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Abstract

How situated embodied agents may achieve goals using knowledge is the classical question of nat-
ural and artificial intelligence. How organisms achieve this with their nervous systems is a central
challenge for a neural theory of embodied cognition. To structure this challenge, we borrow terms
from Searle’s analysis of intentionality in its two directions of fit and six psychological modes (percep-
tion, memory, belief, intention-in-action, prior intention, desire). We postulate that intentional states
are instantiated by neural activation patterns that are stabilized by neural interaction. Dynamic insta-
bilities provide the neural mechanism for initiating and terminating intentional states and are critical
to organizing sequences of intentional states. Beliefs represented by networks of concept nodes are
autonomously learned and activated in response to desired outcomes. The neural dynamic principles
of an intentional agent are demonstrated in a toy scenario in which a robotic agent explores an envi-
ronment and paints objects in desired colors based on learned color transformation rules.

Keywords: Autonomous agents; Embodied cognition; Situated cognition; Intentionality; Cognitive
systems; Neural network modeling; Dynamical systems modeling

1. Introduction

How are neural processes organized to generate behaviors that embody cognitive function?
In particular, how are sequences of motor behaviors coordinated with processes of active
perception to enable an agent to direct actions at objects in its environment so as to achieve
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desired outcomes? Actions and mental acts may be driven both by current sensory input and
by memory and knowledge. How may an agent make flexible use of these different sources of
information as its own state in the world provides or removes access to relevant sensory input?

These are key questions that a pervasively neural account of cognition and of its role
in generating intelligent behavior must address (Lake, Ullman, Tenenbaum, & Gershman,
2017). Classical and neural artificial intelligence (AI) address these questions in different
ways. In classical AI, the underlying cognitive competences are described in computational
terms, based on the notion of symbolic processing (Anderson, 2007; Fodor, Jerry, 1975; Laird,
2012; Newell, 1990). In neural AI, neural networks are structured such that they extract task-
relevant information from sensory information (Mnih et al., 2013; Silver et al., 2016; Shridhar,
Manuelli, & Fox, 2022). Neither line of thinking provides an account for how the actual deci-
sions and sequences of mental or motor acts emerge from time-continuous neural processing.
This paper is aimed to provide a neural process account for that very problem, exemplified in
a toy scenario.

The central problem that such a neural process account must address is that of stability,
the capacity to resist change under varying conditions including stochastic fluctuations. In the
sensor-motor domain, sensory signals are noisy and vary systematically in dynamic environ-
ments. The physical state of an agent’s actuators may be subject to disturbances. Resistance
to these types of perturbations is a prerequisite for successful motor behavior. Cognitive pro-
cesses that remain coupled to sensory-motor surfaces are subject to these same kinds of per-
turbations which they too must resist. Such processes include decisions to select, initiate, or
sequentially organize actions and the related perceptual decisions about the objects to which
these actions are directed. For example, the process of selecting the target of a reaching move-
ment remains linked to the sensory surface as it may be updated anytime (“online”) when the
environment changes (Goodale, Pélisson, & Prablanc, 1986). Similarly, when perceptual or
motor decisions are kept in working memory (Ballard, Hayhoe, & Pelz, 1995), the underlying
neural activation is sustained as the sensory input is removed. Once the decisions are acted
out, the sustained neural activation again links to the sensory-motor surfaces.

Stability is also critical, however, to cognitive processes that are not linked to the sensory-
motor surfaces. The neural substrate supporting any specific mental state is typically richly
connected to the neural substrate supporting other mental states. In any given situation, some
of these other mental states may compete or interfere with the ongoing mental state, acting as
a disturbance against which the ongoing mental state must be stabilized.

Classical notions of information processing and symbol manipulation have abstracted from
these constraints, relegating the link of mental states to the sensory-motor surfaces to the sep-
arate problem of symbol grounding. The implied categorical difference between low-level
sensory-motor cognition and high-level symbolic cognition is not well supported by behav-
ioral or neural evidence. Sequences of processing steps construed as manipulations of sym-
bols form the basis of higher cognition in this classical view. The neural processes supporting
such steps are not well understood.

If mental states have stability properties, this is a challenge: To transition from one mental
state to another in a sequence of processing steps, the ongoing mental state must first be
released from stability. A central theme of this paper is how stability and dynamic instabilities
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Fig. 1. Searle’s six psychological modes in two directions of fit are used to organize the neural dynamic architecture
of an intentional agent.

together enable the emergence of sequences of mental states at varying distances from the
sensory-motor surfaces.

