DFT Foundations 1: Space and Time

Gregor Schöner Institute for Neural Computation (INI) <u>dynamicfieldtheory.org</u>

Foundations I: Space and time

Time:

Neural dynamics

Interaction

Instabilities

Tutorial: discrete activation variables

Supplement: mathematical formalization

Tutorial: simulating fields

Space

activation in neural populations carries functional meaning

activation: u(x, t) where x spans lowdimensional spaces

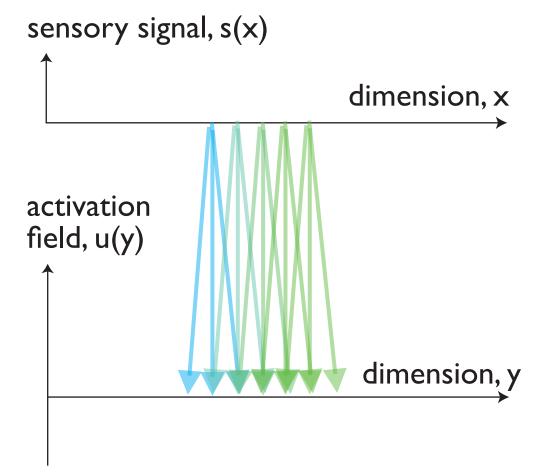
[Schöner TopiCS 2019]

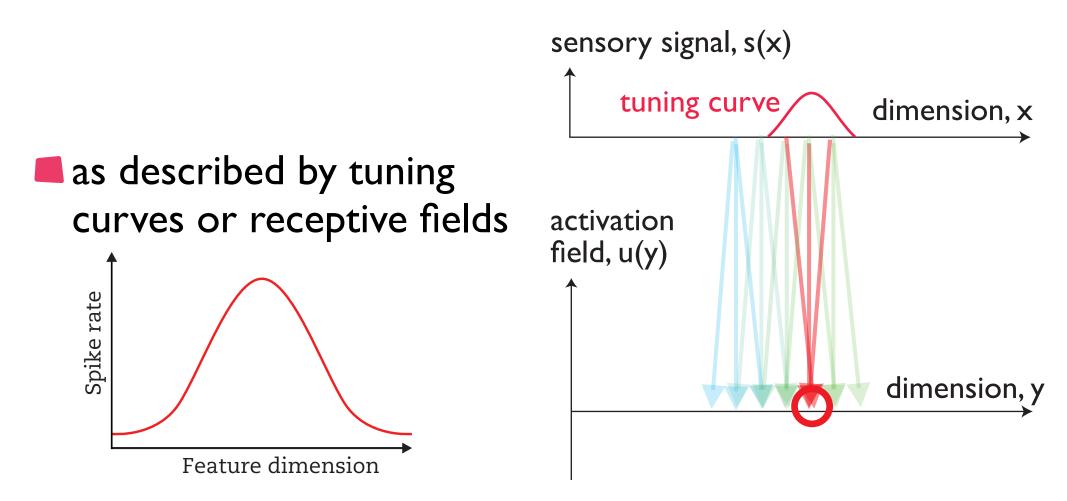
Where do the spaces come from?

connectivity from sensory surfaces / to motor surfaces

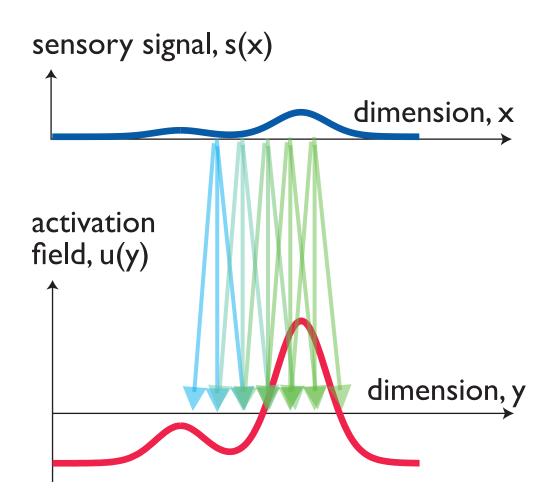


forward connectivity from the sensory surface extracts perceptual feature dimensions

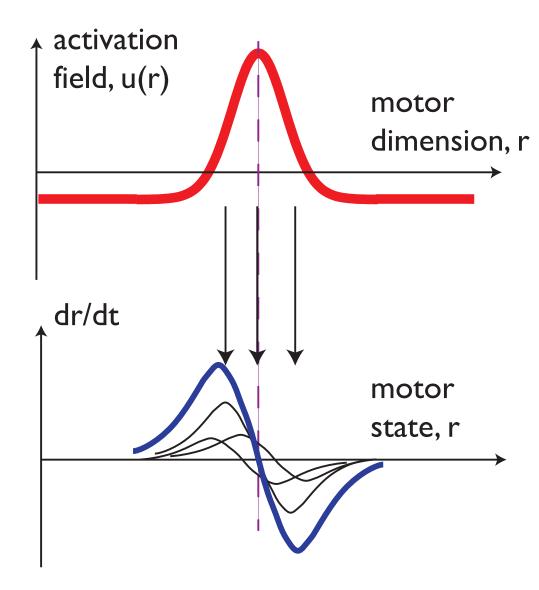




- => neural map from sensory surface to feature dimension
- neglect the sampling by individual neurons => activation field

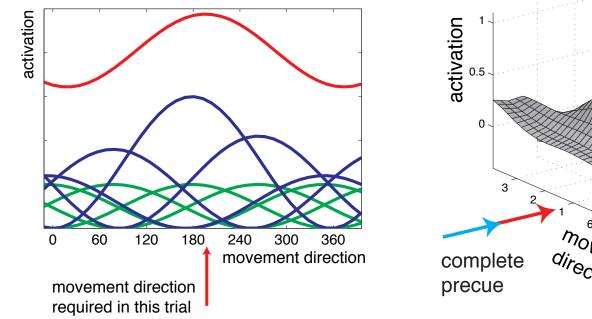


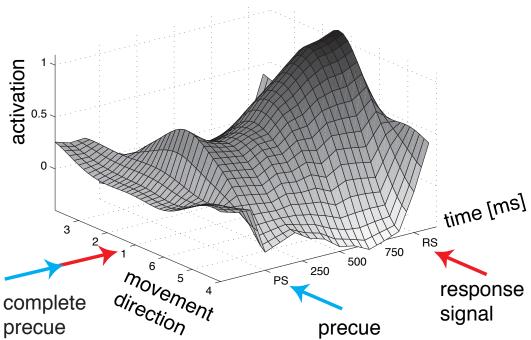
- analogous for projection onto to motor surfaces...
- which actually involves behavioral dynamics (e.g., through neural oscillators and peripheral reflex loops)



