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… so far we assumed

that a single population of activation variable 
mediates both the excitatory and the inhibitory 
coupling required to make peaks attractors 

dimension, x

local excitation: stabilizes
peaks against decay

global inhibition: stabilizes 
peaks against diffusion

input

activation field u(x)

σ(u)

u



But: Dale’s law
says: every neuron forms with its axon only one 
type of synapse on the neurons it projects onto

and that is either excitatory or inhibitory 

dimension, x

local excitation: stabilizes
peaks against decay

global inhibition: stabilizes 
peaks against diffusion

input

activation field u(x)

σ(u)

u

this is not 
actually possible!



Two-layer neural fields

inhibitory coupling is 
mediated by inhibitory 
interneurons that 

are excited by the excitatory 
layer

and in turn inhibit the inhibitory 
layer 
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excitatory ones have started firing. The delayed 
onset of inhibition means that an external stimu-
lus may produce an initial overshoot of excitation, 
which then decreases as it is balanced by rising inhi-
bition. This gives rise to a phasic-tonic response 
behavior in the excitatory neurons (although it is 
not the only cause of this pattern).

In the DF model, this connectivity and the 
resulting effects on the activation time course 
can be replicated by introducing separate layers 
for the excitatory and inhibitory subpopulations 
(Figure  3.13; see Box 3.5 for the formal descrip-
tion). The basic structure for the two-layer field is 
as follows:  The two layers, excitatory and inhibi-
tory, are defined over the same feature space and are 
both governed by differential equations similar to 
those used in one-layer DFs. In the version consid-
ered here, only the excitatory layer receives direct 
external input. Excitatory interactions are imple-
mented through connections of the excitatory layer 
onto itself, described by an interaction kernel (e.g., 
a Gaussian function). In addition, the excitatory 
layer also projects to and excites the inhibitory 
layer. These projections are topological; that is, a 
projection from any point along the feature space 
on the excitatory layer acts most strongly onto the 
same point in feature space on the inhibitory layer. 
The inhibitory layer, in turn, projects back to the 
excitatory layer in an inhibitory fashion (that is, it 
creates a negative input in that layer’s field equa-
tion). Within the inhibitory layer, there are typi-
cally no lateral interactions.

The projections between the two layers can be 
described by interaction kernels, just like the lateral 

interactions. Note that the effective spread of inhi-
bition is determined by properties of both the pro-
jection from the excitatory to the inhibitory layer 
and of the reverse projection. Let us assume, for 
instance, that all three projections in the two-layer 
field (from excitatory to excitatory, excitatory 
to inhibitory, and inhibitory to excitatory) are 
described by Gaussian kernels of the same width. 
Then the effective range of inhibition in the excit-
atory layer will be wider than the range of lateral 
excitation, because the inhibition is spread by two 
kernels instead of just one. In practice, the two-layer 
field is sometimes set up in such a way that the pro-
jection from the excitatory to the inhibitory field is 
purely local (point-to-point, without an interaction 
kernel). The kernel for the reverse projection is then 
made wider to produce the overall pattern of local 
excitation and surround inhibition. This is a simpli-
fication done to reduce the computational load and 
the number of parameters. It is not meant to ref lect 
any neurophysiological property of the inhibitory 
neurons or the neural connectivity pattern.

The two-layer field shows a delayed onset 
of inhibition according to the same mechanism 
described earlier for the biological neural system. 
In particular, if an external input is applied to the 
system, it drives the activation in the excitatory 
layer, while the inhibitory layer initially remains 
unchanged. When the activation of the excitatory 
layer reaches the threshold of the output function, 
the interactions start to come into effect. The lat-
eral interactions within the excitatory layer drive 
activation further up locally, and at the same time 
the activation of the inhibitory layer is increased. 
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FIGURE  3.13: Architecture of two-layer field. The excitatory layer (top) projects onto itself and onto the inhibitory 
layer (bottom; green arrows). The inhibitory layer projects back onto the excitatory layer (red arrow). All projections are 
spread out and smoothed by Gaussian interaction kernels.
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2 layer Amari fields

BOX 3.5  TWO-LAYER DYNAMIC FIELD

A two-layer field consists of an excitatory and an inhibitory activation distribution over the 
same feature space x, each governed by a differential equation. We designate the activation 
variable for the excitatory layer with the letter u, the one for the inhibitory with v. The basic 
structure for the two-layer field contains three projections: an excitatory projection from layer 
u to itself, a second excitatory projection from layer u  to layer v, and an inhibitory projection 
back from layer u to layer u. Each of them is specified by an interaction kernel k that describes 
the connection weight as a function of distance in feature space. The three kernel functions are 
kuu, kvu, and kuv. Here, the first letter in the index always designates the target of the projection; 
the second, its origin. The field equations are then:

τu u uu uvu x t u x t h s x t k x x g u x t dx k x! , , , ,( ) = − ( ) + + ( ) + −( ) ( )( ) − −′ ′ ′∫ ∫ ′′ ′ ′( ) ( )( )x g v x t dx,

τv v vuv x t v x t h k x x g u x t dx! , , ,( ) = − ( ) + + −( ) ( )( )′ ′ ′∫
The output function g is again a sigmoid (logistic) function as in the one-layer system. The 

interaction kernels are typically Gaussian functions of the form:
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The parameter cuu specifies the strength of the projection, the parameter σuu the width of 
the Gaussian kernel. The inhibitory kernel may include an additional constant term to produce 
global inhibition.