To talk about these problems and our approach to solving them, we found it useful to bor-
row terms from the philosophy of mind. We use the notion of intentionality that characterizes
mental states as being about relevant states of the world (Crane, 2013; Searle, 1983, 2001)
to refer to all mental states and their sensory-motor grounding that are required to generate
intelligent behavior. Understanding the stability of mental states and their release from sta-
bility in sequences of processing steps profits, we will show, from the notion of direction of
fit. Intentions in the world-to-mind direction of fit match the ordinary meaning of the “inten-
tion,” its “action” variant. A world-to-mind intention is about a state of the world that an
action must achieve as characterized by its condition of satisfaction. Intended states of the
world may involve objects (e.g., “paint that wall in blue”), parts of the agent’s own body (e.g.,
“make a pointing movement”), or even aspects of the agent’s mind (e.g., “bring this concept
into attentional focus”). The mind-to-world direction of fit captures the “perceptual” flavor
of intentionality, recognized mainly by philosophers. In mind-to-world intentions, states of
the mind must match states of the world. Such intentional states may again reference objects
(e.g., “perception of a green wall”), the agent’s own body (e.g., “proprioception of your arm’s
posture”), and the agent’s mind (e.g., “recognizing that we remember something”).

We further borrow the notion of the six psychological modes specifically from Searle,
who, to our knowledge, does not claim this as a deep philosophical concept by itself but
uses it to systematically organize intentional states in terms of increasing distance from the
sensory-motor surfaces (Fig. 1). The notion helps us explore the extent to which our analy-
sis of the stability problem and its solution reaches all forms of mental and motor acts that
are required to generate intelligent behavior. For the “motor” flavor of intentionality, this
includes motor behaviors (intentions-in-action), action plans (prior intentions), and action
goals (desires) where Searle’s terms are provided in parenthesis. For the “perception” flavor
of intentionality, this includes perception, memory, and knowledge (beliefs).

We mathematically formalize these ideas in a toy scenario in which an autonomous robotic
agent acts and autonomously learns to achieve goals. The agent is a vehicle with a robotic arm.
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It perceives the world through a vision sensor and has a set of sensors to perceive the states of
its own body. The environment consists of cubes that are either paint buckets or that function
as canvases to be painted. The agent moves through space and points its arm at objects to
pick up or to deposit paint. The agent learns color contingencies (which color results when
applying a given coat of paint to a canvas of a given color) and uses that knowledge to achieve
its goals, the simple desire to paint objects in a particular color.

The scenario touches on all six psychological modes in the two directions of fit. Mind-
to-world intentional states include the perception of objects and body states, memory of the
environment, and beliefs/knowledge about color contingencies. World-to-mind intentional
states include the motor behaviors of driving and pointing to pick up or apply paint, prior
intentions/action plans as sequences of such actions, and desires/goals as desires for a given
color. In the scenario, individual actions or mental acts take variable amounts of time dur-
ing which intentions must be stabilized against inputs from sensors or competing intentional
states. The scenario thus probes the central issue, the stability of intentional states, and their
release from stability to generate sequences of such states.

The neural processes account of intelligent behavior is formalized within Dynamic Field
Theory (DFT; Schöner, Spencer, & DFT Research Group, 2016), a set of mathematical con-
cepts that characterize the dynamics of activation within and across neural populations that
are ultimately linked to sensory and motor systems (Schöner, 2019). This framework lends
itself to the desired account because stability and its loss in dynamic instabilities are cen-
tral concepts of DFT. Below, we outline the neural processing elements of DFT needed to
generate intentional states in the two directions of fit and the six psychological modes. Next,
we present a neural dynamic architecture that achieves that within the toy scenario. Simu-
lations then illustrate how goal-oriented intelligent behavior emerges for architecture and its
embodiment.

