented the proposed algorithm in MATLAB R2019a using the
COSIVINA software! which is designed to facilitate the development of DNF
architectures. We used a computer with Windows 10 operating system, Intel
Core(TM) i7-9700K processor and 16-GB RAM. The evaluation of the model
performance was done on two different datasets. First, we compared the DNF-
model with several state-of-the art MTT algorithms on all 10 videos of a
zebrafish larvae dataset [15] available online?. The videos recorded using a fixed
camera show multiple larvae moving naturally in a round or squared container
(Figure 3). Tracking these larvae is challenging in different aspects. Larvae
are non-rigid objects, and their shape changes continuously. Their movement
is also unpredictable and spiky with non-constant acceleration. They occlude
each other multiple times, and their similar appearance makes the data asso-
ciation process error-prone. Second, the proposed DNF method is applied on 4
videos (videos 1,3,4 and 5) from an ant-tracking dataset and the performance
is compared with a recent MTT method [12]. This dataset is also publicly
available® and contains ants with similar morphology but different sizes (work-
ers and queen). As fundamentally social animals, close body contact causing
severe occlusion is a frequent phenomenon (Figure 3).

a %
\

= X 1 . -
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Wy - - S
-~ -

N

Fig. 3 The first two lines show a sample frame from each video of the zebrafish larvae
segmentation and tracking dataset. The third line shows a sample frame from the videos 1,
3, 4 and 5 of the ant-tracking dataset

As performance measures for the comparison, we used MOTA and MOTP
as two common metrics to evaluate tracking accuracy and precision . MOTA
considers all types of correspondence errors made by the tracking algorithm:

Thttps://github.com /sschneegans/cosivina
Zhttps://github.com/Xiao-ying/moving-zebrafish-larvac-segmentation-and-tracking-dataset-
3https://data.mendeley.com/datasets/9ws98gdnpw/1
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FN; + FP, + IDS;)
Zt Ny

where F'N;, FP, and IDS; represent in this order the number of false
negatives (FN), false positives (FP) and mismatch or identity switches in frame
t and N, indicates the total number of objects present in this frame. MOTP
shows how precisely the algorithm determines the position of objects:

Zi,t | Di,t - Gn,t |
Zt Ny

where D; ,; indicates the position of object D as the i-th object in frame ¢
and GT; is the ground-truth. | D; ; — GT; 4 | measures the Euclidean distance
between the centroids of the blobs of D; ; and GT;; [15]. A high MOTA score
and a low MOTP score show that the algorithm has a high accuracy (i.e., a
low number of errors) and a good localization performance.
The results on the larvae segmentation and tracking dataset are given in Table
1 and the output of the DNF-based algorithm for a specific video is given in
the supplementary materials. The second, fourth, and fifth column show the
evaluation results of the method proposed by [14], [16], and [15], respectively.
The third column reports the results when tracking and segmentation are
performed by the methods proposed in [14] and [15], respectively. These results
are taken from [15]. The sixth column shows the evaluation results of our
proposed DNF method. It tracked all objects with the highest MOTA and
MOTP compared to the other methods. We can see this improvement both for
individual videos and for the average results.Table 2 reports the total number
of mismatch errors in all videos when the correspondence between trajectory
and object identity switches.

morA =1 2l

(18)

MOTP =

(19)

Table 1 Evaluation results for the moving zebrafish larvae segmentation and tracking
dataset. According to [15], NaN indicates that no valid data was generated due to a
running error while testing. A MOTA score of 1 indicates perfect accuracy and a MOPT
score of 0 indicates optimal precision.

MOTP (pixels) | MOTA 1
No. [14] [14] and [15] [16] [15] ours [14] [14] and [15] [16] [15] ours
1 11.388 NaN 11.662 6.346 5.394 1 NaN 0.990  0.988 1
2 21.434 12.176 18.395 15.024 10.981 0.541 0.922 0.921  0.853 1
3 20.648 20.879 18.854 8113  6.294 1 0.975 0.985  0.998  0.997
4 16.728 17.665 23.208 10.669 9.752 0.0987 0.840 0.987 0.993 0.998
5 21.545 21.727 21.890 15.525 5.658 -0.01 0.895 0.139  0.994 1
6 13.151 12.562 15.020 12.786 5.671 -0.27 -0.086 0.914  0.936 1
7 25.230 43.746 80.630 30.082  12.655 0.005 0.725 0.504 0.954 0.981
8 53.096 59.666 98.936  36.901  8.868 -0.39 0.739 0.209  0.956  0.999
9 29.921 48.739 142.834  15.960 10.801 0.673 -0.107 0.327  0.989 1
10 219.329 27.532 189.975  25.121 8.468 -0.18 0.133 0.906 0.920 0.999
avg 43.25 29.41 62.14 17.65 8.45 0.33 0.56 0.69 0.96 0.99

The evaluation results on the ant tracking dataset are given in Table 3.
The output of the DNF-based algorithm for a specific video is given in the
supplementary materials. The second and third columns show the results of
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Table 2 Total number of obtained mismatches for the zebrafish larvae dataset. NaN
indicates that no valid data was generated due to the running error while testing.