Distribution of Population Activation (DPA) <=> neural field

Distribution of population activation =

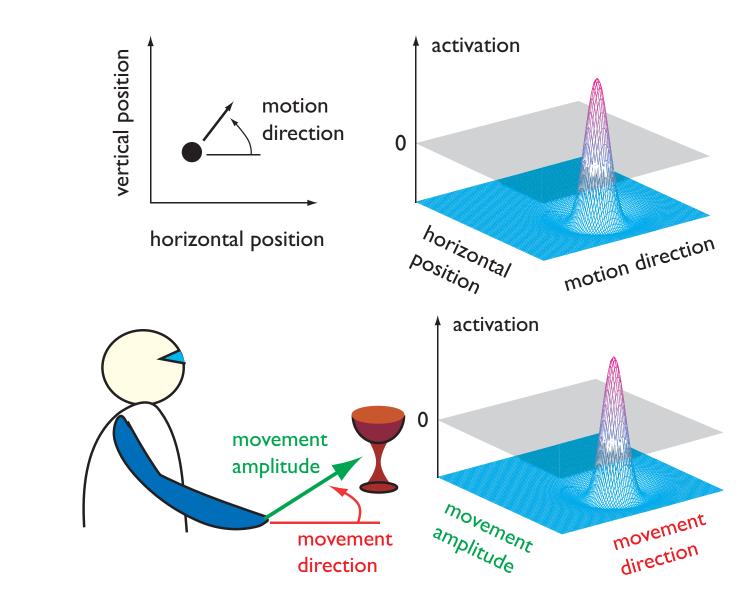




note: neurons are not localized within DPA!

[Bastian, Riehle, Schöner, 2003]

Hypothesis: mental states are localized in these low-dimensional spaces



Foundations I: Space and time

Time:

Neural dynamics

Interaction

Instabilities

Tutorial: discrete activation variables

Supplement: mathematical formalization

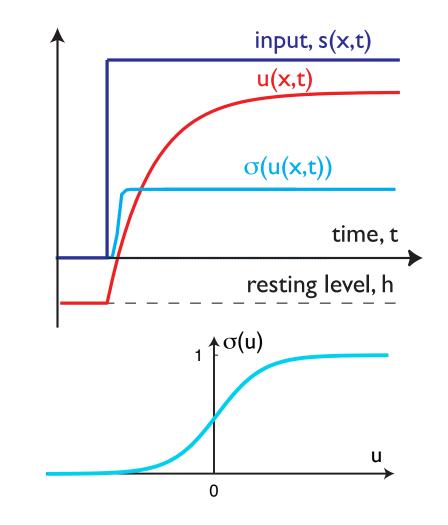
Tutorial: simulating fields

Time

Activation

- population level membrane potential
- defined relative to sigmoid
 - above threshold: transmitted
 - below threshold: not transmitted

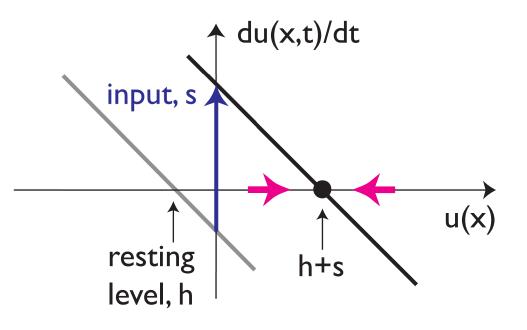
$$\tau \dot{u}(x,t) = -u(x,t) + h + s(x,t)$$



Neural dynamics

- originates from membrane dynamics
- inputs add to the rate of change of activation
 - positive: excitatory
 - negative: inhibitory

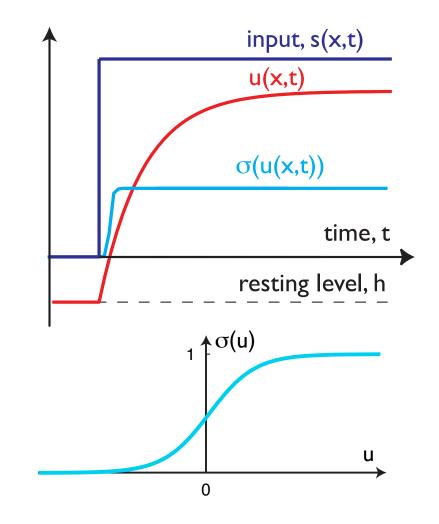
$$\tau \dot{u}(x,t) = -u(x,t) + h + s(x,t)$$



Time courses

$$\tau \dot{u}(x,t) = -u(x,t) + h + s(x,t)$$

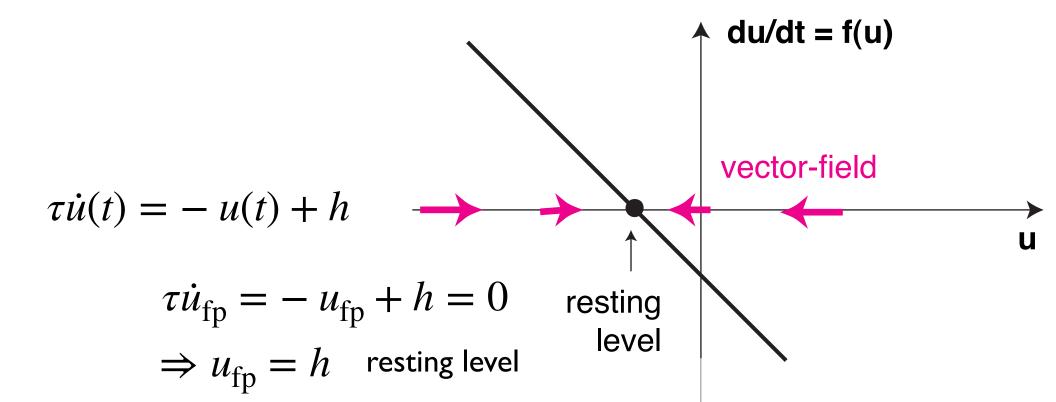
so far: only transmits and smooths time courses of input