2. Elements for a neural dynamic account of intentionality

What would it mean to provide a neural account for intentionality? Different levels of
description may be considered, from whole-brain architectures to detailed accounts of neu-
ral mechanism at the level of the cell. We hypothesize that the neural processes underlying
behavior and cognition are best captured by the time- and state-continuous evolution of neu-
ral activation patterns in small neural populations across the brain (Gerstner, Kistler, Naud, &
Paninski, 2014; Schöner, 2019). The mathematical framework of DFT (Schöner et al., 2016)
formalizes this hypothesis. Its key postulates will be reviewed here. (1) Central to DFT is the
postulate that cognitive processes may be linked to the sensory and motor surfaces, and may
operate in closed loop when an agent is situated in a structured environment. This implies the
need for stability. For instance, perceptual or motor decisions need to be stabilized against dis-
tractors or competing motor choices. Such stabilization is brought about by recurrent neural
connectivity within local neural population.

(2) Local activation patterns that “stand for” particular intentional states are stabilized
by excitatory recurrent connectivity within a neighborhood. Inhibitory connectivity to other
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Fig. 2. A dynamic neural field with a suprathreshold activation peak representing a particular location, x0, along a
continuous feature dimension, x.

neighborhoods stabilizes activation patterns against distractors. Such localist representations
are natural for categories (Bowers, 2017). They may represent continua of intentional states
as long as these may be described by low-dimensional feature spaces, whose representational
power can be extended in neural dynamic architectures.

(3) Dynamic instabilities provide the mechanism for change. For example, an intentional
state may be induced in the detection instability in which a subthreshold activation pattern
becomes unstable, allowing the system to transition to a suprathreshold activation pattern. The
inverse transition occurs in the form of the reverse detection instability. Physical or mental
acts come about through organized dynamic instabilities that induce transitions from one set
of neural intentional states to another.

We provide a brief technical review of these three postulates in their mathematical
formalization.

2.1. Dynamic neural fields

The building blocks of DFT, dynamic neural fields, are neural activation functions, u(x, t ),
defined over metric spaces, x, of limited dimensionality, typically not more than four. They
evolve continuously in time, t , as described by a neural dynamics,

τ u̇(x, t ) = −u(x, t ) + h +
∑

i

si(x, t ) +
∫

ω(x − x′)σ (u(x′, t ))dx′. (1)

Originating from space-time continuous approximations of neural activity in the layered
structures of cortex (Wilson & Cowan, 1973), these equations lift the dynamics of neural
membranes to the population level (Amari, 1977). The stabilization term, −u(x, t ), time scale,
τ , and resting level, h < 0, reflect membrane properties. The spiking mechanism is replaced,
at the population level, by a sigmoid threshold function, σ (u) = 1/(1 + exp[−βu]) which is
passed on to other neural populations or ultimately on to motor systems. Recurrent connectiv-
ity is characterized by the interaction kernel, ω(x − x′), which is excitatory (ω > 0) for small
and inhibitory (ω < 0) for large distances, x − x′.

When localized inputs, si(x, t ), vary slowly, they induce a subthreshold solutions ≈ h +∑
i si(x, t ) that remain stable as long as activation remains below threshold. As the threshold

is reached, this solution becomes unstable in the detection instability. The field switches to
a localized peak of suprathreshold activation (Fig. 2). Depending on interaction parameters
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and on the resting level, different dynamic regimes may arise. Selective fields generate sin-
gle peaks. Multiple peaks may exist in the self-stabilized regime. These may persist when
inducing localized input is removed in the self-sustained regime.

2.2. Neural dynamic architectures

Dynamic neural fields may represent feature dimension such as color, visual space, or
movement parameters. The connectivity delivering sensory input to a field or projecting
from a field to the motor system determines the meaning of the feature dimensions. This
is exemplified when forward input directly induces activation peaks in the detection insta-
bility. When activation peaks arise in other ways, they continue to represent the dimensions
defined by forward connectivity to and from a field. Peaks may, for instance, be re-activated
from a memory trace, which is induced at activated locations in a simple form of learning
(Chapter 2 of Schöner et al., 2016). Peaks may also arise in neural architectures from cou-
pling among multiple fields. A source field, usrc, couples into a target field, utar, if the source
field output, σ (usrc), provides input to the target field by adding to its rate of change, u̇tar,
typically weighted through a projection kernel, csrc→tar. A central postulate is that feature
dimensions are preserved by such projection, so that fields retain their meaning as activation
patterns across an architecture vary.