No. [14] [14] and [15] [16] [15] ours

1 6 NaN 2 0 0
2 2 3 4 3 0
3 0 0 0 0 1
4 4 0 0 0 0
5 3 2 6 0 0
6 1 1 1 2 0
7 2 1 3 1 0
8 11 41 24 14 1
9 4 17 3 0 0
10 4 8 0 8 1
avg 3.7 8.1 4.3 2.8 0.5

[12] and our proposed DNF algorithm, respectively. In accordance with the
approach used by Cao and colleagues (2020), the MOTP definition (Equation
19) is modified by calculating % instead of applying the Euclidian
distance between the estimated location and the ground truth. D;; indicates
here the bounding rectangle of object D as the i-th object in frame ¢t and GT; ,
is its ground-truth’s bounding rectangle. In fact, similar to the processing of the
larvae tracking dataset, we segment all of the object’s pixels before estimating
their positions. However, to allow for direct comparison with the results in
[12], we define a bounding rectangle for each object. A MOTP score close to
100% thus indicates a high tracking precision.

A comparison with the performance of the tracker tested by Cao and colleagues
reveals that the DNF-based approach is better able to keep consistent track of
all objects over time. However, the precision of the DNF model is much worse
also compared to the performance in the larvae tracking task. This relative lack
in precision can be attributed to the removal of small objects as noise which
takes off the ant’s thin legs as part of the object boundary. As a consequence,
the reported ants’ bounding rectangles are smaller than their ground truth.
Cao and colleagues achieve higher tracking precision by offline learning of
a high-dimensional feature vector characterizing an ant’s appearance which
becomes associated with a specific trajectory.

Table 3 Evaluation results for the ant tracking dataset. According to the definition in
[12], MOTP sores close to 100% represent high precision.

FP | FN | DS | MOTA 1 MOTP (%) 1

No. [12]  ours [12] ours [12] ours [12] ours [12] ours
Indoorl 0 0 0 0 0 0 99.4 100 92.1 48.3
Indoor3 6 0 6 0 0 0 99.1 100 89.8 35.2
Indoor4 8 0 8 0 4 0 98.9 100 91.8 30.5
Indoorb 1 0 2 4 0 2 99.8 98.2 94 42.1
avg 3.75 0 4 1 1 0.5 99.3 99.5 91.9 39.0

The computational cost of the algorithm depends on the number of to-
be-tracked objects. For evaluation datasets containing one, three, five and ten
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objects, the runtime was about 0.19s, 0.37s, 0.69s and 1.36s per frame on aver-
age.

Figure 4 shows an example of an occlusion scenario from video 7 of the fish
larvae dataset. The first, second and third columns show the fields u, v and p,
respectively, taken at different times of the video sequence. The last column
presents the output of the DNF method. Objects in the original videos are all
black. We assign a unique color to each for the purpose of illustrating motion
trajectories of individual fish larvae. In the first row, the red and yellow lar-
vae are about to occlude. From the prediction field p, we can conclude that all
objects are almost stationary except the yellow one. It’s neural representation
is characterized by stronger surround inhibition (darker blue) and weaker peak
activity (lighter red) compared to the stationary objects for which the predic-
tion is not updated. In the second row, occlusion starts and the prediction field
maintains the location and orientation information from the preceding frame.
When the blobs start to separate, the prediction mechanism guarantees again
a consistent trajectory extrapolation for all larvae. The output generated by
the DNF model for the entire video sequence is available in the Supplementary
material.

input field u: frame n-2 input field v: frame n-1

&

prediction field p: frame n

o

o

0
50 100 150 200 250 300 350 400 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400

input field u: frame n-2

f

input field v: frame n-1

6)

prediction field p: frame n

= o

E (o)
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50 100 150 200 250 300 350 400 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400

input field u: frame n-2 input field v: frame n-1 prediction field p: frame n
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Fig. 4 Sample output of the DNF-based algorithm during an occlusion event. Each row
shows the activation of the input fields u (first column), v (second column), the prediction
field p (third column) and the labeled output of the algorithm.
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6 Discussion

The proposed neuro-dynamics approach to MTT has advantages over exist-
ing ones. First, using a prediction field supports simultaneous prediction of
future locations for all objects in the scene, instead of calculating a separate
prediction for each object [46]. The predictive mechanism relies on a distance
measure between corresponding objects in succeeding video frames. As shown
in the labeled fish larvae videos, the proposed method works well even when
the objects move spiky with pronounced acceleration or show little or no move-
ment.

Second, using the orientation feature in addition to the object’s location and
assigning adaptable weights to each feature in the labeling process, increase
the flexibility of the data association. In particular, when occlusion occurs and
two or more objects overlap, location information is difficult to extract, but
the predicted orientation of each object can be used to label objects when they
get separated.

