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Embodiment

emphasizes the sensori-motor origin of cognition in 
evolution and development… 

sometimes interpreted to be supported by activation 
of motor systems during mental operations

but: that is not mandatory… 



Embodiment hypothesis of DFT

1) sensory-motor behavior involves a lot of cognition 

attention/gaze

active perception/working 
memory

action plans/decisions/
sequences

motor control 

background knowledge

learning from experience



2) the dynamic properties of sensory-motor behavior: 

continuous state, continuous time, stability .. 

continuous/intermittent link to the sensory and motor surfaces

are inherited by (higher) cognition

=> cognition is generated in 
specific embodied cognitive 
architectures that emerged 
from evolution/development 

Embodiment hypothesis of DFT



Dynamical Systems Thinking (DST)

Thelen, Smith and many others 

DST is essentially the metaphorical use of 
dynamical systems ideas that DFT formalizes 
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DFT and connectionism

DFT models are neural network models in the 
most general sense… 

and share with these the level of description

continuous activation 

sigmoid threshold function (replacing spiking)



Connectionism

DFT models are 
recurrent neural 
networks 

in continuous time 
and continuous 
space limit

[Thomas, McClelland, 2023]



DFT makes more specific 
commitments than connectionism

stability of functionally significant states

instabilities as key elements of neural processing .. 
sequences

=> all autonomous cognition is based on localist 
representations

dimension

global inhibition

input

activation field

local excitation



binding across localist 
representations replaces 
association in DFT
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children’s experience, and the coding of experience for
the network finesses some important issues. However,
we argue that the training data capture two essential fea-
tures. First, many types of naturally occurring things
have a hierarchical similarity structure, as Quillian
noticed; and second, from exposure to examples of
objects children learn just what the similarities are and
how they can be exploited.

The Rumelhart model can show how learning can
shape not only overt responses,but also internal repre-
sentations. A special set of internal or hidden units,
labelled ‘representation’units, was included between the
input units for the individual concepts and the large
group of hidden units that combine the concept and
relation information. When the network is initialized,
the patterns of activation on the representation units are
weak and random, owing to the random initial connec-
tion weights, but gradually these patterns become 
differentiated, recapitulating the general-to-specific
progression seen in many developmental studies. The
simulation results in FIG. 4 show that patterns represent-
ing the different concepts are similar at the beginning
of training, but gradually become differentiated in
waves.One wave of differentiation separates plants from
animals. The next waves differentiate birds from fish,
and trees from flowers. Later waves differentiate the
individual objects. The process is continuous,but there
are periods of stability punctuated by relatively rapid
transitions also seen in many other developmental
models54,56,59, reminiscent of the seemingly stage-like
character of many aspects of cognitive development62.

Rumelhart focused on showing how this network
recapitulates Quillian’s hierarchical representation of
concepts, but in a different way than Quillian envi-
sioned it — in the pattern of similarities and differences
among the internal representations of the various con-
cepts, rather than in the form of explicit ‘ISA’ links. This
characteristic of the model is clearly brought out in the
hierarchical clustering analysis of the representations of
the concepts (FIG. 4b). Rumelhart also showed how the
network could generalize what it knows about familiar
concepts to new ones. He introduced the network to a
new concept, ‘sparrow’,by adding a new input unit with
0-valued connections to the representation units. He
then presented the network with the input–output pair
‘sparrow–ISA–bird/animal/living thing’.Only the con-
nection weights from ‘sparrow’ to the representation
units were allowed to change. As a result, ‘sparrow’pro-
duced a pattern of activation similar to that already used
for the robin and the canary. Rumelhart then tested the
responses of the network to other questions about the
sparrow, by probing with the inputs ‘sparrow–CAN’,
‘sparrow–HAS’ and ‘sparrow–IS’. In each case the net-
work activated output units corresponding to shared
characteristics of the other birds in the training set
(CAN grow, CAN move, CAN fly; HAS skin, HAS
wings,HAS feathers), and produced very low activation
of output units corresponding to attributes not charac-
teristic of any animals. Attributes varying between the
birds and attributes possessed by other animals received
intermediate degrees of activation. This behaviour is a

compared to the correct output (activation of ‘grow’,
‘move’,‘fly’ and ‘sing’ should be 1, and activation of other
output units should be 0). The connection weights are
then adjusted to reduce the difference between the tar-
get and the obtained activations. The set of training
experiences includes one for each concept–relation pair,
with the target specifying all valid completions consis-
tent with FIG. 1.

The network is trained through many epochs or suc-
cessive sweeps through the set of training examples.
Only small adjustments to the connection weights are
made after each example is processed, so that learning is
very gradual — akin to the process we believe occurs in
development, as children experience items and their
properties through day-to-day experience.Of course,
the tiny training set used is not fully representative of
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Figure 3 | Our depiction of the connectionist network used by Rumelhart60,61. The network
is used to learn propositions about the concepts shown in FIG. 1. The entire set of units used in
the network is shown. Inputs are presented on the left, and activation propagates from left to
right. Where connections are indicated, every unit in the pool on the left (sending) side projects to
every unit on the right (receiving) side. An input consists of a concept–relation pair; the input
‘canary CAN’ is represented by darkening the active input units. The network is trained to turn on
all those output units that represent correct completions of the input pattern. In this case, the
correct units to activate are ‘grow’, ‘move’, ‘fly’ and ‘sing’. Subsequent analysis focuses on the
concept representation units, the group of eight units to the right of the concept input units.
Adapted, with permission, from REF. 61 © (1993) MIT Press.