Inputs from or projections to fields representing multiple different feature dimensions may
create conjoint representations. Perceptual features such as color, c, are represented jointly
with visual space, x, itself. A peak in such a field thus represents an object of a particular color
at a particular spatial location. When multiple neural fields representing different perceptual
features all share visual space as a dimension, feature binding across space in the manner of
Feature Integration Theory (Treisman & Gelade, 1980; Treisman & Zhang, 2006) becomes
possible (Chapter 7 of Schöner et al., 2016). This enables integrated feature representations of
objects that do not require implausibly large numbers of neurons to sample high-dimensional
feature spaces.

The coupling kernels may contract the dimensionality of the source field by integrating over
dimensions the target field does not share (Zibner & Faubel, 2015). Coupling kernels may
also expand the dimensionality of the source field by providing input that is constant along
dimensions of the target field that the source field does not share, providing ridge, tube, or
slice input, for instance. Fig. 3 illustrates how expansion may assemble joint representations:
Peaks in a field over visual space and in a field over color each provide ridge-input to a joint
space-color field, creating a peak where these ridges overlap.

As zero-dimensional neural fields, dynamic neural nodes represent categorical states. Fea-
ture concept nodes derive their meaning from a localized pattern of input connectivity to a
feature field. For example, a neural node representing the color concept “blue” projects onto
a region centered around blue in a feature field defined over hue (Fig. 4). When activated,
the “blue” concept node facilitates the generation of a peak localized in that blue region of
hue space.

Boost nodes project homogeneously across an entire field, effectively modulating its rest-
ing level and potentially altering its dynamic regime (Fig. 4). Because boost nodes alter the
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Fig. 3. Two one-dimensional ridge inputs form a two-dimensional activation peak at the location of their
intersection.

Fig. 4. Left: A subthreshold activation hill (left) may be pushed through the detection instability when a boost
node becomes activated (filled circle on the right). Right: A concept node for “blue” projects onto the blue region
of a color field (left). Its activation (filled circle on the right) may induce an activation peak centered on that region.

amount of localized input needed to reach the detection instability, they may gate the flow
of activation within an architecture, enabling particular branches of coupling to induce peaks
or preventing them from doing so. They may also act as “go” signals by providing the final
element of input needed to induce a peak.

Peak detectors are dynamic neural nodes to which a source field projects homogeneously,
the inverse direction of connectivity to that of boost nodes. Peak detectors are tuned so that
they go through the detection instability whenever at least one activation peak arises in the
source field. Peak detectors receiving input from multiple fields may detect combinations of
peak states across these fields. Match fields generalize this idea by forming peaks only at
locations at which input from different source fields metrically overlaps.
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Fig. 5. The structure of a neural dynamic network that behaviorally organizes a world-to-mind intention.

2.3. Sequence generation

The generation of sequences of attractor states in DFT is based on a combination of
boost nodes and peak detection in a match field. The relevant methods were developed in
Sandamirskaya and Schöner (2010) (see also Chapter 14 of Schöner et al., 2016), already
invoking notions borrowed from the philosophy of mind. World-to-mind intentional states are
represented by intention nodes that act as boost nodes controlling the formation of peaks in
intention fields which represent features of a behavior, the “contents” of the intention (Fig. 5).
Intention nodes and fields project onto downstream neural dynamic fields and nodes that ulti-
mately drive behavior. Intention nodes are paired with their conditions of satisfaction (CoS)
represented by CoS nodes. Projections from an intention field to an associated CoS field pre-
dict the desired end-state in appropriate feature spaces. CoS fields act as match fields that
compare the desired end-state of an intention to perceptual information from the sensory-
motor surface or from other parts of the neural architecture. When these inputs match, a
peak forming in the CoS field activates the corresponding CoS node that acts as a peak
detector. The activated CoS node inhibits the intention node. As input from the intention
to the CoS node falls away, the CoS node deactivates, effectively terminating the world-to-
mind intention. What happens next depends on the overall neural architecture within which
this network is embedded. The network thus provides an interface between world-to-mind
intentional states and their embodiment in sensory-motor behavior, but may also steer the
initiation and termination of purely mental neural processes that instantiate world-to-mind
intentional acts. This is a first instance of cascades of instabilities in the dynamics of neu-
ral populations representing intentional and CoS states organize the time course of sequence
generation.
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Fig. 6. The youBot agent in its environment of colored buckets and canvases.

