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Embodiment

B emphasizes the sensori-motor origin of cognition in
evolution and development...

B sometimes interpreted to be supported by activation
of motor systems during mental operations

® but: that is not mandatory...



Embodiment hypothesis of DFT

B |) sensory-motor behavior involves a lot of cognition

M attention/gaze

M active perception/working
memory

® action plans/decisions/
sequences

B motor control

B background knowledge

M learning from experience



Embodiment hypothesis of DFT

M 2) the dynamic properties of sensory-motor behavior:

B continuous state, continuous time, stability ..

B continuous/intermittent link to the sensory and motor surfaces

M are inherited by (higher) cognition

B => cognition is generated in
specific embodied cognitive
architectures that emerged
from evolution/development




Dynamical Systems Thinking (DST)

B Thelen, Smith and many others

B DST is essentially the metaphorical use of
dynamical systems ideas that DFT formalizes
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DFT and connectionism

B DFT models are neural network models in the
most general sense...

M and share with these the level of description

B continuous activation

B sigmoid threshold function (replacing spiking)



Connectionism

B DFT models are
recurrent neural

networks

B in continuous time
and continuous
space limit
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DFT makes more specific
commitments than connectionism

M stability of functionally significant states

M instabilities as key elements of neural processing ..
sequences

B => all autonomous cognition is based on localist
representations

4 activation field

m local excitation

global inhibition

dimension



DFT makes more specific
commitments than connectionism

M scaling argument => all cognitive representations
are low-dimensional

® no distributed representations...

Pine
M M 0ak
M no association ! o
ais
Rob%
Canary
Sunfish
Salmon

M binding across localist
representations replaces
association in DFT

[McClelland, Rogers, 2003]
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DFT and computational
neuroscience

® computational neuroscience takes the neural
mechanistic foundations more seriously than
connectionism (and than DFT)

M was the setting from which original ideas of

attractor dynamics in neural networks arose:
Wilson, Cowan, 1972, 73; Amari 1977

B much current work that aims to understand
mechanistic basis for neural function

M typically seeking neural evidence as a constraint



Example: Neural attractor
dynamics for head orientation

B Neura
B Neura

evidence for head-orientation cells...

attractor dynamics (neural field) for

heading direction: estimate/working memory of
current orientation, updated by integrating motor
Commands . a b Clockwise motion No motion

[McNaughton et al., Nature reviews neuroscience 2006]



Example: Neural attractor
dynamics for head orientation

B Extension to spatial map of ego-position using slice
input and directed connectivity

® to account for place cells in HC
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[McNaughton et al., Nature reviews neuroscience 2006]
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DFT and DNN

B DNN: the apparent high-dimensionality/distributed
representation gives discriminatory power to DNN

M but only effective in the presence of input riven by
sensory inputs => no actual cognition!

M all cognition takes place in the “read-out” layer =

competing neural nodes

/)

J2

~ Headless CNN
7 (VGG18)

M => Raul Grieben’s
lecture

Y
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DFT and DNN

B most “learning” in Neural Network modeling
(including Deep Learning) is actually “fitting”

M obvious for supervised learning

B even unsupervised learning provides examples from the outside

M autonomous learning: learning from experience

M is only accessible if there is autonomous behavior that generates the
experience..

B and that is what DFT enables...

M a research challenge

M first inroads by Sandamirskaya (2014), Tekiilve, Schoner (2020)
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DFT and SNN/neuromorphics

B DFT~mean field theory in the population picture

B activation is something like a population level membrane potential

M Spiking brings in new properties not captured in this
approximation

M spike timing: spikes as synchronicity detector

B sparseness: low correlations between neurons

M spiking as a form of “implementation”

B Neuromorphics makes use of the spiking concept
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DFT and computational
models/theory

B David Marr’s levels
B computational
M algorithmic

B implementation



Computational level

B “computation”in the sense: given input,
determine the output... => “computational
laws” of vision, action, cognition...

B probabilistic approaches such as Bayes
networks reside at the computational level

B normative models such as optimal
estimation, optimal control..

B ... currently influential ideas...