[McClelland, Rogers, 2003]

scaling argument => all cognitive representations 
are low-dimensional 

no distributed representations… 

no association !

DFT makes more specific 
commitments than connectionism
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DFT and computational 
neuroscience 

computational neuroscience takes the neural 
mechanistic foundations more seriously than 
connectionism (and than DFT)

was the setting from which original ideas of 
attractor dynamics in neural networks arose: 
Wilson, Cowan, 1972, 73; Amari 1977

much current work that aims to understand 
mechanistic basis for neural function

typically seeking neural evidence as a constraint



Example: Neural attractor 
dynamics for head orientation 

Neural evidence for head-orientation cells… 

Neural attractor dynamics (neural field) for 
heading direction: estimate/working memory of 
current orientation, updated by integrating motor 
commands… 
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Box 1 | Path integration in mammals and some neurophysiological correlates

Darwin recognized that most animals can use self-motion cues to keep track 
of their location relative to a ‘home base’128, but it was not until recently that 
firm experimental evidence for such a path integration process in mammals 
appeared4, and it became clear that the brain can not only calculate a homing 
vector to a fixed location in space, but can also maintain a map-like 
representation of space using only an initial reference and self-motion 
information (for reviews, see REFS 9,12). Making use of the strong motivation 
of female rodents to retrieve pups that have been displaced from the nest to a 
shallow cup some distance away, it was shown that gerbils can search in 
complete darkness and return in a direct line to the original location of the nest, 
even if the nest has been removed (see panel a). With the cup at the centre of 
the dark arena, rotating either the entire arena while the animal was on the 
cup, or only the cup itself, did not prevent the animal from returning to the 
same location in the (inertial) laboratory reference frame; however, rotation of 
the cup through 37 degrees with a slow acceleration profile (0.24 deg s–2), 
presumably below the animal’s vestibular threshold, resulted in a return 
trajectory error of the same magnitude. In panel a, S1–3 represent vectors 
lengths of segments of the outbound journey, and ϕ1–3 are corresponding 
head directions. Variables x1–3 and y1–3 are the cartesian components of the 
segment vectors which, in principle, could be summed to compute the 
homing vector. ‘Starting location’ refers to the beginning of the homing 
trajectory. Insight into the neural basis for angular path integration came from 
the discovery of head direction cells, the firing rates of which depend on the 
direction the animal’s head is facing (a simulated typical head direction cell 
tuning curve is illustrated in the polar plot in which firing rate is represented by 
the radial coordinate and direction is represented by the angular coordinate; 
see panel b). Directional tuning is relative in the sense that, although all head 
direction cells maintain their directional tunings relative to each other, the 
network is not bound to any absolute directional reference. For example, the 
same cell can have different geocentric directional preferences in different 
enclosures and, in the absence of visual input, head direction cells track head 
angular velocity and fire over a restricted range of relative directions; however, 
the network can accumulate directional error with respect to its original 
setting. Linear path integration is sufficient to update the positional firing of 
hippocampal pyramidal cells (see panel c). On a task in which a rat runs on a 
linear rail from a moveable box to a fixed goal at the end of the track, pyramidal 
cells in area CA1 fire in relation to distance from the box as the animal leaves 
it (over distances of more than several body lengths), before shifting reference 
frames to fire in relation to visual cues (CA1 light) or, in darkness, the end of 
the track (CA1 dark). The figure illustrates the configurations of the start box 
on the track and the journey types, which were presented in random order. 
Panel d shows the correlation matrices of CA1 neuronal ensemble population 
vectors for each location on the full track versus every location on the full 
track (Box 1), and for each location on the shortened tracks, in which the box 
was shifted closer to the fixed goal site (Box 2–Box 5), versus every location on 
the full track. The black lines represent the reference frame of the box; white 
lines represent the laboratory/track reference frame. Panel a modified, with 
permission, from REF. 140 ©  (1980) Springer. Panels c and d reproduced, with 
permission, from REF. 33 © (1996) Society for Neuroscience.
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Attractor dynamics
Attractor dynamics refer to the 
properties of a broad class of 
neural networks that have one 
or more stable states. These 
stable states are determined 
by the weights of the recurrent 
connections between the units 
(neurons) in the network. 
Depending on the initial 
conditions, the network will 
end up in one of the stable 
states. Attractor dynamics 
have been used in associative 
memory models, pattern 
recognition and as a 
mechanism for working 
memory maintenance.

Neural network models for path integration
Mechanisms based on self-organizing and self-sustaining 
neural activity, or attractor dynamics, such as those origi-
nally proposed in Hebb’s13 cell assembly theory, have been 
essential components in several models accounting for 
path integration and the head direction system in rats14. 
In path integration, the information to be maintained 
and updated is not a set of discrete items (as are found in 
Hopfield-type attractor networks for discrete memories); 
rather, it is a continuous variable representing position 
or head direction. A continuum of cell assemblies, or a 
continuous attractor15–19, is therefore needed to encode posi-
tion or head direction. Such a continuum can exist in one 
dimension, as in the case of direction; two dimensions, as 
in the case of location in the plane; or many dimensions. 
It is equivalent to a large set of correlated discrete attrac-
tors, in which the energy barriers between neighbouring 
attractors become negligible20,21.