3. Neural dynamic architecture of an intentional agent

In the following, we describe an exemplary neural dynamic architecture that captures the
creation, stabilization, and termination of intentional states in the two directions of fit and
six psychological modes, enabling an agent to act and learn autonomously in a multi-step
task. We do so in a minimal toy scenario in which an intentional agent is situated in a virtual
world that consists of small colored cubes (canvases) and tall colored cuboids (buckets; see
Fig. 6).1 The agent may collect paint from bucket objects, and then apply the paint to canvas
objects. The way a canvas object changes color upon being painted is determined by fixed (and
arbitrary) rules of color combination which the agent autonomously learns while exploring.
The agent may also have fixed desires to paint a canvas in a specific color. It achieves such
goals by using its knowledge about color combination.

The neural dynamic architecture and its connection to the agent’s sensory-motor surfaces
is sketched in Fig. 7. In the following, we step through that architecture following the two
directions of fit, each in three psychological modes. We outline the conceptual commitments
for each psychological mode and illustrate these by one exemplary component of each mode.
More complete documentation of the architecture including code is available one, see note 2.

3.1. Mind-to-world direction of fit

A neural process account of mind-to-world intentional states must address how represen-
tations of particular states of affairs in the world are created, how they may persist or be
recreated to influence the agent’s mental or physical acts, and how they may eventually be
allowed to decay. Mere transmission of sensory information in the manner of forward neural
networks does not provide a sufficient account. Selective attention, its stabilization against
distractor input, stablization of activation when sensory information is removed, reactivation
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Fig. 7. Sketch of the dynamic field architecture controlling the robotic agent, organized by psychological mode.
Stacks of fields represent two fields of analog functionality and connectivity defined over the different feature
spaces color and height. Arrows highlight the most relevant connections between fields. Color coded arrows high-
light action sequences and the components involved.

of attentional states on recall are examples of neural processes that must be addressed. In a
sense, intentional states in the mind-to-world direction of fit could be viewed as a general-
ization of attention which may, for instance, include propositional representations about con-
tingencies in the world. Mind-to-world intentional states thus engage active neural processes
whose sequential temporal organization must be explained. We develop such an account by
transforming the concept of a “condition of satisfaction” from a logical to a neural process
notion. Where in the philosophy of mind, the condition of satisfaction characterizes whether
the content of a mind-to-world intentional states is veridical, the neural process variant of the
condition of satisfaction measures the match between a representational state and pertinent
sensory information. We add the notion of a condition of dissatisfaction when a mismatch is
detected instead.

3.1.1. Perception
Perceptual states are modeled by suprathreshold peaks of action in neural fields that rep-

resent visual features by virtue of the feed-forward connectivity from the sensory surface
to the neural fields. A perceptual state is created in a detection instability in response to
localized input. When this happens, the peak’s location matches the location (in features
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space) of sensory input, so that the activation peak is at the same time the neural representa-
tion of a perceptual intentional state and a neural representation of its condition of satisfaction.
Activation peaks may be sustained after the inducing sensory input is removed due to the pat-
tern of neural interaction. Working memory is, in our interpretation of Searle’s psychological
modes, part of the mode of perception.

Activation peaks are selective due to lateral inhibitory interaction. So, only a limited num-
ber of field locations may become activated at any time (which reflects capacity in the case
of working memory). Such selection reflects attention and may be driven by differences
in input strength (salience), but may also be guided “top-down” in visual search (Grieben
et al., 2020) (which is itself a world-to-mind form of intention as discussed in the next
subsection).

Activation peaks representing perceptual state are deactivated in the reverse detection insta-
bility. This may happen when top-down or localized bottom-up inputs are removed. It may
also happen due to competing inputs near the capacity limit, or due to specific inhibitory input
that reflects a condition of dissatisfaction (CoD) (e.g., as a form of change detection Johnson,
Spencer, Luck, & Schöner, 2009; Chapter 6 of Schöner et al., 2016).

3.1.1.1. Example: Visual perception component of the neural architecture of intention:
The agent perceives the state of its own body and its location in the world through pro-
prioceptive sensors and efference copy. It perceives the environment visually. The network
responsible for visual perception and memory is illustrated in Fig. 8. Visual input comes from
the camera and is split into a purely spatial salience representation (Spatial Map) and a pair
of space/feature fields, the Space/Color and Space/Height Retinal Map, that combine feature
with location information.