Third, using morphological operations to discriminate the objects from back-
ground, helps to handle the specific challenges of tracking non-rigid objects.
Most of the applied deformations can be kept and utilized in the further pro-
cessing of the relevant object information for a consistent tracking behavior.
Forth, the proposed method doesn’t need to be trained by large amounts of
data. The spatial ranges of the excitatory and inhibitory inputs to the predic-
tion fields controlling the predictive shift of the peak position are hand-coded
in the present application. They could be found automatically in the future
using optimization techniques. The specific model parameter values used in
the evaluation are summarized in Table 4. Importantly, our model simulations
show that variations of these values in a reasonable range do not critically
affect the tracking behavior in the challenging applications.

Table 4 Parameters used for DNFs. For the parameters of 3, the initial covariance
matrices are given. These matrices vary according to the instantaneous orientation of the
objects throughout the video sequences.
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Although the numerical implementation of a DNF can be seen as a neural
network, there are major differences to popular neural network-based machine
learning algorithms [46]. Their power resides in their ability to learn rich rep-
resentations and to extract complex and abstract features from their input.
However, they typically require a large batch of training samples that are all
available during the training phase. Changing the number of objects in a MTT
task would require a retraining of the network parameters. Moreover, online
algorithms are often too slow for real-time MTT since they are computation-
ally expensive [46]. Our model-based approach uses pre-defined features that
are task relevant and implements processing principles that can be analyzed
and understood from a dynamical systems point of view. The neural popula-
tion activity evolves continuously in time under the influence of various inputs
shaping the activation patterns. Since no training process is involved, the DNF
model can be applied to video sequences with different numbers of moving
objects as long as the number remains fixed during the task. The numeri-
cal implementation of the 2D fields could be optimized so that the proposed
DNF method shows real-time tracking performance on a normal computer.
Strategies such as using a GPU implementation or applying fast Fourier trans-
formation instead of a quadrature formula for the spatial convolution will
greatly reduce the computational cost and will further increase the efficiency
of the algorithm [47].

The DNF architecture proposed in this paper is different from the model
suggested by Spencer and colleagues (2012) in three main aspects. First, in
Spencer’s model, no prediction of future positions and orientations occurs. A
bump follows in a reactive manner the position input when it falls in the range
of the local excitatory interaction from the working memory field. Otherwise,
the target is missed and the tracking fails. Various sources of experimental evi-
dence have been interpreted as evidence for the existence of neural mechanisms
for extrapolating motion trajectories [28, 48] and for prediction during MTT
[19, 49]. Predicting the future locations of moving objects from past trajectory
information as implemented in our DNF model leads to a nearly perfect track-
ing behavior in the challenging example video sequences. Second, in Spencer’s
model, non-targets (distractors) are also considered and tracked. However, in
technical real-world applications one is mostly interested in tracking targets
and try to use already in the image processing stage discriminant features to
distinguish targets and distractors. Third, Spencer’s model is applied to behav-
ioral data collected from human subjects while doing a synthetic tracking task
introduced by [41]. In this task, the movements of target-distractor pairs follow
a specific pattern, in contrast to the highly irregular movements of the zebrafish
larvae and ants. A purely reactive tracking based on distance-dependent attrac-
tive forces between the input and the neural position representation will have
problems to cope with sudden movement adjustments.

Yet our proposed algorithm faces some limitations which we will address in
future work. First, we assumed that the environmental conditions such as
background and lighting remain unchanged during MTT. Otherwise, an online
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background estimation method should be applied. Second, we assumed that
the number of objects in the scene is known when the tracking starts and
remains constant throughout the video sequence. This allowed us to detect
occlusions when the number of individual object blobs changed. Other meth-
ods of occlusion detection should be explored to allow the appearances and
disappearance of objects in the scene. In addition, using morphological opera-
tions, objects are correctly detected and segmented in spite of their deformable
shape. However, when two or more objects occlude, a consistent tracking of
all objects cannot be always guaranteed. The DNF-based model could benefit
from an object detection module to associate an appearance description of an
object with a specific trajectory [12].

Finally, this study shows that using brain-inspired methods and in particular
DNFs can improve MTT algorithms. Neural fields implement basic processing
mechanisms that are consistent with the brain’s neural and cognitive func-
tions. Arguably, taking inspiration from the brain may pave the way to new
solutions of technical problems since the brain has evolved over a long time
under evolutionary pressure. The specific computer vision application is just
another example that complements the large variety of applications of the
DNF framework in perception, cognition and action.

7 Conclusion

In this study, we proposed a brain-inspired multiple-object tracking method.
This algorithm uses both computer vision techniques and dynamic neural fields
as a biologically plausible theory. Background subtraction and blob extraction
are applied to each frame of the input video. Two prediction fields anticipate
the object’s future location and orientation according to its loci and orientation
in the previous two frames. Data association is done based on proximity and
orientation changes. This algorithm outperformed state-of-the-art algorithms
on tacking zebrafish larvae and ants. The results showed that the proposed
predictive mechanism works well in the data association process even when
occlusions occurs.
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