In the head direction system, consider the head 
direction cells, which fire selectively with respect to the 
rat’s head orientation (φ) as a result, primarily, of neural 

integration of head angular velocity signals derived 
from the vestibular system. A model in which the cells are 
arranged conceptually in a circle, according to preferred 
direction, and in which the strength of the excitatory 
connections between two cells decreases with the dis-
tance between their respective preferred directions22–24, 
would result in a focused activity profile (or activity 
bump) centred at a direction φ (FIG. 1). An activity bump 
would arise spontaneously because, for a given total 
activity level, controlled by global feedback inhibition, 
each neuron within the bump receives the maximum 
possible excitation from its neighbours; therefore, the 
bump state is the most stable configuration of such a sys-
tem. Note that, because the cells are arranged in a circle, 
there are no edges, so the network is said to have periodic 
boundaries. In the absence of input other than random 
noise, the bump location is either stable or subject to a 
random drift in position; however, large instantaneous 
changes in bump location are unlikely.

To perform angular path integration, the bump 
would have to move around the circle in accordance 
with changes in the head orientation of the rat. This 
could be achieved by vestibular, rotational visual flow, 
and other angular velocity inputs that drive the bump 
in either a clockwise or anticlockwise direction. Suppose 
an additional circle of neurons (a so-called hidden layer) 
is interposed between the angular velocity signals and 
the head direction cells in the outer circle (FIG. 1), and that 
neurons in this circle encode the conjunction of current 
head direction, derived from top-down connections 
from head direction cells immediately adjacent to them 
in the circle, and angular velocity signals afferent to the 
network. If conjunctive cells receiving clockwise angular 
velocity inputs project asymmetrically to the right of the 
head direction cells from which they receive input, and 
those receiving anticlockwise inputs project to the left, 
the bump can be made to move around the circle in a 
manner consistent with the changing head direction 
— the system performs angular path integration. Note 
that the head direction cells in this model encode relative, 
not absolute, orientation. In the absence of additional 
sensory inputs, slow changes in head direction (below 
the vestibular threshold) or synaptic noise will result in 
disorientation, as shown by Mittelstaedt and Mittelstaedt4 
(BOX 1). However, all cells would maintain their angular 
firing preferences relative to one another, as is observed 
in recordings of head direction cells5.

Continuous attractor-based models for path integra-
tion of position in two dimensions can be constructed by 
a simple extension of the one-dimensional head direction 
model just described9,23,25–27. A two-dimensional continu-
ous attractor network could consist of cells arranged 
conceptually on a two-dimensional sheet according to 
their relative firing locations in two-dimensional space. 
A recurrent synaptic matrix can then be constructed in 
which the strength of the excitatory connections between 
two cells decreases in proportion to the physical distance 
between the cells’ respective place fields. Global feedback 
inhibition would, again, keep the activity from spread-
ing (FIG. 2). As in the one-dimensional model, a bump of 
focused activity would form spontaneously. Movement 

Figure 1 | One-dimensional attractor map model for head direction encoding 
based on neural integration of head angular velocity signals. a | Head direction 
cells are arranged symbolically in a circle in order of their relative head directional 
preferences. Each cell (coloured dots) connects with nearby cells with a synaptic strength 
(or connection probability) that declines as a function of distance (red and grey lines). 
The network is subject to global feedback inhibition (not illustrated) that limits the total 
neural activity. Activity in such a network has a most probable configuration in which the 
activity is focused at one point and declines with distance from that point (warm colours 
represent high activity, progressively cool colours represent progressively lower activity). 
Such a network would keep track of head direction if the hill or ‘bump’ of activity could 
be made to rotate around the ring in correspondence with changes in head direction. 
b | Rotation of the bump in the clockwise or anticlockwise directions can be achieved by 
an intermediate group of two types of conjunctive neuron that receive information 
about head angular velocity from the vestibular system (dashed arrows) and information 
about current head orientation from the cells immediately above them in the outer ring. 
The intermediate group of cells must be of two classes: cells receiving information about 
clockwise motion project to the right of the cells in the outer ring from which they 
receive input, whereas cells receiving anticlockwise vestibular signals project to the left. 
These hidden layer cells drive the activity bump in the corresponding direction around 
the ring. In the absence of motion, activation of all hidden layer cells is assumed to be 
below threshold. In this figure, only active connections are indicated, with the line 
thickness representing firing rate.
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[McNaughton et al., Nature reviews neuroscience 2006]



Example: Neural attractor 
dynamics for head orientation 

Extension to spatial map of ego-position using slice 
input and directed connectivity

to account for place cells in HC 

[McNaughton et al., Nature reviews neuroscience 2006]

a No motionb Moving eastward

Continuous attractor
Networks with continuous 
attractor properties can 
maintain a stable activity state 
over time; however, the 
possible states are not discrete 
as in attractor networks but 
can vary continuously. 
Continuous attractor networks 
have, for example, been used 
to represent the dynamics of 
the head direction system in 
which an arbitrary angle has to 
be maintained over time.