Qualitative dynamics

dynamical system: the present determines the future

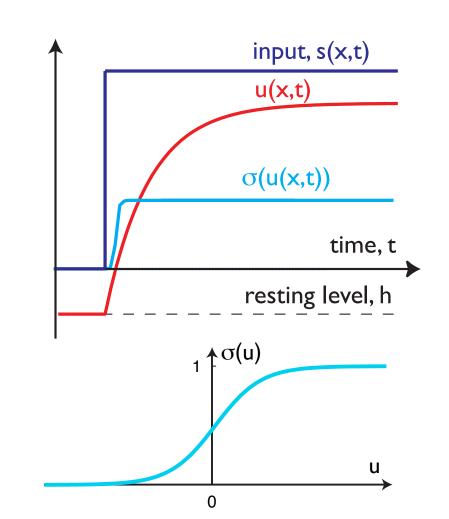
- **fixed point** = constant solution = stationary state
- stable fixed point = attractor: nearby solutions converge to the fixed point



Time courses

=> activation tracks this shift

 $=> \sigma(u(t))$ transmitted to down-stream neurons



 $\tau \dot{u}(x,t) = -u(x,t) + h + s(x,t)$

Foundations I: Space and time

Time:

Neural dynamics

Interaction

Instabilities

Tutorial: discrete activation variables

Supplement: mathematical formalization

Tutorial: simulating fields

Interaction

... beyond input driven activation

$$\tau \dot{u}(x,t) = -u(x,t) + h + s(x,t)$$

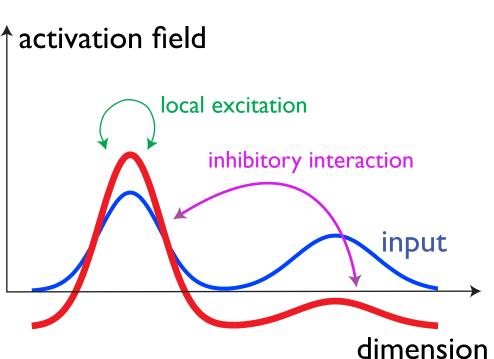
strong recurrent connectivity within populations

$$+\int w(x-x')\sigma(u(x',t))dx'$$

interaction

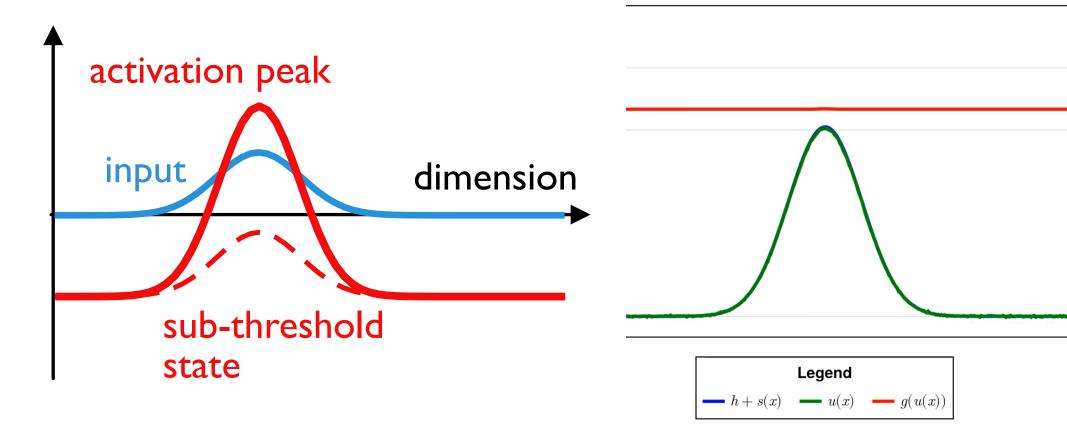
excitatory for neighbors in space

inhibitory for activation at a spatial distance

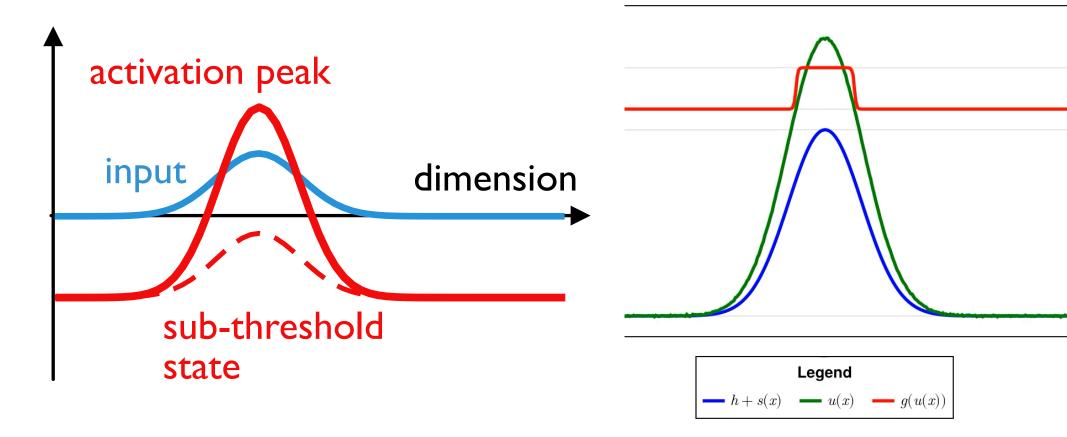


detection instability of sub-threshold state=> switch to peak

peak persists below detection instability => bistable



reverse detection instability of peak



Foundations I: Space and time

Time:

Neural dynamics

Interaction

Instabilities

Tutorial: discrete activation variables

Supplement: mathematical formalization

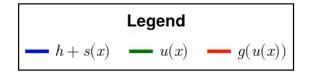
Tutorial: simulating fields

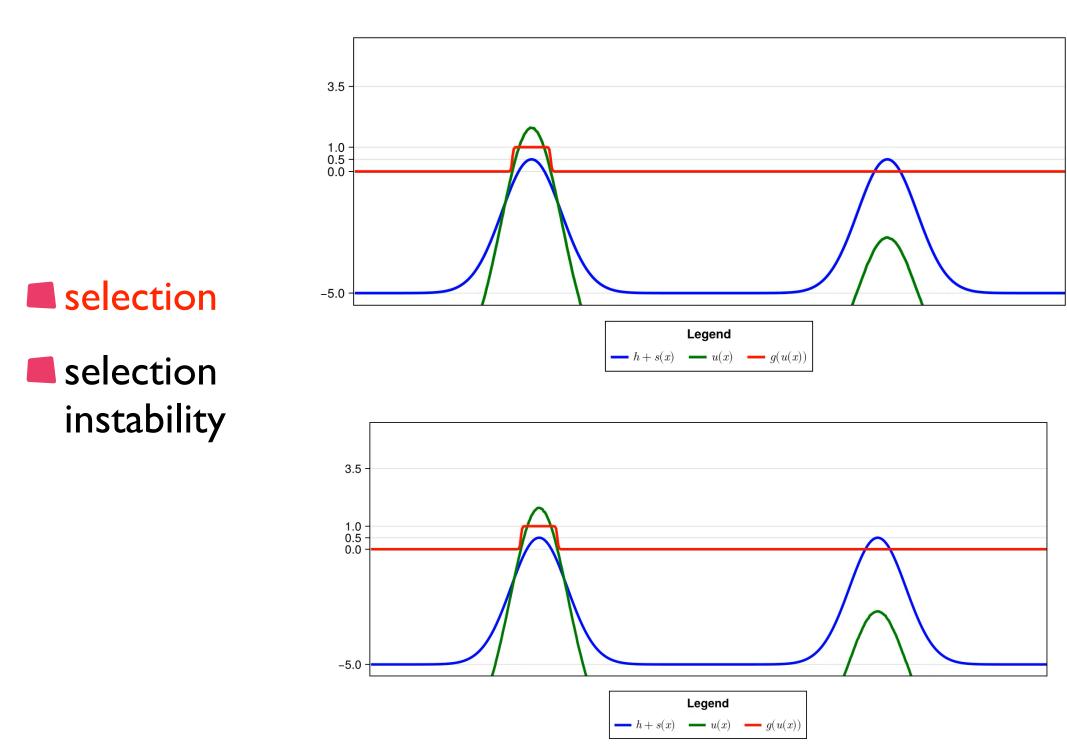
Instabilities

- detection instability
- reverse detection instability
- sustained activation
- selection
- selection instability
- boost driven detection/selection
- events and sequences

sustained activation

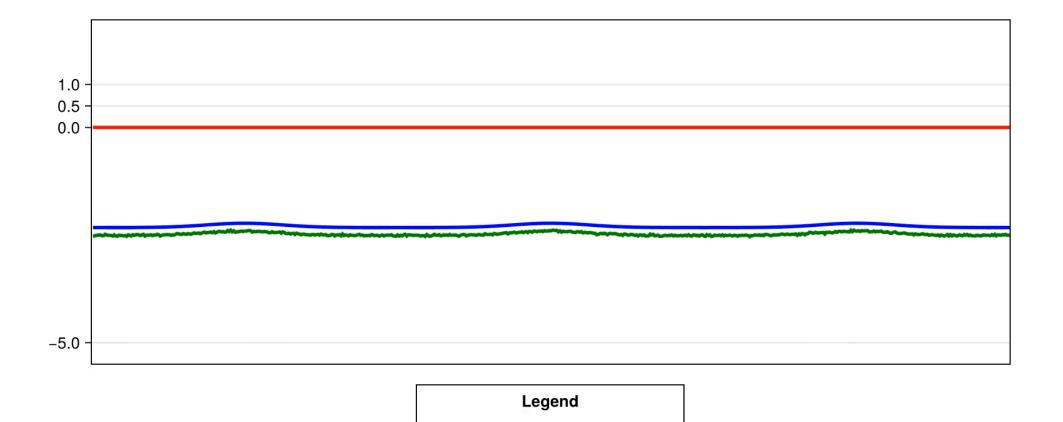
~working memory





detection and selection induced by homogeneous boost

=> amplify small inhomogeneities



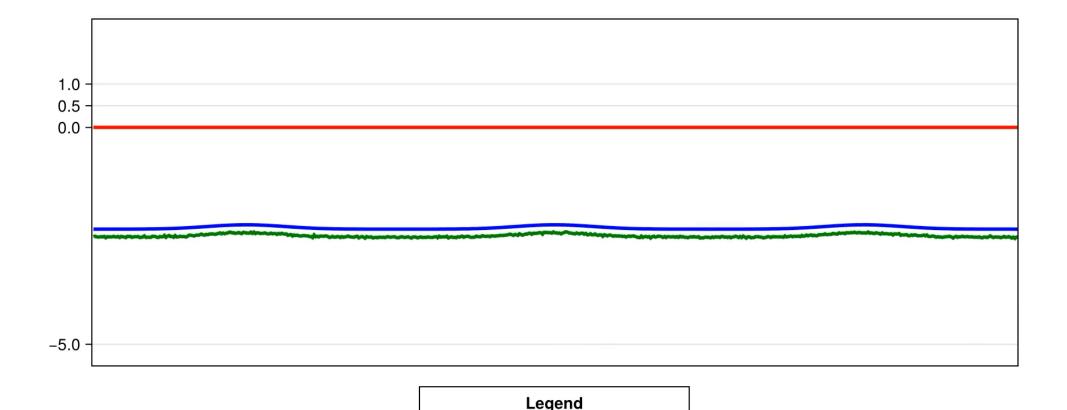
- u(x)