Percepts are formed when a localized peak is created in the Spatial Selection field. That
peak represents spatial attention and further induces activation peaks in the Space/Color
and Space/Height Retinal Selection fields which provide the perceived feature values at the
attended location. In visual search, peaks in space/feature fields arise from top-down cues
(shown in Fig. 7 but omitted in Fig. 8). Perceptual states are deleted when spatial attention
shifts or when the attended object is removed from the visual array. In autonomous visual
exploration, the system sequentially attends to objects in the visual array, creating feature
representations and commits these to allocentric space/feature memory, and finally deletes
the perceptual states by shifting spatial attention (see Section 4.1 for details).

3.1.2. Memory
In the model, memories are created by laying down memory traces of localized activation

peaks. Once peaks have decayed, memory traces persist in the form of elevated, but subthresh-
old levels of activation at the locations of the peaks. Activation peaks can be reinstantiated
at those locations by homogeneously boosting the entire field in free recall, or by providing
input that is localized along a feature dimension and homogeneous along other dimensions in
cued recall. Such peaks in the memory fields are the neural instantiation of both the intentional
state of memory and of its condition of satisfaction.
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12 of 34 J. Tekülve, G. Schöner / Cognitive Science 48 (2024)

Fig. 8. Network of the dynamic field architecture realizing visual perception and memory. Arrows mark excitatory
connections, lines ending in filled circles mark inhibitory connections. Boxes with the letter “T” mark neural
coordinate transforms. Not all connections are shown.

3.1.2.1. Example: Scene memory: In the model, memories are formed about the loca-
tion, color, and height of cuboids in the environment. While visual perception is anchored
in camera coordinates, object memories are in an allocentric reference frame. Whenever an
object is attentionally selected, a peak in the perceptual space/feature selection fields repre-
sents the object’s features bound to the object’s location in “retinal” (camera) coordinates
(Fig. 8). The feature values are extracted and projected into the memory gate space/feature
fields. This feature input is combined with a spatial cue obtained by transforming the cam-
era coordinates from the spatial selection field into the allocentric coordinates frame. A peak
arises in the memory gate space/feature fields in the manner illustrated in Fig. 3. This coor-
dinate transform requires transcribing object information into memory one object at a time to
solve the binding problem (Chapter 8 of Schöner et al., 2016). The peak in the memory gate
field lays down a memory trace. Memory traces at other locations slowly decay, leading to
forgetting through interference. A memory trace is reactivated in the space/feature memory
selection fields through a coordinate-transformed spatial cue from the Spatial Selection field.
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J. Tekülve, G. Schöner / Cognitive Science 48 (2024) 13 of 34

Alternatively, reactivation may come from slice a feature-cue that provides slice input into
the space/feature selection field. Such cued recall is illustrated in Section 3.5.1.

3.1.3. Belief
Searle’s psychological mode of belief does not directly correspond to a specific cognitive

competence. We use this notion to reflect about neural processes that may support knowl-
edge about the world that informs action, a central concern of classical artificial intelligence
(Nilsson, 2014). To this end, we consider beliefs to be propositional in nature, so that they
abstract from sensory-motor details, and generalize from the experience during which they
were formed.

3.1.3.1. Example: Belief activation: The agent forms beliefs about the rules of color
transformation by reference to three types of color concepts: the color of paint (“coat”), the
color of a surface that may be painted (“canvas”), and the color of the surface that results
from a painting action (“result”) (center top panel in Fig. 7). Each concept is represented by a
neural node that is perceptually grounded through reciprocal connections to regions in color
feature fields (Fig. 4). Beliefs are also represented by neural does, which are grounded by con-
nections to one color concept in each role. These connections emerge from Hebbian learning,
while the system experiences different outcomes during painting actions. The dynamics of the
autonomous learning of beliefs and the process organization have been reported in technical
detail in Tekülve and Schöner (2020).

Once learned, a belief may become activated by a combination of top-down and bottom-up
processes. The desire for a specific result color activates the result concept node top-down.
The attentional selection of an object may activate either a paint or a canvas color concept
node bottom-up. Once activated, the belief node may then activate the color concept node in
the complementary role, which will subsequently guide search for a paint bucket or canvas
object of matching color. An activated belief is thus a mind-to-world intentional state that may
steer world-to-mind intentions. The condition of satisfaction of a belief is neurally represented
by its own activation.