In this formulation, the effective width of inhibition is determined by both the kernels kuv 
and kvu. It is sometimes desirable to simplify this by omitting one of the kernels and using a 
simpler point-to-point connection for the projection from the layer u to layer v. This yields the 
dynamical system

τu u uu uvu x t u x t h s x t k x x g u x t dx k x! , , , ,( ) = − ( ) + + ( ) + −( ) ( )( ) − −′ ′ ′∫ ∫ ′′ ′ ′( ) ( )( )x g v x t dx,

τv v vuv x t v x t h c g u x t! , , ,( ) = − ( ) + + ( )( )

If only global inhibition is required in a model, this architecture can be further simplified by 
replacing the continuous inhibitory layer by a single inhibitory node. This node receives input 
from the whole excitatory layer and projects homogeneous inhibition back to it:

τu u uu uvu x t u x t h s x t k x x g u x t dx c g v t! , , , ,( ) = − ( ) + + ( ) + −( ) ( )( ) −′ ′ ′∫ (( )( )

τv v vuv t v t h c g u x t! ( ) = − ( ) + + ( )( )∫ ,

Note that this formulation with a single inhibitory node shows a somewhat different behav-
ior than the form with a continuous layer and purely global inhibition: In a continuous layer, 
the total output can increase very gradually as an activation peak becomes wider. When only 
a single node is used, the total output is always the sigmoid of the single activation variable. 
It can be useful to choose a sigmoid function with a very shallow slope here to allow a more 
gradual increase of the inhibition.
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Evidence

time course of decision 
making

initially input-dominated

early excitatory interaction 

late inhibitory interaction

[figure: Wilimzig, Schneider, Schöner, Neural Networks, 2006]
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excitatory ones have started firing. The delayed 
onset of inhibition means that an external stimu-
lus may produce an initial overshoot of excitation, 
which then decreases as it is balanced by rising inhi-
bition. This gives rise to a phasic-tonic response 
behavior in the excitatory neurons (although it is 
not the only cause of this pattern).

In the DF model, this connectivity and the 
resulting effects on the activation time course 
can be replicated by introducing separate layers 
for the excitatory and inhibitory subpopulations 
(Figure  3.13; see Box 3.5 for the formal descrip-
tion). The basic structure for the two-layer field is 
as follows:  The two layers, excitatory and inhibi-
tory, are defined over the same feature space and are 
both governed by differential equations similar to 
those used in one-layer DFs. In the version consid-
ered here, only the excitatory layer receives direct 
external input. Excitatory interactions are imple-
mented through connections of the excitatory layer 
onto itself, described by an interaction kernel (e.g., 
a Gaussian function). In addition, the excitatory 
layer also projects to and excites the inhibitory 
layer. These projections are topological; that is, a 
projection from any point along the feature space 
on the excitatory layer acts most strongly onto the 
same point in feature space on the inhibitory layer. 
The inhibitory layer, in turn, projects back to the 
excitatory layer in an inhibitory fashion (that is, it 
creates a negative input in that layer’s field equa-
tion). Within the inhibitory layer, there are typi-
cally no lateral interactions.

The projections between the two layers can be 
described by interaction kernels, just like the lateral 

interactions. Note that the effective spread of inhi-
bition is determined by properties of both the pro-
jection from the excitatory to the inhibitory layer 
and of the reverse projection. Let us assume, for 
instance, that all three projections in the two-layer 
field (from excitatory to excitatory, excitatory 
to inhibitory, and inhibitory to excitatory) are 
described by Gaussian kernels of the same width. 
Then the effective range of inhibition in the excit-
atory layer will be wider than the range of lateral 
excitation, because the inhibition is spread by two 
kernels instead of just one. In practice, the two-layer 
field is sometimes set up in such a way that the pro-
jection from the excitatory to the inhibitory field is 
purely local (point-to-point, without an interaction 
kernel). The kernel for the reverse projection is then 
made wider to produce the overall pattern of local 
excitation and surround inhibition. This is a simpli-
fication done to reduce the computational load and 
the number of parameters. It is not meant to ref lect 
any neurophysiological property of the inhibitory 
neurons or the neural connectivity pattern.

The two-layer field shows a delayed onset 
of inhibition according to the same mechanism 
described earlier for the biological neural system. 
In particular, if an external input is applied to the 
system, it drives the activation in the excitatory 
layer, while the inhibitory layer initially remains 
unchanged. When the activation of the excitatory 
layer reaches the threshold of the output function, 
the interactions start to come into effect. The lat-
eral interactions within the excitatory layer drive 
activation further up locally, and at the same time 
the activation of the inhibitory layer is increased. 
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FIGURE  3.13: Architecture of two-layer field. The excitatory layer (top) projects onto itself and onto the inhibitory 
layer (bottom; green arrows). The inhibitory layer projects back onto the excitatory layer (red arrow). All projections are 
spread out and smoothed by Gaussian interaction kernels.
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time course of selection 

early: input driven

intermediate: dominated by excitatory interaction

late: inhibitory interaction drives 
selection

[figure: Wilimzig, Schneider, Schöner, Neural Networks, 2006]



=> early fusion, late selection
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[figure: Wilimzig, Schneider, Schöner, Neural Networks, 2006]
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Excitatory-inhibitory circuits are time 
generators: oscillations, active transients
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Two neural node approximation

the canonical 
excitatory-
inhibitory 
circuit

[Amari Biol Cybern 1977]

excitatory

inhibitory

input

self-
excitation

τu
·u = − u + hu + s(t) + wuuσ(u) − wuvσ(v)

τv
·v = − v + hv + wvuσ(u)

output



Excitatory-inhibitory circuit 

as a neural 
oscillator 

12

3 4

41

2 3

vinh

uexc

[Amari Biol Cybern 1977]



Simulation



Limit cycle attractors
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FIG. 5. (Top) A periodic evolution of an activation variable cannot be obtained as a solution of a
single-variable dynamical system, because most levels of activation (here the zero level) are crossed in
two different directions, so that the future is not uniquely determined by the present state of the activation
variable. (Bottom) A second variable, here called ‘‘inhibition,’’ is needed to disambiguate these two
events.