- q(u(x))

-h + s(x)

detection and selection induced by homogeneous boost

=> peak forms that amplifies small inhomogeneities



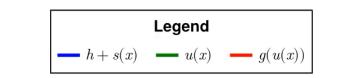
- u(x) - q(u(x))

h + s(x)

the detection instability creates events at discrete moments in time

even in response to time-continuous input

the basis of sequence generation

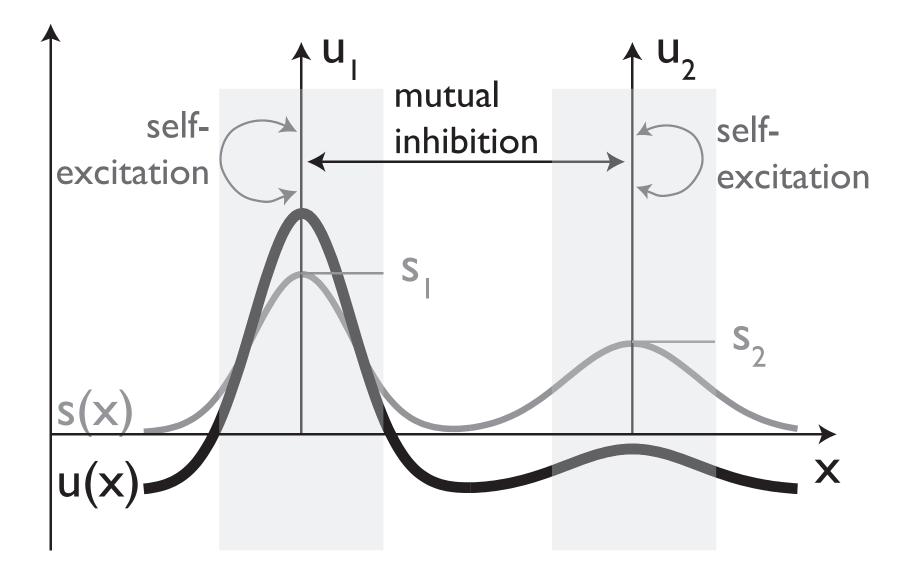


Instabilities

- detection instability
- reverse detection instability
- sustained activation
- selection
- selection instability
- boost driven detection/selection
- events and sequences

Analysis for discrete activation variables

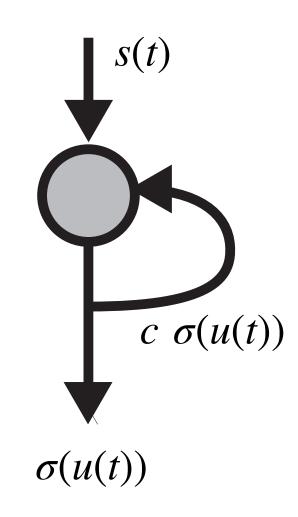
Tutorial



Excitatory interaction = self-excitation

a minimally recurrent network

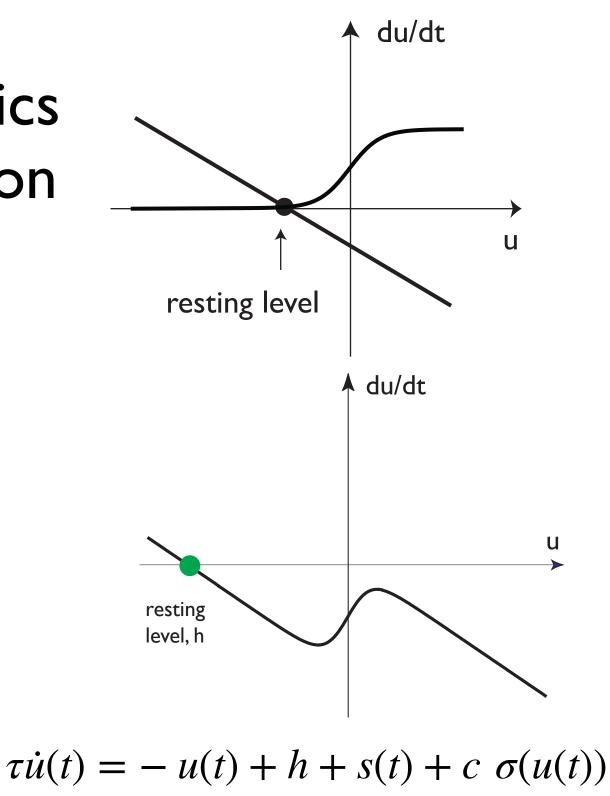
- illustrates that "time" is conceptually necessary to understand these:
 - some inputs are outputs from the same neuron/population ...
 - => not possible to frame as input-ouput
 systems
 - solution: time: past outputs are current inputs



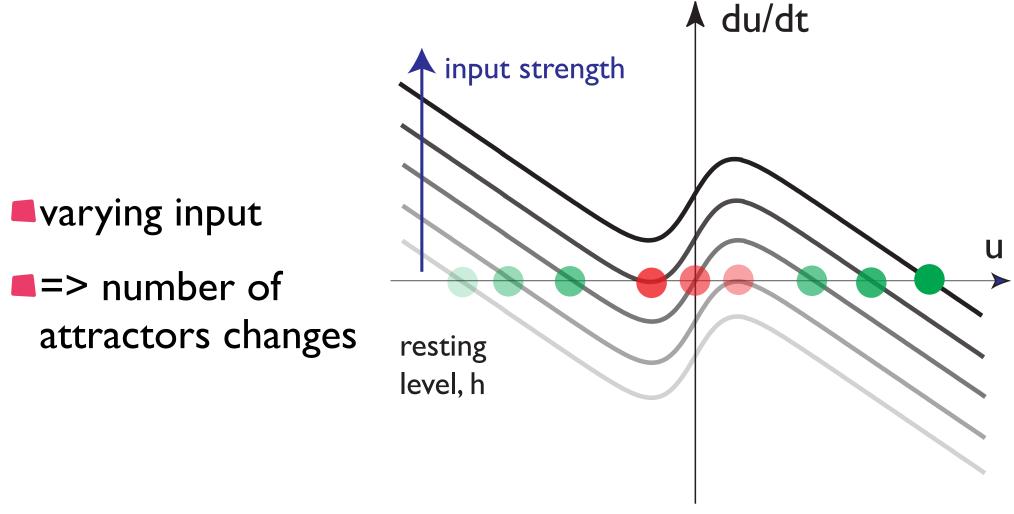
 $\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$

Neuronal dynamics with self-excitation

nonlinear dynamics!