3.2. World-to-mind direction of fit

World-to-mind intentional states are representations of states of the world that the agent is
aiming to bring about. The world state may include states of the agent’s body and nervous
system (other than the intentional state itself). The condition of satisfaction of world-to-mind
intentional states is fulfilled when the real state of the world matches the intended state as
a consequence of the agent’s actions. To transform this logical conception of a condition of
satisfaction into a neural processing concept, we neurally represent the condition of satisfac-
tion. Contrary to mind-to-world intentions, in which the intention and its condition of sat-
isfaction can be represented by the same activation states, world-to-mind intentions require
separate neural activation states. The condition of satisfaction is activated when input from
the intentional state that predicts that state’s condition of satisfaction matches input from
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14 of 34 J. Tekülve, G. Schöner / Cognitive Science 48 (2024)

mind-to-world intentions (Fig. 5). Once activated, the condition of satisfaction inhibits the
intentional state.

A process account for world-to-mind intentions must also address the possibility that the
intended world state is not achieved for some reason. We postulate that a neural representa-
tion of a CoD becomes activated that also inhibits the intentional state, bringing about the
“unsuccessful” termination of the intention. Conditions of dissatisfaction may be activated
by default when the condition of satisfaction fails to become activated within a given time
frame, or may be activated by particular mind-to-world intentional states that detect a mis-
match between predicted and perceived outcomes of an action.

3.2.1. Intention-in-action
Intentions-in-action are world-to-mind intentions that directly drive motor behavior or neu-

ral processes that support motor behavior. They are represented by neural activation states
that directly project onto sensory-motor processes or that provide top-down influence onto
mind-to-world processes to guide sensory-motor processes (bottom right in Fig. 7). These
neural representations of intentions-in-action typically activate sensory-motor processes by
providing boost input. The content of intentions-in-action are movement targets or cues to
movement targets.

3.2.1.1. Example: Recall and drive: The network for the drive and the recall intentions-
in-action is illustrated in Fig. 9. Both intentions are boosted by input from the locate inten-
tion that is higher in a hierarchy of intentions and ultimately originates from the currently
active belief (see box for prior intentions in Fig. 7). When the intention drive node is acti-
vated, the robot vehicle moves from its initial position to the target position represented in the
drive intention field. A smooth velocity profile is generated by a pair of coupled excitatory-
inhibitory neural fields which generate a single cycle of neural oscillation (detail in Schöner,
Tekülve, & Zibner, 2019). Input to these fields selects the duration and amplitude of the veloc-
ity profile. This input is from the distance to be covered, computed neurally by transforming
the neural representation of the Drive target into a coordinate frame centered on the vehicle’s
initial position. That position is estimated in the starting location field based on input from
the current location gate field that transmits a position sensor signal only when the vehicle is
at rest.

When the updated peak in the starting location field matches the intended target location
in the drive field, the drive CoS field builds a peak that activates the drive CoS node, which
inhibits the drive intention node and thus terminates the drive intention-in-action.

Information about the target location comes from the recall intention-in-action. Until recall
has delivered such information through the recalled position gate, drive is prevented from
activating by an inhibitory precondition node. Recall, illustrated on the left of Fig. 9, is not a
motor behavior, but is a world-to-mind intention-in-action in that it brings about an intended
state within the neural dynamic architecture in which the recalled target location is neurally
represented. The recall intention node is activated by the locate intention, which also provides
a feature cue to the recall cue fields that represent the contents of the recall intention. Peaks
in those fields project onto the space/color and space/height Recall fields where their overlap
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J. Tekülve, G. Schöner / Cognitive Science 48 (2024) 15 of 34

Fig. 9. The components of the architecture generating recall and drive intentional states as intentions-in-action
and as prior intentions. Same conventions as in Fig. 8.

with memory traces determine which location is activated. The recalled position field selects
the single spatial location with best match. A peak forming in that field signals successful
recall by activating the recall CoS node, which inhibits the recall CoD node. The recall CoS
node does not inhibit the recall intention as its outcome, the recalled position peak, must
persist to enable driving to that location. The recall intention is terminated when the higher
level locate intention terminates, removing the its boost input.

If no object in memory matches the feature cues, no peak forms in the recalled position
field, the recall CoS node is not activated, and does not inhibit the recall CoD node, which
is activated by default, signaling the failure to recall a matching object from memory. This
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16 of 34 J. Tekülve, G. Schöner / Cognitive Science 48 (2024)

deactivates the recall intention node and releases the exploration intention from inhibition, so
that the vehicle begins searching the environment.