To see this, imagine a periodic time course of activation (Fig. 5). All levels of activa-
tion (except at the turning points) are then passed through in two directions, once at
increasing and once at decreasing activation. Thus, such activation values do not
uniquely specify the future. A second variable, here called ‘‘inhibition,’’ is needed,
to disambiguate the future: each activation level is passed through once at a smaller
and once at a larger level of this second variable. Thus, clocks cannot be built as
dynamical systems in terms of activation alone!
Stable periodic solutions, to which the system is attracted from nearby states are

called limit cycle attractors. An example of a dynamical system supporting limit
cycle attractors of an activation–inhibition pair of variables is

τu̇ ! "u # hu # wuu f (u) " wuv f (v) (6)

τv̇ ! "v # hv # wvu f (u), (7)

equations first analyzed by Amari (1977). The first two terms of each equation de-
scribe two linear uncoupled dynamical systems, each with a stable fixed point at the
resting levels of activation, hu, and of inhibition, hv. A sigmoid function,

f (u) !
1

1 # exp["βu]
, (8)

makes the system nonlinear in terms of ‘‘self-excitation’’ (wuu) and of coupling be-
tween activation and inhibition variables (wuv, wvu). For appropriate choices of these
parameters, a limit cycle attractor emerges (Fig. 6). The stability of the periodic solu-
tion manifests itself by attraction of neighboring states toward the limit cycle. The
activation-based stochastic timer model emerges as the limit case, in which the vector
field is structured such that a period of graded activation growth is followed by a
more rapid phase of activation decay (Fig. 6b). In fact, abstractly speaking, any clock
is a limit cycle attractor of a dynamical system (see, e.g., Andronov, Vitt, & Khaikin,

[Schöner: Brain & Cog 2002]



Excitatory-inhibitory circuit

is a time course 
generator! 

active=autonomous

[Amari Biol Cybern 1977]
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inputself-
excitation

output



Excitatory-inhibitory circuit

can it only do 
oscillation? 

[Amari Biol Cybern 1977]

excitatory
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inputself-
excitation

output



Active transient

translate an input 
pulse that is not 
precisely timed

into a well-defined, 
invariant time 
course 

time, t
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resting level, h
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Active transient

12

3 4

vinh

uexc

41

2 3

41

2 3

start active transient: blue => red
then fall back to blue 

pulse input 
moves 3 to the 
right

and falls away 
once u has been 
activated

the system 
returns on a 
well-defined time 
course



Transient detection

transform a step 
change (fast change) 
into a well-defined 
time-course 

which could bring 
about a movement 
or mental act

time, t

u(t)

resting level, h

(u(t))

input, s
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Active transient

translate an input 
pulse that is not 
precisely timed

into a well-defined, 
invariant time 
course 

time, t

u(t)

resting level, h
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Active transient

the system is in 
off-state 3/4

step change moves 
blue to red

the system returns 
to the altered off-
state 2 on a well-
defined time 
course

12

3 4

vinh

uexc

onset 
blue => red

3/412

3/412



Excitatory-inhibitory circuit

=> autonomous 
time course 
generation 

[Amari Biol Cybern 1977]
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Excitatory-inhibitory circuits are time 
generators: oscillations, active transients

Sequence generation: how to transition 
autonomously 

Sequence generation: which state to transition 
to
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Sequence generation

functionally significant neural states are 
attractors.. => resist change 

in a sequence of processing steps or actions, 
such a neural state must yield to enable the 
transition to a new neural state… 

this involves a state “turning itself off”

which requires a well-defined time course 
(an active transient)



task: search for objects of a given color in a given order

1 blue

2 red

green

vehicle

target 1

target 2

obstacles

target 13

Illustration: sequence of actions

stably couple to 
objects once they 
are detected 

ignore objects 
when their turn 
has not yet come 
(distractors)



yellow-red-green-blue-red yellow-red-green-blue-red

Implementation as an imitation task
learn a serially ordered 
sequence from a single 
demonstration

perform the serially 
ordered sequence with 
new timing

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]



red a distractor red a target

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]



Condition of 
Satisfaction

(CoS)

excites the corresponding memory node, which, in its turn,
provides an excitatory input to the ordinal node which is to
be activated next. The active ordinal node also projects onto
a single intention field defined over the dimension of color.
Which color each node activates is learned, or memorized,
in the training phase through a fast Hebbian learning
mechanism. The intention field is reciprocally coupled with
a two-dimensional space-color field, in which the spatial
dimension samples the horizontal axis of the camera
image. The space-color field receives ridge-input localized
along the color dimension, but not along space, from the
intention field. It also receives a two-dimensional space-
color input from the visual array. Where visual input
overlaps with the ridge, a peak is formed, the spatial pro-
jection of which specifies the visual angle under which an
object of the color being sought is located.

The space-color field projects along the spatial dimen-
sion onto the dynamics of heading direction, creating an
attractor that steers the robot to the detected object. As that

object is approached, its image grows in the robot’s visual
array. The condition-of-satisfaction field (top-right on
Fig. 8) is pre-activated by input from the intention field and
is pushed through the detection instability when the object
of the color being sought looms sufficiently large. This
brings about the transition to the next step in the sequence
as described in Section 3.3.

Before an object that matches the current intention has
been found, no peak exists in the space-color field. The
heading direction does not receive input at that time from
the space-color field and the vehicle’s navigation dynamics
is dominated by obstacle avoidance, which is implemented
using a standard dynamic method (Bicho, Mallet, &
Schöner, 2000). This results in the roaming behavior that
helps the robot search for objects of the appropriate color.