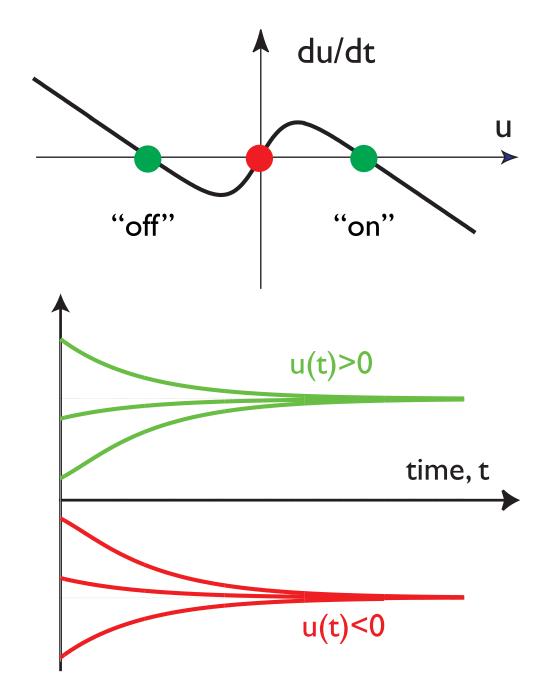
Neuronal dynamics with self-excitation



$$\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$$

Neuronal dynamics with self-excitation

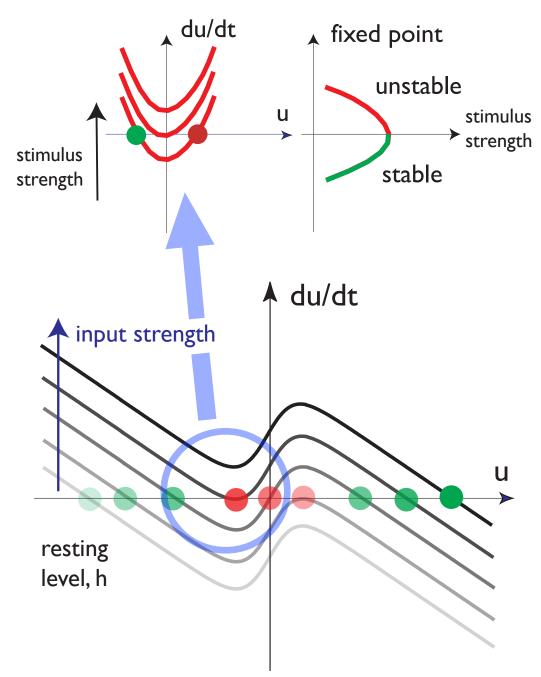
- at intermediate input levels: bistable dynamics
- "on" vs "off" state



 $\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$

Neuronal dynamics with self-excitation

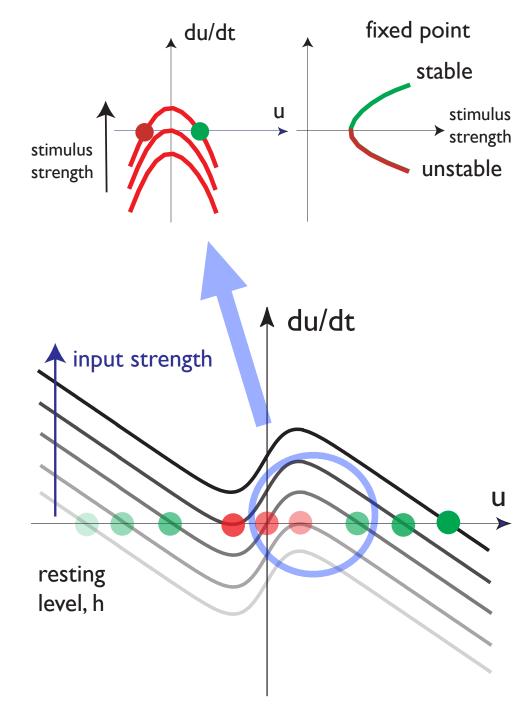
increasing input
strength =>
detection instability



 $\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$

Neuronal dynamics with self-excitation

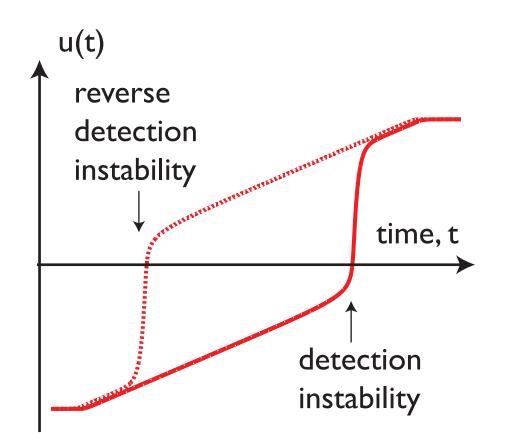
decreasing input
strength => reverse
detection instability



 $\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$

Neuronal dynamics with self-excitation

the detection and its reverse create events at discrete times from time-continuous changes



 $\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$

simulating discrete activation variables with self-excitation

dynamicfieldtheory.org

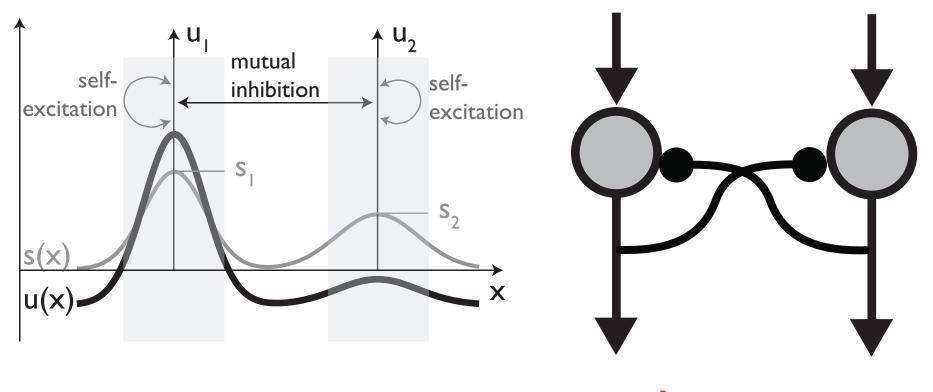
SERIES IN DEVELOPMENTAL COGNITIVE NEUROSCIENCE