Vestibular system
The vestibular system provides 
information about movement 
and orientation in space. 
Receptors in the semicircular 
canals and otolith organs of the 
inner ear are sensitive to 
movements consisting of 
rotational and translational 
accelerations. Vestibular 
information can be processed 
in the CNS to derive relative 
changes in head direction or 
position.

Rotational visual flow
As the head turns, visual 
information flows past the eye. 
The rotational visual flow can 
be used to calculate and 
update relative head direction.

Torus
Consider an elastic rectangular 
sheet. When gluing together 
the two longer sides of the 
sheet a tube is formed. After 
gluing together the ends of the 
tube, a doughnut-shaped 
object is formed, which is 
termed a torus. If the elastic 
sheet represents a map of a 
spatial area, the creation of the 
torus will form a map with 
periodic boundary conditions 
along two perpendicular 
dimensions.

of the activity bump according to speed and directional 
information alone, thereby tracking the rat’s position, 
could be effected through a two-dimensional hidden 
layer analogous to the one-dimensional hidden layer in 
the head direction model28. This layer could accomplish 
the summation of the position (encoded in the continu-
ous attractor layer) and the displacement vector (com-
prised of head direction and linear speed signals). Cells 
in this direction-specific layer would encode, conjointly, 
the rat’s position and velocity vectors9,23,26; therefore, 
they would combine head direction and running speed 
inputs with location information from the attractor layer. 
Projections from the continuous attractor layer to the 
hidden layer would connect cells with the same posi-
tion preference (FIG. 2). The return connections from the 
hidden layer to the continuous attractor layer, however, 
would be offset according to the directional preference 
of the cell of origin: for cells in the hidden layer that are 
selective for position x, head direction φ would project 
to cells in the attractor layer with an integrated position 
shifted in the direction φ. As a consequence, when the 
rat moves, velocity modulated cells in the hidden layer, 
selective for direction φ, will be activated and provide 
an input that shifts the activity bump in the direction φ. 
The rate of increase in the firing rate of hidden layer cells 
with running speed v would determine the scale of the 
spatial representation, as seems to be the case in the hip-
pocampus (see below). Briefly, a stronger input from the 
direction-specific layer would cause the activity bump to 
move faster, thereby generating a rapidly changing, short-
scale representation (small place fields). Reducing the 
speed dependence of hidden layer cells would cause the 
activity bump to move more slowly, and would yield a 
coarser spatial representation (larger place fields).

One problem with the two-dimensional model 
described would have been familiar to pre-Columbus 
Europeans, who believed that the earth was flat and 
finite; what happens when the rat runs outside the area 
represented by the cells? To overcome this difficulty, 
Samsonovich and McNaughton26 proposed that the cell 
array in which the continuous attractor was represented 
had periodic boundaries, equivalent to a torus27. The 
torus topology is the two-dimensional analogue of the 
ring topology suggested for the head direction system. 
This periodic boundary condition implies that, as the rat 
runs in a straight line, a given cell should activate period-
ically. So, in a large, two-dimensional environment, each 
cell would have multiple place fields arranged in a square 
grid (FIG. 3). However, although hippocampal place cells 
can have multiple fields in a large enough environment29,30, 
periodic fields have never been reported.

Grid cells in the medial entorhinal cortex
The search for the navigational system postulated by 
O’Keefe1 focused initially on the hippocampus; indeed, 
if the environment and the animal’s behaviour remain 
constant, the activity of ensembles of place cells can 
be decoded to indicate accurately the animal’s loca-
tion within the environment31. However, except under 
unusual experimental manipulations, knowledge of the 
firing relationships among an ensemble of hippocampal 
place cells in one environment is of no value in predict-
ing even relative location in a separate environment32,33. 
The spatial codes in the hippocampus for different 
environments are orthogonal (statistically independent). 
Although the activity of a place cell can be influenced 
by, and can become coupled through experience to, 
conjunctions of environmental features, their firing 

Figure 2 | Extension of the one-dimensional attractor map concept to two dimensions: a model for path 
integration. Neurons arranged in a plane (a) have interconnections that decline in strength (or probability) monotonically 
with distance (red arrows). Notice that a boundary problem exists for connections near the edge of the layer of neurons. 
A solution for this problem is illustrated in FIG. 3. Global feedback inhibition (not shown) keeps the net activity within a 
narrow range, leading to a focused spot or ‘bump’ of activity somewhere in the plane (b). The bump can be made to move 
in correspondence with a rat’s motion using an intermediate layer of cells that are conjunctive for position on the plane 
and head orientation, if the activity of these cells is positively modulated by running speed and the cells encoding a given 
head direction project asymmetrically to the corresponding side of the cells in the attractor layer from which they receive 
input. The thresholds are arranged so that these hidden layer cells are silent when there is no motion.
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DNN: the apparent high-dimensionality/distributed 
representation gives discriminatory power to DNN 

but only effective in the presence of input riven by 
sensory inputs => no actual cognition! 