During teaching, the visual input from the object shown
to the robot is boosted enough to induce a peak in the space-
color field. This peak projects activation backwards onto the
intention field, where a peak is induced at the location that

Fig. 8. The architecture for a sequential color-search task on a Khepera robot. An active node of the ordinal dynamics projects its activation onto an intention field,
defined over color dimension. The intention field is coupled to the space-color field, which also receives visual input from the robot’s camera. An activation peak
in the space-color field drives the navigation dynamics of the robot, setting an attractor for its heading direction. The condition-of-satisfaction field is also defined
over color dimension and is activated when the object of the currently active color takes up a large portion of the camera image.

Y. Sandamirskaya et al. / New Ideas in Psychology xxx (2013) 1–1814

Please cite this article in press as: Sandamirskaya, Y., et al., Using Dynamic Field Theory to extend the embodiment stance toward
higher cognition, New Ideas in Psychology (2013), http://dx.doi.org/10.1016/j.newideapsych.2013.01.002

[Sandamirskaya, Schöner: Neural 
Networks 23:1163 (2010)]



Visual input

2D visual input 

horizontal space

color

“intensity” of 2D input 
from color histogram at 
each horizontal location 
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Visual search
intention=color cue provides ridge input into space-
color field

when that ridge overlaps with 2D space-color input => 
peak formed
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2D color-space fieldintentional state

color

condition of satisfaction (CoS)ordinal stack

colorspace
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Learning Production
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Figure 11: One run of the robotic demonstrations. A: Time-courses of activation of five ordinal nodes during
sequence learning and production. B: Time-course of activation in the action field. Positive activation in the
field encodes the color currently searched for. C: Time-course of activation in the condition of satisfaction
field. Arrows mark the times when condition of satisfaction signals were emitted (detection instabilities in
the field). D: The projection of the perceptual color-space field onto the spatial dimension (horizontal axis of
the image plane). The arrows mark times when the object of interest in each ordinal position first appeared
in the visual array of the robot. The “random search” behavior changed to “approach target” behavior at
these points.
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Neural dynamic principle
the current neural attractor state = intention 

predicts its condition of satisfaction (CoS)

input matching prediction: CoS activated

CoS inhibits intention… 

intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

predict outcome

[Sandamirskaya, Schöner: Neural Networks 2010; 
Sandamirskaya DFT primer 2016]
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[Sandamirskaya, Schöner: Neural Networks 2010]

sustained
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condition
of satisfaction

predict outcome

[Sandamirskaya, Schöner: Neural Networks 2010]

sustained sub-threshold



=>  sequence generation

intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

predict outcome

[Sandamirskaya, Schöner: Neural Networks 2010]
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[Sandamirskaya, Schöner: Neural Networks 2010]

reverse detection
instability 



intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

predict outcome

[Sandamirskaya, Schöner: Neural Networks 2010]

Intention-CoS
also an excitatory-inhibitory pair

[not quite: CoS detection instability takes place in a 
excitatory field that represents the “perceptual” 
state on which CoS builds… and that drives an 
inhibitory layer]



Generalization

match-detection => CoS

mis-match (or change) detection => CoD (condition 
of dissatisfaction)  

instability, if at least one supra-threshold peak exists in the
input field. They remain in the off-state otherwise.

Match and Mismatch detection
For each feature dimension, three fields exist. The expected

and attended feature fields represent, through a single peak
of activation, feature values. They receive input from two
different paths of the network. The mismatch detection field
receives excitatory input from the attended and inhibitory in-
put from the expected feature field. It generates a peak if
expected and attended feature fields have peaks at different
locations along the feature dimension.

For a given attended object location, the feature matching

sub-network (Figure 2) compares (in parallel across feature
dimensions) search cue (expected feature) and attended fea-
ture. A peak in all three fields (attended feature, expected

feature, and mismatch detection) signals a no match, activat-
ing the no-match response node and inhibiting the match re-

sponse node. Absence of a peak in the mismatch detection

field, with peaks in the two other fields, signals a match and
activates the match response node.

Figure 2: The feature matching sub-network. See the text for
an explanation.

Mismatch within a single feature dimension is sufficient
to activate the condition of dissatisfaction (CoD). In contrast,
the condition of satisfaction (CoS) node is only activated if all
attended features match the search cue. Together with the in-

tention node, these two nodes are used to autonomously gen-
erate sequences of neural processing steps (Sandamirskaya &
Schöner, 2010).

The neural dynamic process model
To account for the effects of feature sharing and grouping on
the search efficiency of triple conjunction searches (Nordfang
& Wolfe, 2014), we reduced our previous neural dynamic
process model (Grieben et al., 2020) to its visual search com-
ponent (removing sub-networks related to scene memory and
transient detection). The simplified outline of Figure 3 groups
dynamic neural fields into sub-networks (boxes) and their
connectivity (arrows). The model is, however, really just a
system of coupled neural integro-differential equations of the
type shown in Equation 1. All neural activation fields and

Figure 3: An overview of the neural dynamic process model.
Boxes represent sub-networks of fields and arrows their cou-
plings. Green outlines highlight sub-networks changed with
respect to the previous model.

variables evolve continuously in time, dependent on online
visual input. Instabilities create the impression of discrete
events, but these simply emerge from the dynamics. The real-
time numerical solution of the equations was achieved by im-
plementing the model in cedar, a graphical programming in-
terface for DFT models that also supports online visualization
(Lomp, Richter, Zibner, & Schöner, 2016).

Feed-forward feature maps and salience map
The bottom-up pathway of the model (and of human percep-
tion) is a parallel preattentive process purely driven by in-
put. In the model, visual input may come from a live camera
image (A) or, in the current case, from randomly generated
search displays (A1) (Figure 4).

Figure 4: The bottom-up pathway of the model. See text for
explanation. Green outlines highlight sub-networks changed
with respect to the previous model.

