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... So far we assumed

B that a single population of activation variable
mediates both the excitatory and the inhibitory
coupling required to make peaks attractors
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activation field u(x)

local excitation: stabilizes
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But: Dale’s law

M says: every neuron forms with its axon only one
type of synapse on the neurons it projects onto

M and that is either excitatory or inhibitory
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this is not
activation field u(x)
local excitation: stabilizes
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Two-layer neural fields
input

M inhibitory coupling is
mediated by inhibitory
interneurons that

A Excitatory O Q
layer

Activation u (x)

M are excited by the excitatory
layer A Inhibitory

M and in turn inhibit the inhibitory
layer

Activation u (x)
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Feature space x

[chapter 3 of the book]



2 layer Amari fields

T U(x,t)=-u(x,t)+h, +s(x,t)+ ka (x-x")g(u(x’,t))dx’ - ﬁew (x-x")g(v(x’,t))dx’

T,U(x,t)=-u(x,t)+h, + ka (x—x")g(u(x’,t))dx’

with projection kernels
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[figure:Wilimzig, Schneider, Schoner, Neural Networks, 2006]
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[figure:Wilimzig, Schneider, Schoner, Neural Networks, 2006]



=> early fusion, late selection

double target paradigm
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Two neural node approximation
input

self-

. excitatory
M the canonical excitation

excitatory-

inhibitory

circuit inhibitory

output

tii=—u+h,+s@+w,ou)—w, o

u

TV=—v+h,+w,0o(u)

[Amari Biol Cybern 1977]



Excitatory-inhibitory circuit

M as a neural / p >
oscillator , / Uexc

[Amari Biol Cybern 1977]
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Resting level uy: -1

Noise level uy: 0

Self Excitationuy: 5

Connection strength to u,: -6

Stimulus strength uy: 0
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o Stabilize rate of change plot against noise
(for demonstration purpose only)




Limit cycle attractors

tw=—u+h,+w,f(u — w,f)
TV = —Vv + hv T Wvuf(u)9
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Excitatory-inhibitory circuit

self- Input

excitation

B is a time course

excitatory
generator!

B active=autonomous

inhibitory

output

[Amari Biol Cybern 1977]



Excitatory-inhibitory circuit

M can it only do
oscillation?

self- Input

excitation

excitatory

inhibitory

output

[Amari Biol Cybern 1977]



Active transient

input, s
B translate an input /[ \\U(u(t)?
pulse that is not amer,
precisely timed N

resting level, h

M into a well-defined, A
invariant time

u(t)
course //\
O (u(t))

[T e,
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input, s




Active transient

. A Vinh
® pulse input : :

moves 3 to the @__@_ o
. ool e

right

M and falls away / / /o Nexg
once u has been e / #/\ >
activated ﬂ

B the system 3 4
returns on a start active transient: blue => red
well-defined time then fall back to blue

course



Transient detection

® transform a step
change (fast change)
into a well-defined
time-course

® which could bring
about a movement
or mental act

input, s

u(t)
/\ O (u(t))

/ time, t
>

resting level, h



Active transient

input, s
B translate an input /[ \\U(u(t)?
pulse that is not amer,
precisely timed N

resting level, h

M into a well-defined, A
invariant time
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course //\
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Active transient

A v;
.. 2 inh |
B the system is in

off-state 3/4

M step change moves

blue to red w‘ T Uexc

A
M the system returns
(N onset
to the altered off- (2 ®3 6§ oo <> red
state 2 on a well-
defined time

course



Excitatory-inhibitory circuit

B => autonomous
time course
generation

self- Input

excitation

excitatory

inhibitory

output

[Amari Biol Cybern 1977]
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Sequence generation

B functionally significant neural states are
attractors.. => resist change

M in a sequence of processing steps or actions,
such a neural state must yield to enable the
transition to a new neural state...

M this involves a state “turning itself off”

® which requires a well-defined time course
(an active transient)



lllustration: sequence of actions

M task: search for objects of a given color in a given order

B | blue
‘ target 2

B 2 red ‘

M green
target |

obstacles

M stably couple to
objects once they

are detected ‘
M ignhore objects

when their turn target 3

has not yet come

(distractors) vehicle



Implementation as an imitation task

M |earn a serially ord.ered ® perform the serially
sequence from a single ordered sequence with
demonstration new timing
yellow-red-green-blue-red yellow-red-green-blue-red

[Sandamirskaya, Schoner: Neural Networks 23:1163 (2010)]



red a distractor red a target

[Sandamirskaya, Schoner: Neural Networks 23:1163 (2010)]



ordinal dynamics

Condition of ALK
e BRI
Satisfaction

A
(CoS) \A’f

intention field

¢
4

condition of satisfaction
field

A _— 4
space-color field
robot \
navigation visual input

dynamics
[Sandamirskaya, Schoner: Neural -
Networks 23:1163 (2010)]




Visual input
Camera image

B 2D visual input

B horizontal space

B color

B “intensity” of 2D input
from color histogram at | l

80

each horizontal location
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Visual search

M intention=color cue provides ridge input into space-
color field

® when that ridge overlaps with 2D space-color input =>
peak formed

Color-space DF

search cue




ordinal stack condition of satisfaction (CoS)

intentional state

2D color-space field

color
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transition

Ordinal nodes

activation

dimension, color

18

O !

dimension, color

37
CoS perceived

40
Intention DF

CoS DF

time, s
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Neural dynamic principle
B the current neural attractor state = intention
B predicts its condition of satisfaction (CoS)

M input matching prediction: CoS activated

B CoS inhibits intention...