Dynamic Thinking

Gregor Schöner, John P. Spencer, and the DFT Research Group

OXFORD

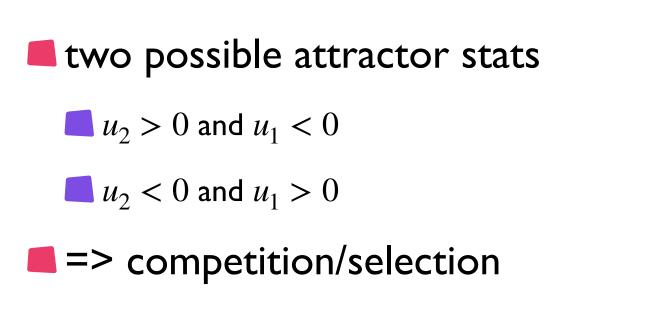
TutorialInhibitory interaction: inhibitoryrecurrent connectivity

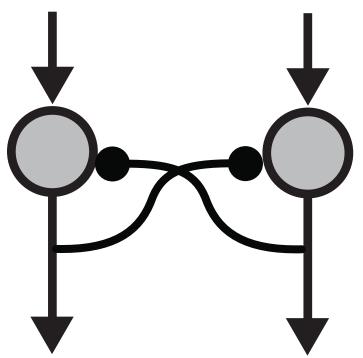


coupling/interaction

$$\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$$

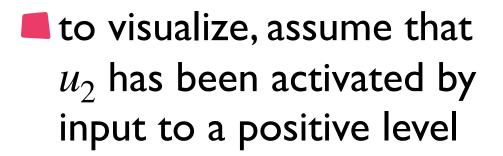
$$\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$$





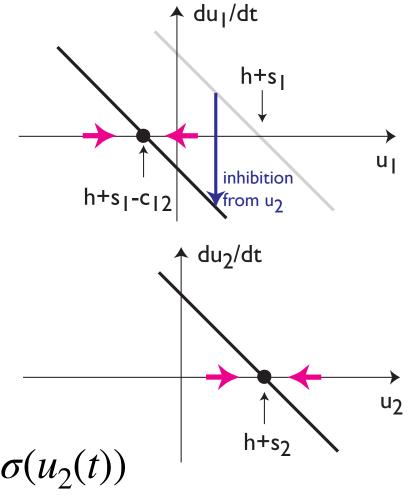
$$\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$$

$$\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$$



=> it inhibits u_1

Tutorial



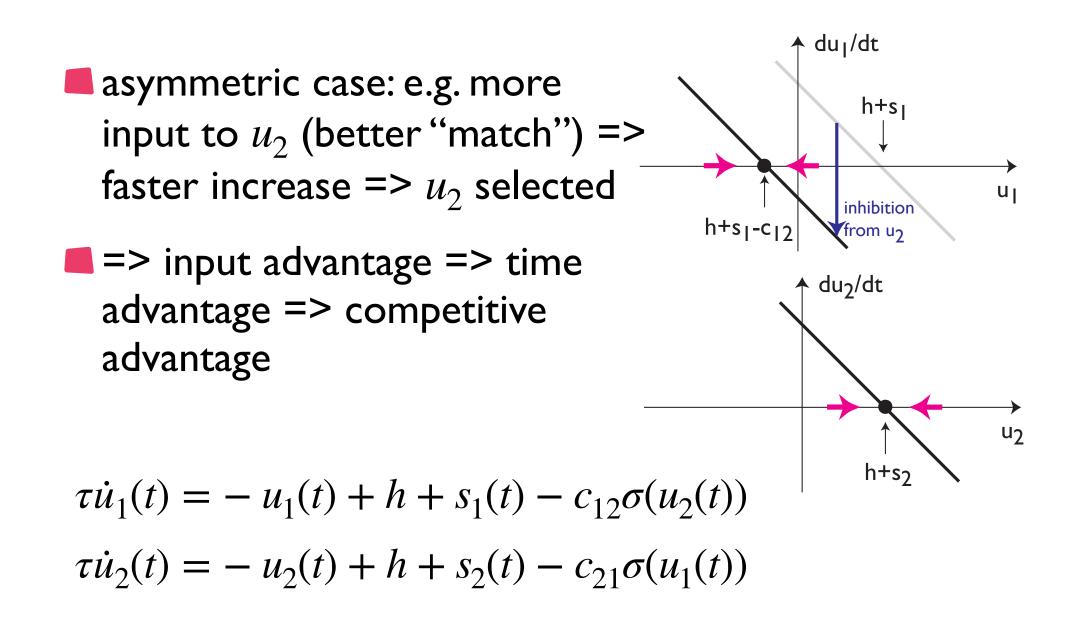
 $\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$ $\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$

- symmetry: same logic if u_1 was initially activated it would prevent u_2 from activating
- => bistable selection of either u_1 or u_2

$$\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$$

$$\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$$

Tutorial



simulating inhibitorily coupled activation variables

dynamicfieldtheory.org

SERIES IN DEVELOPMENTAL COGNITIVE NEUROSCIENCE

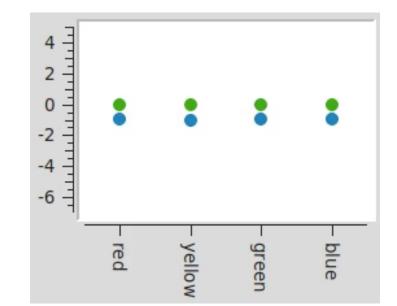
Dynamic Thinking

Gregor Schöner, John P. Spencer, and the DFT Research Group

OXFORD

Neural dynamic nodes

- sets of discrete activation variables as "nodes"
 - self-excitatory: "on" vs "off" states, detection instability, sustained activation
 - all nodes coupled inhibitorily: selection
 - => discretely sampled fields