Three features are extracted in parallel: color, orientation,
and shape. Color is extracted from hue-space. Orientation
is obtained by filtering the thresholded saturation with four
elongated center-surround filters. To align with the experi-
ments of Nordfang and Wolfe (2014), we swapped the size

feature of our previous model (Grieben et al., 2020) to shape.
Shape was obtained by template matching (normalized cross-
correlation), a simplified account for preattentive recognition

[Grieben, Schöner, CogSci 2021]



Two-layer fields

Excitatory-inhibitory circuits are time 
generators: oscillations, active transients

Sequence generation: how to transition 
autonomously 

Sequence generation: which state to transition 
to

Demonstration of sequence generation

Roadmap DFT foundations 4: advanced timing



CoS: intention “turns itself off” 
when done, but what next?

3 notions (~Henson Burgess 1997) 

of simple shapes (Huang, 2020). These feature filters gener-
ate inputs that model the responses of feature sensitive neu-
rons characterized by tuning curves. The neural activation
pattern across the entire neural population for each feature
is represented in the respective scene space/feature map (B).
These neural space/feature representations are defined over
the two dimensions of visual space and over one feature di-
mension. Their activation is marginalized along the feature
dimension, using a center-surround filter as the projection
kernel, resulting in a conspicuity map (C) for each feature.
The inhibitory part of the center-surround kernel makes that
the relative bottom-up salience of an object decreases linearly
with the number of features shared with its flankers and also
depends linearly on the number of flankers that share at least
one feature with it. The excitatory part of the center-surround
kernel (which is less strong for the shape feature dimension)
makes that objects that are surrounded by empty space or
by flankers that share no features with them become more
salient.

These conspicuity maps are integrated in a spatial salience
map, scene spatial salience field C (Itti & Koch, 2000). The
output of this field (Figure 5), its activation passed through
a sigmoidal threshold function, is the nonlinear bottom-up
salience map that is responsible for the grouping effect. In our
previous model (Grieben et al., 2020) all objects had the same
bottom-up salience. The bottom-up salience map is low-pass
filtered with a Gaussian filter.

image input field C output field C filtered

Figure 5: Bottom-up salience. See text for an explanation.

Attentional selection
The core cognitive processes of visual cognition require an
attentional selection decision. The scene spatial selection

field (D) plays, therefore, a central role in the model (see Fig-
ure 6). This field operates in the dynamic regime of selection,
so that only one supra-threshold peak can be formed at any
point in time. This provides the neural substrate for feature
binding in the manner of Treisman’s feature integration the-
ory (Treisman & Gelade, 1980).

The scene guidance sub-network (H) consists of three
space/feature overlap fields (H) that receive sub-threshold in-
put from the scene space/feature maps (B) and feature input
from the target search cue (G). At locations at which the cued
features and the scene maps overlap, supra-threshold peaks
form. The activation patterns of these fields are marginal-
ized along the feature dimension to provide spatial input to
the feature guidance field (H1). The resting level of the fea-

ture guidance field (H1) is down-regulated dynamically via
inhibitory connections from the search cue sub-network (G)

Figure 6: The sub-networks engaged in attentional selection
and visual search. See the text for explanation. Green outlines
highlight sub-networks changed with respect to the previous
model.

so that it decreases linearly with the number of cued features.
This dynamical down-regulation is required to compensate
for the linear dependence of the peak amplitude of the inputs
to the field on the number of cued features. The output of this
guidance field (Figure 7), its activation passed through a sig-
moidal threshold function, provides nonlinear top-down bias
for the scene spatial selection field (D), and is responsible for
the sharing effect.

The scene spatial selection field (D) receives weighted
(WS) bottom-up bias from the scene spatial salience field (C),
and additional weighted (WFG) top-down bias from the scene

guidance sub-network (H) (Figure 8).

Visual search
Visual search is initiated automatically as soon as a peak is
formed in the scene spatial selection field (D). It terminates
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Three notions

of simple shapes (Huang, 2020). These feature filters gener-
ate inputs that model the responses of feature sensitive neu-
rons characterized by tuning curves. The neural activation
pattern across the entire neural population for each feature
is represented in the respective scene space/feature map (B).
These neural space/feature representations are defined over
the two dimensions of visual space and over one feature di-
mension. Their activation is marginalized along the feature
dimension, using a center-surround filter as the projection
kernel, resulting in a conspicuity map (C) for each feature.
The inhibitory part of the center-surround kernel makes that
the relative bottom-up salience of an object decreases linearly
with the number of features shared with its flankers and also
depends linearly on the number of flankers that share at least
one feature with it. The excitatory part of the center-surround
kernel (which is less strong for the shape feature dimension)
makes that objects that are surrounded by empty space or
by flankers that share no features with them become more
salient.

These conspicuity maps are integrated in a spatial salience
map, scene spatial salience field C (Itti & Koch, 2000). The
output of this field (Figure 5), its activation passed through
a sigmoidal threshold function, is the nonlinear bottom-up
salience map that is responsible for the grouping effect. In our
previous model (Grieben et al., 2020) all objects had the same
bottom-up salience. The bottom-up salience map is low-pass
filtered with a Gaussian filter.

image input field C output field C filtered

Figure 5: Bottom-up salience. See text for an explanation.

Attentional selection
The core cognitive processes of visual cognition require an
attentional selection decision. The scene spatial selection

field (D) plays, therefore, a central role in the model (see Fig-
ure 6). This field operates in the dynamic regime of selection,
so that only one supra-threshold peak can be formed at any
point in time. This provides the neural substrate for feature
binding in the manner of Treisman’s feature integration the-
ory (Treisman & Gelade, 1980).