4 intention m

/\ dimension x of satisfaction

>
predict outcome
>
|
|

dimension y
>

» neural state

!

------------- ¥ motor-world-sensor state ---!

[Sandamirskaya, Schoner: Neural Networks 2010;
Sandamirskaya DFT primer 201 6]



sustained

A intention

dimension x

>

predict outcome

>

» neural state

—

aAcondition

of satisfaction

dimension y

T

------------ % motor-world-sensor state ---!

[Sandamirskaya, Schoner: Neural Networks 2010]
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sustained sub-threshold

A intention Acondition
dimension x of satisfaction

>

predict outcome
>

dimension y
>

T

» neural state

be e mm - % motor-world-sensor state ---!

[Sandamirskaya, Schoner: Neural Networks 2010]



=> sequence generation

detection
A intention aAcondition

dimension y
>

dimension x of satisfaction

>

predict outcome
>

» neural state

outcome

[Sandamirskaya, Schoner: Neural Networks 2010]



reverse detection
instability

A intention / Acm

dimension x of satisfaction

>

predict outcome
>

dimension y
>

T

» neural state |
|
be e mm - % motor-world-sensor state ---!

[Sandamirskaya, Schoner: Neural Networks 2010]



Intention-CoS

M also an excitatory-inhibitory pair

B [not quite: CoS detection instability takes place in a
excitatory field that represents the “perceptual”
state on which CoS builds... and that drives an
inhibitory layer]

4 intention ’/ Acon}

dimension x of satisfaction

>
predict outcome
>

dimension y
>

» neural state

!

e bty ¥ motor-world-sensor state ---!

[Sandamirskaya, Schoner: Neural Networks 2010]



Generalization

M match-detection => CoS

B mis-match (or change) detection => CoD (condition
of dissatisfaction)

[Grieben, Schoner, CogSci 2021]
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CoS: intention ‘“‘turns itself off”
when done, but what next!?

® 3 notions (~Henson Burgess 1997)

@ .................................................
_____________ el selecion | . Hbitonfretun.

B | gradient-based selection p p
M 2 chaining %—Z; : ; i»c;j

M 3 positional representation

Ordinal nodes

W ‘/ | ¥Action| field




Three notions

[Henson Burgess, 1997]

M | gradient-based selection 3 3
B 2 chaining CC sl o0
A

Ordmal nodes

ey
& / Actlon field

M 3 positional representation




Gradient-based + DFT

B other possible states may have been in
competition with the previous intentional state

B once that previous state is deactivated, these
other states are released from inhibition

B => a new peak/node wins the selective
competition based on inputs...

B could be the previous inputs.. e.g. salience map for visual
search

B could be new inputs that are a consequence of the previous
intentional stated



Gradient-based

M e.g. salience map for visual search
M e.g. input from guidance fields..

M re-activation of the previous intentional state
may be prevented by inhibition of return

--------------------------------------------------
.

Pawsgds W vk

[Grieben, Schoner, CogSci 2021] §scene spatial selecuon; - 911!.'?.!992.95!9}2{13.....‘5

------------------------------------------------




Gradient-based

B this is used in many DFT architectures

B visual search
M relational grounding

B mental mapping

--------------------------------------------------
.

[Grieben, Schoner, CogSci 202 I]

------------------------------------------------




Chaining

® for fixed sequences...

B e.g. reach-grasp

I fixed order of mental operations... e.g. ground reference object
first, then target object

M |ess flexible (e.g.. when going through the same
state with different futures)

M could be thought to emerge with practice/habit
from the positional system



Chaining + DFT

B “intention-CoS” pairs for different actions...

® chained by double inhibition

P.

f T

B the CoS of an earlier

intention inhibits a

pre-condition node Sensorimotor DFs

that inhibits a later ¢

intention .
environment

[Richter, Sandamirskaya, Schoner, IROS 2012]



Positional representation

M a neural representation of ordinal position is
organized by chaining

B the contents at each ordinal position is
determined by neural projections from each
ordinal node...



Positional representation + DFT

M in DFT, the ordinal dimension is spanned by ordinal
nodes, coupled to enable chaining

B the transition along the ordinal dimension is organized

by CoS!

Ordinal nodes

\/ / XAction field
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[Sandamirskaya, Schoner: Neural Networks 23:1163 (2010)]
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Positional representation + DFT

® such ordinal dynamics can be used as “counters”

M generating indices for binding...

Ordinal nodes
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Serial order demonstrated/enacted
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Time course of
attention
selection and
building of scene
memory
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FIGURE 4 | Time course of building a scene memory.
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