Background: Neural constraints

Gregor Schöner dynamicfieldtheory.org

the brain motor cortex

visual cortex

frontal cortex

to motor output

neurons

~10^11 with 10000 synapses each

neurons

neurons

4 four components of neurons

Functional analysis of the brain

L vary conditions "outside" the brain: stimulus, motor task, cognitive task and relate to neural activity: coding/ decoding, cognitive neuroscience

(lesioning, optogenetics, etc) and observe what **Or the reverse: vary** neural substrate happens to behavior/ competence: neuropsychology

[Tresilian, 2012]

Roadmap Background: Neural constraints

Neurophysics

Sensors, actuators, rate code

Receptive fields, tuning curves

Maps

A Distributions of population representation

Patterns of connectivity

Synaptic dynamics

Neuro-physics

- membrane potential, $u(t)$, evolves as a dynamical system $\tau \dot{u}(t) = -u(t) + h + \text{input}(t)$ *τ* ≈ 10 ms time scale
- **Only when membrane potential exceeds a threshold** is activation transmitted to downstream neurons

temporal summation

Neural dynamics

Periodie replace spiking mechanism by sigmoid:

low levels of activation: not transmitted to downstream systems

high levels of activation: transmitted to downstream systems

 \blacksquare abstracting from biophysical details \sim population level membrane potential

Roadmap Background: Neural constraints

Neurophysics

Sensors, actuators, rate code

Receptive fields, tuning curves

Maps

A Distributions of population representation

Patterns of connectivity

Synaptic dynamics

Sensor cells

Figure 21–1 The major sensory modalities in humans are [from: Tresilian, 2012]

Sensor characteristic

Sensor characteristic

 $Ffram\cdot Treacilian.$ (Addapted, $Gfram\cdot Tfrachilian.$ [from: Tresilian, 2012]

Sensor characteristic

Aphotoreceptors

A Phototransduction and neural signaling

C Voltage response to light

Motor neurons

Motor neurons

Peripheral neural circuits

B Monosynaptic pathways (stretch reflex)

Stretch reflex

Roadmap Background: Neural constraints

Neurophysics

Sensors, actuators, rate code

Receptive fields, tuning curves

Maps

A Distributions of population representation

Patterns of connectivity

Synaptic dynamics

Sensory networks

A retinal network

Sensory networks

Areceptive fields

Sensory networks 150 PM

Space-time structure of receptive fields

nretinal ganglion cells

Sensory networks

On area (center)

Off area (surround)

Sensory networks

Atuning curves in primary visual cortex

tuning curve: sensory system

Hubel, Wiesel: primary visual cortex (monkey)

tuning curve: motor system

Oprimary motor cortex (monkey)

[Georgopoulos et al, 1990]

Roadmap Background: Neural constraints

Neurophysics

Sensors, actuators, rate code

Receptive fields, tuning curves

Maps

A Distributions of population representation

Patterns of connectivity

Synaptic dynamics

Neural maps

Left eye Right eye

V2 V1

Pattern of excitation in response to striped stimulus

V2 V1

Thick stripe

Thin stripe

Latuning curves studied systematically across the cortical surface

 \blacksquare => feature maps

Letopography

[Charles D. Gilbert, Aniruddha Das, Chapter 21 of Kandel et al 2021]

D Blobs, interblobs (V1), and stripes (V2)

B Ocular dominance columns

Motor networks

Roadmap Background: Neural constraints

Neurophysics

Sensors, actuators, rate code

Receptive fields, tuning curves

Maps

A Distributions of population representation

Patterns of connectivity

Synaptic dynamics

Population code ronal signals, one needs at least two needs at least two needs at least two news are repreis represent wavelengths. Each contraction of the different wavelengths. Each contraction of the distribution o are excited less strongly. \mathbf{E}

notion that all activated neurons contribute to feature representation according to their tuning curves \overline{a} and accivated field only the product of \overline{b} sentation according to their ϵ $t \sim t$ the strength of the action of th itribute to reature direction that represents the value of the stimulus the stimulus the stimulus the stimulus of nıng cur

Experimental evidence for population representations Amplitude –40° 2° 5° 10° 20° 30° 50°

- Lee, Rohrer, Sparks: use the topographic map of saccadic endpoint in superior colliculus op
C direction
O
- to reversibly deactivate portions of the population: observe predicted deviations of saccadic endpoints ibly deactivate por
Dredicted deviations

Population representation in the visual system

Example 1: Jancke et al: A17 in the cat, population representation of retinal location

Jancke, Erlhagen, Dinse, Akhavan, Giese, Steinhage, Schöner JNeurosci 19:9016 (99)

$\overline{}$ Distribution of Population Activation (DPA)

- **determine tuning to retinal** location for each cell
- **Superpose tuning curves** weighted by current firing rate: distribution of population activation DPA representing retinal location

[Jancke, Erlhagen, Dinse, Akhavan, Giese, Steinhage, Schöner JNsci 19:9016 (99)]

Neural grounding of DFT: sensory

Neural grounding of DFT: sensory

E => observe interaction in DPA

superposition of responses to each elemental stimulus

increasing distance between the two squares of light

interaction

model by dynamic field: **9024** J. Neurosci., October 15, 1999, *19*(20):9016–9028 Jancke et al. • Population Dynamics within Parametric Space

Neural grounding of DFT: sensory

OPA of orientation and (1D) retinal location

Population representation motor system

E motor and pre-motor cortex (macaque)

n in behaving animal

[Bastian, Riehle, Schöner, Euro J Neuro 2003]

Distribution of Population Activation (DPA)

Distribution of population activation =

[Bastian, Riehle, Schöner, 2003]

Distributions of Population Activation (DPA)

neurons are not localized within DPA!

- **C** cortical neurons really are sensitive to many dimensions
	- motor: arm configuration, force direction
	- visual: many feature dimensions such as spatial frequency, orientation, direction...
- \blacksquare => DPA is a projection from that highdimensional space onto a single dimension

Roadmap Background: Neural constraints

Neurophysics

Sensors, actuators, rate code

Receptive fields, tuning curves

Maps

A Distributions of population representation

Patterns of connectivity

Synaptic dynamics

Forward connectivity

(A) Disynaptic connectivity between P and Q

Dale's law

All synaptic connections coming from a given neuron are of the same type

Patterns of connectivity

A recurrent connectivity

Roadmap Background: Neural constraints

Neurophysics

Sensors, actuators, rate code

Receptive fields, tuning curves

Maps

A Distributions of population representation

Patterns of connectivity

Synaptic dynamics

Learning by synaptic plasticity

Synaptic strengths change as a function of pre/post synaptic neural state

[Gerstner et al, 2014]

Learning by plasticity

Spike-time dependent plasticity

- strengthening of synapses in which pre-synaptic spike precedes post-synaptic spike
- weakening synapses when the temporal order is the reverse…

Spike-time dependent plasticity Spike-timing dependent plasticity (STDP) dependent plasticity (STDP) dependent plasticity (STDP) dependent pla
Spike-timing dependent plasticity (STDP) dependent plasticity (STDP) dependent plasticity (STDP) dependent pla

Roadmap Background: Neural constraints

Neurophysics

Sensors, actuators, rate code

Receptive fields, tuning curves

Maps

A Distributions of population representation

Patterns of connectivity

Synaptic dynamics