The scene guidance sub-network (H) consists of three
space/feature overlap fields (H) that receive sub-threshold in-
put from the scene space/feature maps (B) and feature input
from the target search cue (G). At locations at which the cued
features and the scene maps overlap, supra-threshold peaks
form. The activation patterns of these fields are marginal-
ized along the feature dimension to provide spatial input to
the feature guidance field (H1). The resting level of the fea-

ture guidance field (H1) is down-regulated dynamically via
inhibitory connections from the search cue sub-network (G)

Figure 6: The sub-networks engaged in attentional selection
and visual search. See the text for explanation. Green outlines
highlight sub-networks changed with respect to the previous
model.

so that it decreases linearly with the number of cued features.
This dynamical down-regulation is required to compensate
for the linear dependence of the peak amplitude of the inputs
to the field on the number of cued features. The output of this
guidance field (Figure 7), its activation passed through a sig-
moidal threshold function, provides nonlinear top-down bias
for the scene spatial selection field (D), and is responsible for
the sharing effect.

The scene spatial selection field (D) receives weighted
(WS) bottom-up bias from the scene spatial salience field (C),
and additional weighted (WFG) top-down bias from the scene

guidance sub-network (H) (Figure 8).

Visual search
Visual search is initiated automatically as soon as a peak is
formed in the scene spatial selection field (D). It terminates
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Gradient-based + DFT

other possible states may have been in 
competition with the previous intentional state 

once that previous state is deactivated, these 
other states are released from inhibition

=> a new peak/node wins the selective 
competition based on inputs… 

could be the previous inputs.. e.g. salience map for visual 
search

could be new inputs that are a consequence of the previous 
intentional stated



Gradient-based 

e.g. salience map for visual search

e.g. input from guidance fields..

re-activation of the previous intentional state 
may be prevented by inhibition of return

of simple shapes (Huang, 2020). These feature filters gener-
ate inputs that model the responses of feature sensitive neu-
rons characterized by tuning curves. The neural activation
pattern across the entire neural population for each feature
is represented in the respective scene space/feature map (B).
These neural space/feature representations are defined over
the two dimensions of visual space and over one feature di-
mension. Their activation is marginalized along the feature
dimension, using a center-surround filter as the projection
kernel, resulting in a conspicuity map (C) for each feature.
The inhibitory part of the center-surround kernel makes that
the relative bottom-up salience of an object decreases linearly
with the number of features shared with its flankers and also
depends linearly on the number of flankers that share at least
one feature with it. The excitatory part of the center-surround
kernel (which is less strong for the shape feature dimension)
makes that objects that are surrounded by empty space or
by flankers that share no features with them become more
salient.

These conspicuity maps are integrated in a spatial salience
map, scene spatial salience field C (Itti & Koch, 2000). The
output of this field (Figure 5), its activation passed through
a sigmoidal threshold function, is the nonlinear bottom-up
salience map that is responsible for the grouping effect. In our
previous model (Grieben et al., 2020) all objects had the same
bottom-up salience. The bottom-up salience map is low-pass
filtered with a Gaussian filter.

image input field C output field C filtered

Figure 5: Bottom-up salience. See text for an explanation.

Attentional selection
The core cognitive processes of visual cognition require an
attentional selection decision. The scene spatial selection

field (D) plays, therefore, a central role in the model (see Fig-
ure 6). This field operates in the dynamic regime of selection,
so that only one supra-threshold peak can be formed at any
point in time. This provides the neural substrate for feature
binding in the manner of Treisman’s feature integration the-
ory (Treisman & Gelade, 1980).

The scene guidance sub-network (H) consists of three
space/feature overlap fields (H) that receive sub-threshold in-
put from the scene space/feature maps (B) and feature input
from the target search cue (G). At locations at which the cued
features and the scene maps overlap, supra-threshold peaks
form. The activation patterns of these fields are marginal-
ized along the feature dimension to provide spatial input to
the feature guidance field (H1). The resting level of the fea-

ture guidance field (H1) is down-regulated dynamically via
inhibitory connections from the search cue sub-network (G)

Figure 6: The sub-networks engaged in attentional selection
and visual search. See the text for explanation. Green outlines
highlight sub-networks changed with respect to the previous
model.

so that it decreases linearly with the number of cued features.
This dynamical down-regulation is required to compensate
for the linear dependence of the peak amplitude of the inputs
to the field on the number of cued features. The output of this
guidance field (Figure 7), its activation passed through a sig-
moidal threshold function, provides nonlinear top-down bias
for the scene spatial selection field (D), and is responsible for
the sharing effect.

The scene spatial selection field (D) receives weighted
(WS) bottom-up bias from the scene spatial salience field (C),
and additional weighted (WFG) top-down bias from the scene

guidance sub-network (H) (Figure 8).

Visual search
Visual search is initiated automatically as soon as a peak is
formed in the scene spatial selection field (D). It terminates

[Grieben, Schöner, CogSci 2021]



Gradient-based 

this is used in many DFT architectures

visual search

relational grounding

mental mapping 

of simple shapes (Huang, 2020). These feature filters gener-
ate inputs that model the responses of feature sensitive neu-
rons characterized by tuning curves. The neural activation
pattern across the entire neural population for each feature
is represented in the respective scene space/feature map (B).
These neural space/feature representations are defined over
the two dimensions of visual space and over one feature di-
mension. Their activation is marginalized along the feature
dimension, using a center-surround filter as the projection
kernel, resulting in a conspicuity map (C) for each feature.
The inhibitory part of the center-surround kernel makes that
the relative bottom-up salience of an object decreases linearly
with the number of features shared with its flankers and also
depends linearly on the number of flankers that share at least
one feature with it. The excitatory part of the center-surround
kernel (which is less strong for the shape feature dimension)
makes that objects that are surrounded by empty space or
by flankers that share no features with them become more
salient.