Computational level

B example: given the
optic flow from a rigid
environment through
which the observer
moves, the observer’s
ego-motion can be
computed (up to a
scaling factor)

[Robert, Potthast, Dellaert, 2009]



Computational level

M “describe’ neural function rather than
“explain” the underlying process



Algorithmic level

B example: estimate the optic flow by
searching through two subsequent images
and finding corresponding pairs of locations

M information processing model of cognition...
are algorithmic accounts

B “pseudo-code” descriptions of
computational models are algorithmic
accounts



Implementation level

M in human cognition: neural process models

M potentially at different levels... from abstract
connectionist to computational neuroscience models

M in Al: the concrete numerical
implementations of algorithms, or
probabilistic models etc.
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DFT and cognitive architectures:
ACT-R, SOAR etc

M aligned with early Al ... Herbert Simon...
Allen Newell:“general intelligence”

B the “computer metaphor’: cognition
consists of the manipulation of symboils...
constrained by rules/programs



Modularity

B computational elements are defined by their
input/output interface

B they are “impenetrable” so that their inner
states do not affect other modules... Fodor,
Pylyshyn

M related to the Al notion of “encapsulation”

B => understanding cognition = understanding
how link among modules through their
input/output interfaces

B => cognitive architectures



ACT-R elements: chunks

M represent “facts’: memory items, perceived items,
motor commands, rules, operations (contents)

B graded, time-varying activations

B control if chunk is instantiated

B determines which other chunks are instantiated

[Anderson, 2007/]
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ACT-R chunks

B chunk activation above threshold => a production
“ﬁres”

M chunk content is “‘executed”

M e.g. an addition is performed

Eight —3addend! addition-fact ~um Twelve
w S 8 S,
/ N Ji
N addend?2
1
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[Anderson, 2007] . A representation of a chunk with its subsymbolic quantities.



Modular architectures

Goal

Imaginal eclarative

Procedural

Visual . Aural

Manual

Figure 2.2. The modules implemented in ACT-R 6.0.



Production rule:“computation”

(@)
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Evidence by comparing “computational
effort” of model to human experiment
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Figure 5.7. A comparison of the performance of the model with that of chil-

dren learning the linear form of algebra and adults learning the data-flow form.



DFT and cognitive architectures

B DFT: connectivity specifies both “content”
and instantiation of representation

B DFT:autonomous evolution of activation...
leads to events through instabilities ... vs.is
controlled by computational cycle

B DFT: constraints emerge from nature of
neural dynamics... vs. is imposed to fit data
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DFT vs neural cognitive architectures
(Lida, Dora, Leabra, DAC ...)

M share principles of neural representation

M in many cases, the processing itself is
algorithmic (DAC and others)

M in other cases, the actual cognitive
operations are information processing

(Leabra)
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DFT vs VSA

B Vector-symbolic architectures (VSA): an (alternative)
neural account for higher cognition

M in the original version (Smolensky): role-filler
binding... compatible with DFT



VSA

M each concept is represented by an activation

vector

B column vectors Xjopn, Xvarys -+ -

B column vectors, ¥ ovErs VREL OVED

M requires that the symbol grounding problem is

solved at encoding/decoding

[Levy, Gayler, 2008]
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binding in VSA

B binding: make an array through direct

product

T
® Xjohn * YLOVER

B this increases the dimension

[Levy, Gayler, 2008]
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bundling in VSA

B done simply by adding the matrices..

[Levy, Gayler, 2008]
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dimensionality reduction

M to enable continued, even recursive
application of the binding operation, the
growth in dimension has to be stopped

M this works if there is “redundancy” the
bound representation.. which is true for
random vectors/distributed representations
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dimensionality reduction

® the holographic method (due to Plate, HRR): sum
along diagonals... a convolution...

® the block splatter (BSC) method: just take the
diagonal
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unbinding

M a form of inverse

-x®y :x-yT
B=>xQ®y) -y=x-0" -y =x|y|?
M similarly

xXTox®y) =@l -x) - yT = yT||x|?

B so recover original vector up to a norm



clean-up

M due to compression, the inverse is not exact
M need to clean-up=restore the original vector...

M by auto-association

B e,.s. the vectors as attractors of a Hopfield network, so that
you only need to get into the basin of attraction,...



How does VSA operate?

M encode fillers/roles as vectors = symbols, and
provide them as input...

B VSA (vector-symbolic architecture) then binds/bundles/unbinds
these sequentially as defined by the VSA

B output symbols.. that can decoded

B encoding/decoding not part of VSA (but can be done with NN)

# autonomous organization of sequence not part of
VSA

M stabilizing the high-dimensional vectors is not
trivial



DFT vs NEF

M Eliasmith’s Neural Engineering Framework (NEF)
as a possible neural implementation of VSA

B vectors represented by (small) populations of spiking neural
networks

B NEF is “model neutral”... essentially a method to
“numerically” implement any neural model



DFT vs VSA

M But: to preserve the original vectors,
connectivity in VSA/NEF (SPAUN)
architectures is very special: decode

and re-encode..

B => SPAUN brains are not robust

against learning/development due to
non-local inter-dependence of

connectivities

B (and other issues)

[Choo Feng Xuan, 2018]
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