[Raul Grieben]

all cognition takes place in the “read-out” layer = 
competing neural nodes

=> Raul Grieben’s 
lecture 

DFT and DNN
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most “learning” in Neural Network modeling 
(including Deep Learning) is actually “fitting”

obvious for supervised learning 

even unsupervised learning provides examples from the outside 

autonomous learning: learning from experience

is only accessible if there is autonomous behavior that generates the 
experience.. 

and that is what DFT enables… 

a research challenge

first inroads by Sandamirskaya (2014), Tekülve, Schöner (2020)

DFT and DNN
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DFT~mean field theory in the population picture

activation is something like a population level membrane potential

Spiking brings in new properties not captured in this 
approximation

spike timing: spikes as synchronicity detector 

sparseness: low correlations between neurons 

spiking as a form of “implementation” 

Neuromorphics makes use of the spiking concept

DFT and SNN/neuromorphics



contrasting DFT

DFT vs computational models

DFT vs cognitive architectures (ACT-R/
SOAR etc)

DFT vs neural cognitive architectures (LIDA, 
Dora, Leabra, DAC)

DFT vs VSA

roadmap



DFT and computational 
models/theory

David Marr’s levels 

computational

algorithmic

implementation 



Computational level

“computation”in the sense: given input, 
determine the output… => “computational 
laws” of vision, action, cognition… 

probabilistic approaches such as Bayes 
networks reside at the computational level 

normative models such as optimal 
estimation, optimal control.. 

… currently influential ideas…



Computational level

example: given the 
optic flow from a rigid 
environment through 
which the observer 
moves, the observer’s 
ego-motion can be 
computed (up to a 
scaling factor)

Figure 7: Detection of outliers in the sparse optical flow in a frame from the 3-camera outdoor driving sequence. Colored
lines are sparse optical flow, ranging from green when p (inlier) = 1, to red when p (inlier) = 0. Sparse flow vectors that are
inconsistent with the linear flow subspace have low inlier probability. Vectors on the moving pickup truck, in the textureless
regions of the road, and on the very close and very far structure of the wall are labelled as outliers.
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Figure 8: Platform trajectories estimated by our method
(blue) and by integrating wheel odometry with an iner-
tial measurement unit (red). We trained our method from
ground truth over a 200 m training segment (dashed green),
then switched to estimating pose for approximately 675 m
with no further training. Each trajectory ends at the circle
of the corresponding color.

optical flow is comparable in accuracy to the filtered pose
from wheel odometry and IMU.

An informal timing evaluation revealed that our proto-
type code, with sparse flow extraction in C++ and dense
flow and ego-motion estimation in MATLAB, runs faster
than 30 Hz (or 33.3 ms per frame) after training. On
1920 ⇥ 480 frames, with 45 ⇥ 13 flow fields, computing
sparse flow takes 19.1 ms, subspace coordinates 6.8 ms, and
ego-motion 0.2 ms, for a total of 26.1 ms per frame.

5. Discussion

The inlier distribution variance �2
v is a measure of how

well the robust PPCA model fits the training data. Specif-

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

Number of latent variables

In
lie

r 
va

ri
a
n
ce

, 
p
ix

e
ls

2

 

 

Mobile robot
Catadioptric, pan−tilt−roll
Catadioptric, pan−tilt

Figure 9: PPCA inlier distribution variance for models with
various numbers of latent variables. The variance measures
the prediction error of the robust PPCA model. The pan-
tilt and pan-tilt-roll catadioptric systems are 2 and 3 DOF,
respectively. The mobile robot has 2 controllable DOF’s,
but additionally pitches and rolls due to sloped ground.

ically, it is the mean squared error between the predicted
and observed optical flow in the training data, weighted by
the inlier probability for each flow component. The number
of degrees-of-freedom (DOF) of the motion of an imaging
system is reflected in the relationship between the number
of latent variables (i.e. principal components) in a robust
PPCA model and the inlier variance. Figure 9 shows this
relationship for three datasets with different numbers of mo-
tion DOF’s, where the variance curve becomes almost flat
as or shortly after the number of latent variables exceeds
the DOF’s. In the case of the mobile robot, only the veloc-
ity and steering angle were controllable, but ground slopes
caused pitching and rolling. The additional decrease in vari-
ance in models with more than 4 latent variables in this case

7

[Robert, Potthast, Dellaert, 2009]



Computational level

“describe” neural function rather than 
“explain” the underlying process 



Algorithmic level

example: estimate the optic flow by 
searching through two subsequent images 
and finding corresponding pairs of locations 

information processing model of cognition… 
are algorithmic accounts 

“pseudo-code” descriptions of 
computational models are algorithmic 
accounts 



Implementation level

in human cognition: neural process models 

potentially at different levels… from abstract 
connectionist to computational neuroscience models

in AI: the concrete numerical 
implementations of algorithms, or 
probabilistic models etc.



contrasting DFT

DFT vs computational models

DFT vs cognitive architectures (ACT-R/
SOAR etc)

DFT vs neural cognitive architectures (LIDA, 
Dora, Leabra, DAC)

DFT vs VSA

roadmap



DFT and cognitive architectures: 
ACT-R, SOAR etc

aligned with early AI … Herbert Simon… 
Allen Newell: “general intelligence”

the “computer metaphor”: cognition 
consists of the manipulation of symbols…
constrained by rules/programs 



Modularity

computational elements are defined by their 
input/output interface 

they are “impenetrable” so that their inner 
states do not affect other modules… Fodor, 
Pylyshyn

related to the AI notion of “encapsulation”

=> understanding cognition = understanding 
how link among modules through their 
input/output interfaces 