These conspicuity maps are integrated in a spatial salience
map, scene spatial salience field C (Itti & Koch, 2000). The
output of this field (Figure 5), its activation passed through
a sigmoidal threshold function, is the nonlinear bottom-up
salience map that is responsible for the grouping effect. In our
previous model (Grieben et al., 2020) all objects had the same
bottom-up salience. The bottom-up salience map is low-pass
filtered with a Gaussian filter.

image input field C output field C filtered

Figure 5: Bottom-up salience. See text for an explanation.

Attentional selection
The core cognitive processes of visual cognition require an
attentional selection decision. The scene spatial selection

field (D) plays, therefore, a central role in the model (see Fig-
ure 6). This field operates in the dynamic regime of selection,
so that only one supra-threshold peak can be formed at any
point in time. This provides the neural substrate for feature
binding in the manner of Treisman’s feature integration the-
ory (Treisman & Gelade, 1980).

The scene guidance sub-network (H) consists of three
space/feature overlap fields (H) that receive sub-threshold in-
put from the scene space/feature maps (B) and feature input
from the target search cue (G). At locations at which the cued
features and the scene maps overlap, supra-threshold peaks
form. The activation patterns of these fields are marginal-
ized along the feature dimension to provide spatial input to
the feature guidance field (H1). The resting level of the fea-

ture guidance field (H1) is down-regulated dynamically via
inhibitory connections from the search cue sub-network (G)

Figure 6: The sub-networks engaged in attentional selection
and visual search. See the text for explanation. Green outlines
highlight sub-networks changed with respect to the previous
model.

so that it decreases linearly with the number of cued features.
This dynamical down-regulation is required to compensate
for the linear dependence of the peak amplitude of the inputs
to the field on the number of cued features. The output of this
guidance field (Figure 7), its activation passed through a sig-
moidal threshold function, provides nonlinear top-down bias
for the scene spatial selection field (D), and is responsible for
the sharing effect.

The scene spatial selection field (D) receives weighted
(WS) bottom-up bias from the scene spatial salience field (C),
and additional weighted (WFG) top-down bias from the scene

guidance sub-network (H) (Figure 8).

Visual search
Visual search is initiated automatically as soon as a peak is
formed in the scene spatial selection field (D). It terminates

[Grieben, Schöner, CogSci 2021]



Chaining

for fixed sequences…

e.g. reach-grasp

fixed order of mental operations… e.g. ground reference object 
first, then target object

less flexible (e.g.. when going through the same 
state with different futures)

could be thought to emerge with practice/habit 
from the positional system



Chaining + DFT

i. c.c. c.i. i.

p. p.

Sensorimotor DFs

environment

“intention-CoS” pairs for different actions… 

chained by double inhibition

the CoS of an earlier 
intention inhibits a 
pre-condition node 
that inhibits a later 
intention 

[Richter, Sandamirskaya, Schöner, IROS 2012]



Positional representation

a neural representation of ordinal position is 
organized by chaining 

the contents at each ordinal position is 
determined by neural projections from each 
ordinal node…



Positional representation + DFT

in DFT, the ordinal dimension is spanned by ordinal 
nodes, coupled to enable chaining 

the transition along the ordinal dimension is organized 
by CoS! 
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Positional representation + DFT

such ordinal dynamics can be used as “counters”

generating indices for binding… 
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Two-layer fields

Excitatory-inhibitory circuits are time 
generators: oscillations, active transients

Sequence generation: how to transition 
autonomously 

Sequence generation: which state to transition 
to

Demonstration of sequence generation

Roadmap DFT foundations 4: advanced timing



[Tekülve et al., 
Frontiers in 

Neurorobotics 
(2019)]

Tekülve et al. Autonomous Sequence Generation

3. MODEL

The neural dynamic architecture described here is a network
of neural fields that are coupled to a camera and a robotic
arm. These links enable online connection to a changing visual
scene and online control of the arm. Three sub-networks
(Figure 2) autonomously organize sequences of activation states
to build visual representations, learn or perform serially ordered
sequences, and generate object-oriented movements.

The perceptual sub-network, connected to the camera, creates
a working memory representation of the visual scene through
autonomous shifts of attention. A motor sub-network drives
an oscillator generating velocity commands for the robotic
arm. The cognitive sub-network represents ordinal positions
in a sequence and may autonomously shift from one ordinal
position to the next. The ordinal system may be used in
two different manners, sequence learning and sequence recall,

controlled by the activation of one of two different task
nodes. These task nodes activate behaviors by boosting fields’
resting levels and enabling fields to generate task relevant
attractor states.

The following sections describe for each sub-network the
states that drive behavior and the mechanism for how the system
switches between those states. The last section addresses the
integration of all three sub-networks for the two tasks Learn
and Recall.

3.1. Perception: Scene Representation
The scene representation sub-network is based on Grieben et al.
(2018) and creates three-dimensional (2D space and 1D color)
working memory representations of objects in the visual scene
captured by the camera. Each entry into the representation
is created sequentially as the sub-network autonomously shifts
attention across different objects in the scene.

FIGURE 2 | Sketch of the dynamic field network with its three sub-networks.

Frontiers in Neurorobotics | www.frontiersin.org 5 November 2019 | Volume 13 | Article 95
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Tekülve et al. Autonomous Sequence Generation

At point t0, the Exploration intention node provides a
homogeneous boost to the Saliency Selection field leading to an
activation peak at the location of the purple object. This causes
the emergence of a three-dimensional peak in the Scene Selection
field, of which the color dimension is shown in the third row. The
WorkingMemory field contains no supra-threshold activation yet
but, at the locations of the non-background objects, the resting
level is increased across the whole color dimension.