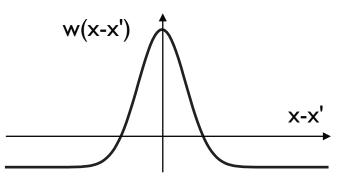


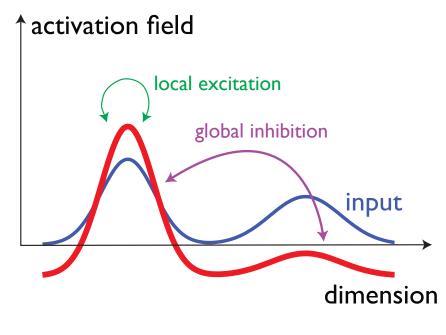
Mathematical formalization

kernel: local excitatory interaction/ global inhibitory interaction

$$w(x - x') = w_{\text{exc}}e^{-\frac{(x - x')^2}{2\sigma^2}} - w_{\text{inh}}$$

Supplement





$$\tau \dot{u}(x,t) = -u(x,t) + h + s(x,t) + \int dx' \ w(x-x') \ \sigma(u(x'))$$

Supplement Mathematical formalization

Amari equation

$$\tau \dot{u}(x,t) = -u(x,t) + h + S(x,t) + \int w(x-x')\sigma(u(x',t)) \, dx'$$

where

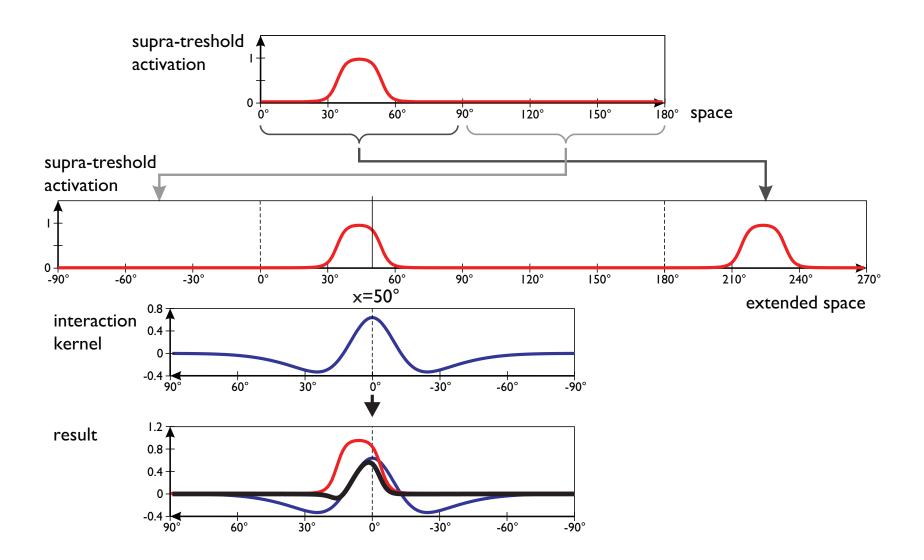
- time scale is τ
- resting level is h < 0
- input is S(x,t)
- interaction kernel is

$$w(x - x') = w_i + w_e \exp\left[-\frac{(x - x')^2}{2\sigma_i^2}\right]$$

• sigmoidal nonlinearity is

$$\sigma(u) = \frac{1}{1 + \exp[-\beta(u - u_0)]}$$

Interaction: convolution



simulating the instabilities of the field dynamics

dynamicfieldtheory.org

SERIES IN DEVELOPMENTAL COGNITIVE NEUROSCIENCE

Dynamic Thinking

Gregor Schöner, John P. Spencer, and the DFT Research Group

OXFORD

Dynamic regimes

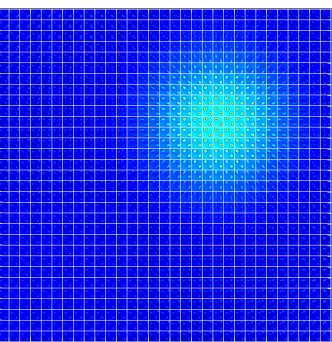
which attractors and instabilities arise as input patterns are varied

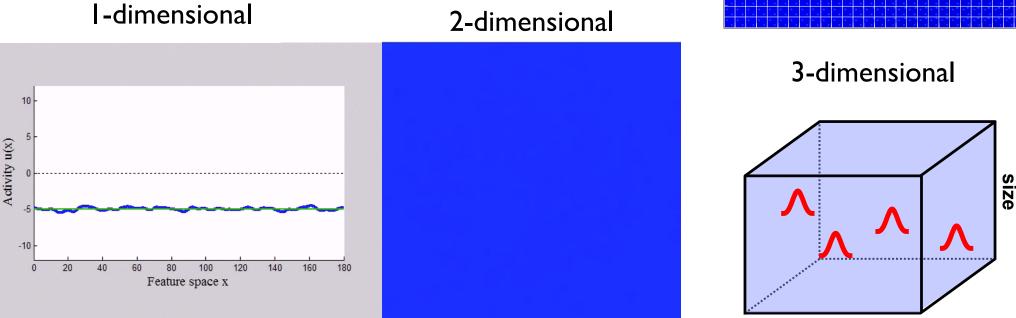
examples

- "perceptual regime": mono-stable sub-threshold => bistable sub-threshold/peak => mono-table peak..
- "working memory regime" bistable sub-threshold/peak
 => mono-table peak.. without mono-stable sub-threshold
- single ("selective") vs. multi-peak regime

Field dynamics in different dimensions

I, 2, 3, 4... dimensions: peaks/ blobs as attractors 4-dimensional





Foundations I: Space and time

Time:

Neural dynamics

Interaction

Instabilities

Tutorial: discrete activation variables

Supplement: mathematical formalization

Tutorial: simulating fields