=> cognitive architectures



ACT-R elements: chunks
represent “facts”: memory items, perceived items, 
motor commands, rules, operations (contents)

graded, time-varying activations 

control if chunk is instantiated

determines which other chunks are instantiatedHuman Associative Memory 109

interpretation of this equation. It represents the memory for 8 + 4 = 12 
by a central node connected to its elements. That node has some relatively 
stable base-level activation Bi. It also receives activation from the context 
elements j according the strengths of association Sji between these ele-
ments and the memory.14

The Anderson and Schooler (1991) analysis described above explains 
what the memory system accomplishes by performing this neural compu-
tation: it makes most available those memories most likely to be needed. 
The log odds of needing a memory can be considered a sum of a quantity 
that reflected the past history of that memory and context (e.g., figure 3.2, 
c and d). In Bayesian terms, this can be rendered by the following formula:

Log[posterior(i|C)] = log[prior(i)] + 
j C∈
∑ log[likelihood(j|i)],

where posterior(i|C) is the posterior odds that memory i will be needed 
in context C, prior(i) is the prior odds that memory i will be needed 
based on factors such as recency and frequency (in figure 3.2, it reflects 

Figure 3.5. A representation of a chunk with its subsymbolic quantities.

14. Those who work with the ACT-R theory will note that this formulation does not 
include a random noise component or a partial matching component. With respect to the 
random noise component, I have deleted it merely for simplicity of exposition, and its 
influence will be partly reflected in the retrieval probability equation in table 3.2. With 
respect to partial matching, I have come to the conclusion that the current ACT-R simu-
lation errs in treating associative spread and partial matching as independent sources of 
information. When an element just appears in a buffer, it serves as a general bottom-up 
associative prime to memory. When it appears as part of a memory probe, it is a top-down 
constraint on recall, as in the fan experiments to be described. This top-down role should 
supersede the evidence associated with its appearance in a buffer, not be treated as ad-
ditional information. Thus, for purposes of the activation equation, the definition of Sji

depends on whether the j is a bottom-up cue or a top-down constraint. In actual running 
models, this is essentially how it is treated, in that the models typically use either the 
bottom-up information or top-down information and do not try to add them together.

[Anderson, 2007]



ACT-R chunks

chunk activation above threshold => a production 
“fires”

chunk content is “executed”

e.g. an addition is performed Human Associative Memory 109
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Modular architectures
54 How Can the Human Mind Occur in the Physical Universe?

respond to information in the buffers of other modules and put infor-
mation into these buffers. The response tendencies of the central pro-
cedural module are represented by production rules such as the one 
illustrated in figure 1.10. A significant architectural constraint in ACT-R 
is that only a single production rule can execute at a time. Moreover, it 
takes 50 ms for a production rule to fire—which I think of as the time 
needed to complete the multisynaptic loop through the basal ganglia. 
Since communication among the modules must progress through the 
procedural module, it becomes the overall central bottleneck in infor-
mation processing.

While we have extended the term “module” to the procedural sys-
tem, it is worth noting that there are ways in which it is not like 
the other modules. In particular, it does not have a buffer associated 
with it in which it can deposit structures. It really is just a system of 
mapping cortical buffers to other cortical buffers and is not really an 
object in itself. Related to this difference is that we have associated 
the procedural module with the basal ganglia, which are not cortical 
structures.

It is interesting to consider what about the architecture in figure 2.2 
might be uniquely human. Elsewhere (Anderson, 2005a) I have argued 
that the goal module has unique properties in the human that enable hu-
mans to achieve a distance from their immediate circumstances that other
primates cannot. This enables human means–ends analysis, as described 

Figure 2.2. The modules implemented in ACT-R 6.0.



Production rule: “computation”

36 How Can the Human Mind Occur in the Physical Universe?

specific equation. The rule responds to a pattern that appears in a set of 
modules—in this case, to the encoding of the equation in the visual module
and the setting of the control state to solve that equation in the goal 
module. An action is selected that requests the retrieval from declarative 
memory of the difference between 8 and 3 and sets the control state to 
note a subtraction is occurring. As I discuss throughout the book, it is 
generally thought that the basal ganglia play a critical role in achieving 
this pattern recognition, action selection, and action execution.

Figure 1.10b illustrates the general rule that is behind the instance 
in figure 1.10a. The rule is not specific to the numbers 3 and 8. What-
ever number appears in the arg1 slot of the visual buffer is copied to the 
arg2 slot on the declarative retrieval request. Similarly, whatever number 
appears in the value slot of the visual buffer is copied to the arg1 slot 
of the retrieval request. Thus, this production is a pattern that specifies 
how information is to be moved from one location to a distal location. 
This is symbolic exactly in the distal access sense Newell used in the 
quote above.

Figure 1.10. Illustration of a production rule in ACT-R: (a) the buffer contents 
might operate upon in a specific case; (b) the general pattern encoded in the 
rule that would apply to this case.



exemplary 
problem: 
mental 
arithmetic

What Does It Take to Be Human? 213

Figure 5.7. A comparison of the performance of the model with that of chil-
dren learning the linear form of algebra and adults learning the data-flow form.

The number of errors and times both tended to increase for later sections. 
This is not surprising, since the problems were more complex in later 
sections and so required more steps of transformation.