Once the peak in the Scene Selection field has fully emerged
at t1, its color component is forwarded as a slice toward the
Working Memory, where it overlaps with the tube originating
from the Saliency Selection field and forms a three-dimensional
peak. Subsequently a peak also forms in the Memory Spatial
Selection field, which shares the same color as the peak in the
Scene Space Selection causing an overlap in the Color Match field.

The peak forming in the Color Match field activates the CoS
Explore node, which inhibits the Explore intention node. Thus
the resting level boost is removed from the Saliency Selection
field, which subsequently falls down to sub-threshold activation

at point t2. Only the self-sustained peak in the Working Memory
field remains.

The absence of a peak in the Color Match field causes the CoS
node to fall below threshold again, bringing the sub-network to
its initial state. The following activation of the Explore intention
node, depicted from t3 until t5, follows the same temporal
activation pattern as the previous one with different feature
values for spatial location and color. The spatial location in the
Saliency Selection field differs due to the inhibitory influence
from theWorking Memory field. See Supplementary Video 3 for
a different example of autonomous build-up of visual working
memory in continuous time.

4.2. Learning Demonstration
A particular color sequence is taught to the network in its
learning regime by presenting objects of a certain color one after
another. In Figure 5 activation snapshots of some points in time
during an exemplary learning episode are shown. The top row
depicts the temporal evolution of activation of the ordinal nodes

FIGURE 5 | Time course of learning a three element sequence with varying presentation time.

Frontiers in Neurorobotics | www.frontiersin.org 10 November 2019 | Volume 13 | Article 95
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Tekülve et al. Autonomous Sequence Generation

and robot armwere simulated usingWEBOTS (Michel, 2004) that
can be coupled into Cedar. The same Cedar code can also link to
real sensors and robots. We did this, driving the model from a
real camera and manipulating the visual scene by placing colored
objects on a white table top. We also controlled a lightweight
KUKA arm from the same Cedar code to verify its capacity to act
out the planned movements. These informal robotic experiments
are not further documented in this paper.

4.1. Scene Representation: Autonomous
Build-up of Visual Working Memory
The build-up of the scene workingmemory is an ongoing process
that provides visual information to the network irrespective of
the currently active task node. In Figure 4 we show activation
snapshots of different points in time during working memory
build-up in an exemplary scene containing three objects and the
arm’s end-effector.

FIGURE 4 | Time course of building a scene memory.

Frontiers in Neurorobotics | www.frontiersin.org 9 November 2019 | Volume 13 | Article 95



Tekülve et al. Autonomous Sequence Generation

FIGURE 6 | Time course of recalling a three element sequence through pointing at colored objects.

as a sub-threshold activation blob, and the blue object is entirely
absent. As the first movement is finished at t1 all three objects are
present in working memory as sub-threshold activation blobs.

Thus at t2, the second movement starts closely after the
activation of the second ordinal node with the blue object as
the target on the right side of the camera image. While the arm
is moving the object is moved to the center/top position of the
image, which results in a non-match between arm and target at
the end of the movement, which can be seen at t3. Here working
memory has updated the position of the blue object, which leads
to an extraction of a different target position that does not match
with the current position of the end effector. Only at t4 after a
second movement was generated, the blue object and the end
effector match, which concludes the recall of the second element
of the sequence.

The last movement toward the purple object is then conducted
without any further perturbations and terminates after a single
movement at t6.

4.3.2. Recall With a Missing Object
In this second recall episode demonstrating the robustness of the
field network we start the recall in a scene that lacks the second
object of the sequence. In Figure 8, activation snapshots of the

same sub-set of fields used in the previous perturbation episode
are shown.

At points t0 and t1, the network’s activation develops analog
to the previous two recall examples with a color slice used to
extract the target position and the position match to determine
the successful termination of the movement. However as the
second ordinal node activates at t2 no blue object is present in
the scene, thus no sub-threshold activation blob overlaps with
the blue color slice in the Memory Color Selection field and no
peak forms.

At point t3, the blue object is added to the scene, which
is committed to memory and afterwards extracted as a valid
target position. The movement than concludes at t4 with the
arm occluding the purple object, which is kept in working
memory due to the self-sustaining kernel. The working memory
information is then used in t5, when the third ordinal node
specifies purple as the next sequence color. Thus the sequence
ends at t6 with no further perturbations.

5. DISCUSSION

We have presented a network of dynamic neural fields that
integrates the complete pathway from the sensor surface (vision)
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FIGURE 7 | Online updating of the movement during sequence recall.

to representations of higher cognition (serial order) and to the
motor system (pointing). The network architecture enables a
robotic agent to autonomously learn a sequence of colors from
demonstration and then to act according to the defined serial
order on a scene. Both during learning and while acting out the
sequence, the transitions between elements of the sequence are
detected without the need for an external control signal (The
switch between learning and recall mode is not autonomous,
however, reflecting a similar need for task instructions when a
human operator performs such a task).

In each of the three sub-networks responsible for scene
representation, the representation of serial order, and movement
generation, sequential transitions between neural activation
states are brought about through the mechanism of the condition
of satisfaction. Thus, visual attention shifts only once a currently
attended item has been committed to working memory. A
transition to the next element in the serial order occurs only
once the robot has successfully acted on the current element. And

an arm movement terminates only once the desired movement
target has been reached. The mechanism of the condition of
satisfaction thus reconciles the capacity to autonomously act
according to learned or structurally determined plans with the
capacity to be responsive to sensory or internal information about
the achievement of goals.

5.1. What the Scenario Stands for
The scenario was simple, but meant to demonstrate
the fundamental components of any neurally grounded
autonomous robot.

(1) A representation of the visual surround is the basis for any
intelligent action directed at the world. It is also the basis for
sharing an environment with a human user. We humans are
particularly tuned to building scene representations which
form the basis of much of our visual cognition (Henderson
and Hollingworth, 1999). Scene representations need to
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