Background: Neural constraints

Gregor Schöner <u>dynamicfieldtheory.org</u>

the brain motor cortex

visual cortex

to motor output

neurons

~10^11 with 10000 synapses each

neurons

neurons

four components of neurons

Functional analysis of the brain

vary conditions "outside" the brain: stimulus, motor task, cognitive task and relate to neural activity: coding/ decoding, cognitive neuroscience

or the reverse: vary neural substrate (lesioning, optogenetics, etc) and observe what happens to behavior/ competence: neuropsychology

[Tresilian, 2012]

Background: Neural constraints

Neurophysics

Sensors, actuators, rate code

Receptive fields, tuning curves

Maps

Roadmap

Distributions of population representation

Patterns of connectivity

Synaptic dynamics

Neuro-physics

- membrane potential, u(t), evolves as a dynamical system $\tau \dot{u}(t) = -u(t) + h + \operatorname{input}(t)$ $\tau \approx 10 \text{ ms time scale}$
- only when membrane potential exceeds a threshold is activation transmitted to downstream neurons

temporal summation

Neural dynamics

replace spiking mechanism by sigmoid:

low levels of activation: not transmitted to downstream systems

high levels of activation: transmitted to downstream systems

abstracting from biophysical details ~ population level membrane potential

Background: Neural constraints

Neurophysics

Sensors, actuators, rate code

Receptive fields, tuning curves

Maps

Roadmap

Distributions of population representation

Patterns of connectivity

Synaptic dynamics

Sensor cells

Sensor characteristic

Sensor characteristic

Sensor characteristic

photoreceptors

A Phototransduction and neural signaling

C Voltage response to light

Motor neurons

Motor neurons

Peripheral neural circuits

B Monosynaptic pathways (stretch reflex)

stretch reflex

Background: Neural constraints

Neurophysics

Sensors, actuators, rate code

Receptive fields, tuning curves

Maps

Roadmap

Distributions of population representation

Patterns of connectivity

Synaptic dynamics

retinal network

receptive fields

space-time structure of receptive fields

retinal ganglion cells

tuning curves in primary visual cortex

tuning curve: sensory system

Hubel, Wiesel: primary visual cortex (monkey)

tuning curve: motor system

primary motor cortex (monkey)

[Georgopoulos et al, 1990]

Background: Neural constraints

Neurophysics

Sensors, actuators, rate code

Receptive fields, tuning curves

Maps

Roadmap

Distributions of population representation

Patterns of connectivity

Synaptic dynamics

Neural maps

V1

Left eye Right eye

Thin

stripe

Thick stripe

V1

V2

tuning curves studied systematically across the cortical surface

=> feature maps

topography

[Charles D. Gilbert, Aniruddha Das, Chapter 21 of Kandel et al 2021]

Orientation preference

D Blobs, interblobs (V1), and stripes (V2)

B Ocular dominance columns

C Orientation columns

V2

Motor networks

Background: Neural constraints

Neurophysics

Sensors, actuators, rate code

Receptive fields, tuning curves

Maps

Roadmap

Distributions of population representation

Patterns of connectivity

Synaptic dynamics

Population code

notion that all activated neurons contribute to feature representation according to their tuning curves

Experimental evidence for population representations

- Lee, Rohrer, Sparks: use the topographic map of saccadic endpoint in superior colliculus
- to reversibly deactivate portions of the population: observe predicted deviations of saccadic endpoints

Population representation in the visual system

Example 1: Jancke et al: A17 in the cat, population representation of retinal location

Jancke, Erlhagen, Dinse, Akhavan, Giese, Steinhage, Schöner JNeurosci 19:9016 (99)

Distribution of Population Activation (DPA)

- determine tuning to retinal location for each cell
- superpose tuning curves
 weighted by current firing rate:
 distribution of population
 activation DPA representing
 retinal location

[Jancke, Erlhagen, Dinse, Akhavan, Giese, Steinhage, Schöner JNsci 19:9016 (99)]

Neural grounding of DFT: sensory

Neural grounding of DFT: sensory

=> observe interaction in DPA

superposition of responses to each elemental stimulus

increasing distance between the two squares of light

interaction

model by dynamic field:

Neural grounding of DFT: sensory

DPA of orientation and (ID) retinal location

Population representation motor system

motor and pre-motor cortex (macaque)

in behaving animal

[Bastian, Riehle, Schöner, Euro J Neuro 2003]

Distribution of Population Activation (DPA)

Distribution of population activation =

[Bastian, Riehle, Schöner, 2003]

Distributions of Population Activation (DPA)

neurons are not localized within DPA!

- cortical neurons really are sensitive to many dimensions
 - motor: arm configuration, force direction
 - visual: many feature dimensions such as spatial frequency, orientation, direction...
- DPA is a projection from that highdimensional space onto a single dimension

Background: Neural constraints

Neurophysics

Sensors, actuators, rate code

Receptive fields, tuning curves

Maps

Roadmap

Distributions of population representation

Patterns of connectivity

Synaptic dynamics

Forward connectivity

(A) Disynaptic connectivity between P and Q

[from: Tresilian, 2012]

Dale's law

all synaptic connections coming from a given neuron are of the same type

[from: Tresilian, 2012]

Patterns of connectivity

recurrent connectivity

[from: Tresilian, 2012]

Background: Neural constraints

Neurophysics

Sensors, actuators, rate code

Receptive fields, tuning curves

Maps

Roadmap

Distributions of population representation

Patterns of connectivity

Synaptic dynamics

Learning by synaptic plasticity

synaptic strengths change as a function of pre/post synaptic neural state

[Gerstner et al, 2014]

Learning by plasticity

spike-time dependent plasticity

- strengthening of synapses in which pre-synaptic spike precedes post-synaptic spike
- weakening synapses when the temporal order is the reverse...

Spike-time dependent plasticity

Background: Neural constraints

Neurophysics

Sensors, actuators, rate code

Receptive fields, tuning curves

Maps

Roadmap

Distributions of population representation

Patterns of connectivity

Synaptic dynamics