Figure 5.7 looks at a measure that normalizes for problem com-
plexity. This is the time to perform a single step of transformation 
of the equation. The number of keystrokes and mouse clicks was the 
same in this interface, independent of problem complexity. This is un-
like paper and pencil solution, where more complex equations require 
more transcription of notation. The number of keystrokes and mouse 
clicks is also the same for the regular algebra and the data-flow iso-
morph. Figure 5.7 shows the performance of the adults over the 11 
sections of the curriculum and the performance of the children on the 
five sections they had in common with the adults. The x-axis is the 181 
problems that make up the 11 sections, and the y-axis is the measure 
that normalizes for problem complexity. The measure given is the me-
dian time per transformation. There are long times at the beginning of 
each section that speed up to near-asymptotic times by the last three 
sections. The children and adults show nearly identical times per cycle 
despite the fact that they were working with two different systems. 
The model predicts this because it responds to the abstract structure of 
the problems that is common for the linear representation and the data-
flow representation.

As shown in figure 5.7, the model does a pretty good job of match-
ing up with participant performance. The behavior of the model as dis-

Evidence by comparing “computational 
effort” of model to human experiment



DFT and cognitive architectures

DFT: connectivity specifies both “content” 
and instantiation of representation

DFT: autonomous evolution of activation… 
leads to events through instabilities … vs. is 
controlled by computational cycle 

DFT: constraints emerge from nature of 
neural dynamics… vs. is imposed to fit data 



contrasting DFT

DFT vs computational models

DFT vs cognitive architectures (ACT-R/
SOAR etc)

DFT vs neural cognitive architectures (LIDA, 
Dora, Leabra, DAC)

DFT vs VSA

roadmap



DFT vs neural cognitive architectures 
(Lida, Dora, Leabra, DAC …)

share principles of neural representation 

in many cases, the processing itself is 
algorithmic (DAC and others)

in other cases, the actual cognitive 
operations are information processing 
(Leabra)



Dora

interesting approach that 
maximally overlaps with 
DFT

different principle of 
binding… 

that scales poorly with 
number of concepts

CROSS-DOMAIN GENERALIZATION 9

Figure 1

Knowledge representation and temporal binding in DORA. (a) Representation of a single proposition (above (ball,
paddle)) in DORA. Feature units represent properties of objects and relational roles in a distributed manner. Token units in T1
represent objects and roles in a localist fashion; token units in T2 conjunctively bind roles to their arguments (e.g., objects);
token units in T3 conjunctively link role-argument pairs into multi-place relations. (b) A time-series illustration of the activation
of the units illustrated in (a). Each graph corresponds to one unit in (a) (i.e., the unit with the same name as the graph). The
abscissa of the graph represents time, and the ordinate represents the corresponding unit’s activation. (c) Time-based binding
illustrated as a sequence of discrete frames (i. . .iv). (i) Units encoding higher-than-something fire. (ii) Units encoding ball fire.
(iii) Units encoding lower-than-something fire. (iv) Units encoding paddle fire. Labels in units indicate what the unit encodes
(see key); the labels on the units are provided for clarity and are meaningless to DORA.

Figure 2

DORA’s Macrostructure. (a) DORA’s long-term-memory (LTM), consisting of layers of token units (T1-T3; black
rectangles), and the feature units connected to the bottom layer of LTM. During processing, some units in LTM enter active
memory (AM). (b) Expanded view of AM. AM is composed of two sets, the driver (the current focus of attention) and the
recipient (the content of working memory available for immediate processing). Black lines indicate bidirectional excitatory
connections.

Holyoak, 1997), analogical inference (Hummel & Holyoak,
2003), and relation discovery (Doumas et al., 2008).

Memory Retrieval: Patterns of activation imposed on
the feature units by active tokens in the driver will tend to
activate token units in LTM that have learned to respond to
similar patterns (Appendix A3 for details). For example, the

features activated by a paddle in the driver will tend to acti-
vate T1 units responsive to paddle features, and the features
activated by leftmost in the driver will tend to activate T1
units connected to leftmost features. Together, these T1 units
will tend to excite T2 units for leftmost+paddle. Features
consistent with ball and rightmost would likewise activate T1

[Doumas et al., Psych Rev 2020]



Dora

autonomous processing: 
period and hierarchically 
nested timing 

~neural dynamics

but lacks stability and 
invariance when 
elementary processing 
steps take different 
amounts of time

[Doumas et al., Psych Rev 2020]
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DFT vs VSA

Vector-symbolic architectures (VSA): an (alternative) 
neural account for higher cognition 

in the original version (Smolensky): role-filler 
binding… compatible with DFT



VSA

each concept is represented by an activation 
vector

column vectors , , … 

column vectors, , 

requires that the symbol grounding problem is 
solved at encoding/decoding

xJohn xMary

yLOVER yBELOVED

Figure 1. Tensor product representation of John loves Mary.

Figure 2. Methods for keeping fixed dimensionality in tensor-product representations.

2. Holographic Reduced Representations and Binary Spatter Codes

Because the dimension of the tensor product increases with each binding operation,
the size of the representation grows exponentially as more recursive embedding is per-
formed. The solution is to collapse the N ⇥ N role/filler matrix back into a length-N
vector. As shown in Figure 2, there are two ways of doing this. In Binary Spatter Cod-
ing, or BSC [15], only the elements along the main diagonal are kept, and the rest are
discarded. If bit vectors are used, this operation is the same as taking the exclusive or
(XOR) of the two vectors. In Holographic Reduced Representations, or HRR [16], the
sum of each diagonal is taken, with wraparound (circular convolution) keeping the length
of all diagonals equal. Both approaches use very large (N > 1000 elements) vectors of
random values drawn from a fixed set or interval.

Despite the size of the vectors, VSA approaches are computationally efficient, re-
quiring no costly backpropagation or other iterative algorithm, and can be done in paral-
lel. Even in a serial implementation, the BSC approach isO(N) for a vector of lengthN ,
and the HRR approach can be implemented using the Fast Fourier Transform, which is
O(N log N). The price paid is that most of the crucial operations (circular convolution,
vector addition) are a form of lossy compression that introduces noise into the represen-
tations. The introduction of noise requires that the unbinding process employ a “cleanup
memory” to restore the fillers to their original form. The cleanup memory can be imple-

[Levy, Gayler, 2008]



binding in VSA

binding: make an array through direct 
product

this increases the dimension

xJohn ⋅ yT
LOVER

Figure 1. Tensor product representation of John loves Mary.

Figure 2. Methods for keeping fixed dimensionality in tensor-product representations.
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[Levy, Gayler, 2008]



bundling in VSA

done simply by adding the matrices..

Figure 1. Tensor product representation of John loves Mary.

Figure 2. Methods for keeping fixed dimensionality in tensor-product representations.
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[Levy, Gayler, 2008]



dimensionality reduction

to enable continued, even recursive 
application of the binding operation, the 
growth in dimension has to be stopped

this works if there is “redundancy” the 
bound representation.. which is true for 
random vectors/distributed representations

Figure 1. Tensor product representation of John loves Mary.
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dimensionality reduction

the holographic method (due to Plate, HRR): sum 
along diagonals… a convolution…

the block splatter (BSC) method: just take the 
diagonal

Figure 1. Tensor product representation of John loves Mary.

Figure 2. Methods for keeping fixed dimensionality in tensor-product representations.
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O(N log N). The price paid is that most of the crucial operations (circular convolution,
vector addition) are a form of lossy compression that introduces noise into the represen-
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unbinding

a form of inverse

 

=> 

similarly 

so recover original vector up to a norm

x ⊗ y = x ⋅ yT

(x ⊗ y) ⋅ y = x ⋅ (yT ⋅ y) = x∥y∥2

xT ⋅ (x ⊗ y) = (xT ⋅ x) ⋅ yT = yT∥x∥2



clean-up

due to compression, the inverse is not exact 

need to clean-up=restore the original vector… 

by auto-association

e,.g. the vectors as attractors of a Hopfield network, so that 
you only need to get into the basin of attraction,… 



How does VSA operate?

encode fillers/roles as vectors = symbols, and 
provide them as input… 

VSA (vector-symbolic architecture) then binds/bundles/unbinds 
these sequentially as defined by  the VSA 

output symbols.. that can decoded

encoding/decoding not part of VSA (but can be done with NN)

autonomous organization of sequence not part of 
VSA 

stabilizing the high-dimensional vectors is not 
trivial



DFT vs NEF

Eliasmith’s Neural Engineering Framework (NEF) 
as a possible neural implementation of VSA

vectors represented by (small) populations of spiking neural 
networks

NEF is “model neutral”… essentially a method to 
“numerically” implement any neural model



DFT vs VSA

But: to preserve the original vectors, 
connectivity in VSA/NEF (SPAUN) 
architectures is very special: decode 
and re-encode.. 

=> SPAUN brains are not robust 
against learning/development due to 
non-local inter-dependence of 
connectivities

(and other issues) 
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Figure 2.24: Comparison of a generic machine-learned hierarchical network and the equivalent
NEF hierarchical network. (A) Schematic of a generic 3-layer hierarchical network. Each layer
consists of nodes that compute a sigmoid function non-linearity. The output of each layer is
projected onto a weight matrix (W), the result of which is used as the input to the next network
layer. (B) Schematic of the hierarchical network in (A) converted into a spiking neural network
using the NEF. Each node in the former network is replaced with a neural ensemble with enough
neurons to approximate the original sigmoid non-linearity. The sigmoid function itself is computed
though the network projections between layers (dotted lines). The weight matrices in both
networks are identical.

far. Section 4.1.1 explores a more elegant method of directly constructing spiking hierarchical
neural networks.

2.5.6.3 Information Flow Control – Action Selection

As discussed in a Section 2.4, the action selection component of the SPA subsystem monitors
the current state of the system, and produces the appropriate control signals (actions) necessary
to control the flow of information in the model. Since the model in question is an SPA model,

68

[Choo Feng Xuan, 2018]



contrasting DFT

DFT vs computational models

DFT vs cognitive architectures (ACT-R/
SOAR etc)

DFT vs neural cognitive architectures (LIDA, 
Dora, Leabra, DAC)

DFT vs VSA

roadmap



DFT, embodiment, dynamical systems thinking

DFT and connectionism 

DFT and computational neuroscience

DFT and Deep Neural Networks

DFT and learning

DFT and Spiking Neural Networks/
Neuromorphics

road map
embedding DFT