3.2.2. Prior intention
Prior intentions are parts of mental plans that do not yet directly affect down-stream world-

to-mind intentional processes. A prior intention may, therefore, become an intention-in-action
when it begins to have a direct effect on sensory-motor processes or on other intentions-in-
action. Prior intentions sequentially organize the activation and deactivation of intentional
states and of their gating to downstream processes. In the present neural architecture, this
issue is addressed only in somewhat rudimentary form.

Prior intentions consist of two components: The encapsulated intention-in-action and a
precondition that specifies the circumstances under which that action will be initiated. Pre-
conditions may be any perceivable world state, including internal states of the agent. Once a
perceptual state has been formed that matches the precondition, the encapsulated intention-
in-action is activated.

Preconditions are neurally implemented by dynamic nodes that inhibit the intention node
of the encapsulated intention-in-action (Richter, Sandamirskaya, & Schöner, 2012). Precon-
dition nodes receive inhibitory input from match detection fields, which perceptually ground
the precondition and define its contents. So, when the precondition is “met,” the node is deac-
tivated. Sequences of prior intentions are organized by using the CoS of preceding actions
as input to the match detection field. These conditions-of-satisfaction come from the encap-
sulated intentions-in-action, but may also depend on the state of the precondition network.
Composite prior intentions may comprise multiple lower-level intentions-in-action, leading
to a hierarchy of actions, in which the lowest level directly acts on the motor surface, while
higher levels stand for sequences of such actions. The mechanism of precondition can be used
at all levels of the hierarchy to sequentially organize intentional states.

3.2.2.1. Example: Prior intentions collect and apply: Fig. 10 illustrates the neural
dynamic network that sequentially organizes the agent’s prior intentions collect and apply
as part of the paint prior intention.

3.2.3. Desire
Desire is the top-level psychological mode of world-to-mind intentions. It disposes the

agent to act toward achieving goals, that is, particular states of affairs of the world. Desires
are the causes of prior intentions.

While desires predispose an agent to act toward particular goals, they do not necessarily
induce the agent to initiate these actions, a logical condition described by Searle as the voli-
tional gap (Searle, 2001, 50). Such initiation depends on an ensemble of intentional states in
all other modes of intention. Conversely, desires may affect intentional states in those other
modes. For instance, desires may be critical to activating relevant beliefs, guide perceptual
attention, and drive reward-based learning upon achieving the desire (Tekülve & Schöner,
2020).
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Fig. 10. The network responsible for sequentially organizing the collect and apply prior intentions that implement
the paint behavior. Precondition nodes are labeled “P.” Arrows indicate excitatory projection. Filled circles indicate
inhibitory projection. Both collect and apply consist of multiple lower-level intentions-in-action whose sequential
organization is implemented analogously (not shown). The CoS of each prior intention comes from the final
intention-in-action in each subsequence.

The neural representation of desires is grounded through the projections onto the rest of the
architecture. The condition of satisfaction of a desire reflects that connectivity by conversely
collecting input that tests the predicted outcomes. Desires do not specify individual concrete
actions, allowing for multiple paths to their satisfaction. Which actions are ultimately taken
may depend on the agent’s mind-to-world states, the currently perceived environment, mem-
ory, and beliefs.

3.2.3.1. Example: Desire to paint: The current model only has a trivial neural dynam-
ics in the psychological mode of desire, a neural representation of a desired hue value that
defines the color in which the agent aims to paint an object. This projects onto the belief sys-
tem, where matching canvas and coat colors are sought, and onto the collect and apply prior
intentions (Fig. 7).

4. Simulations

To demonstrate the capacity of the neural architecture to generate intentional states and
to drive the behavior of an embodied agent toward fulfilling desires by using beliefs, we
describe a few exemplary simulations. The neural processes that instantiate perception, mem-
ory, intentions-in-action, and prior intentions are made visible through the time courses of
activation that emerge from the neural dynamics in particular situations. Special attention is
paid to the dynamic instabilities that generate sequences of intentional states, organized by
intentional states and their CoS. We will highlight differences in the time structure and chain
of causation between mind-to-world and world-to-mind forms of intentionality.

The simulations are carried out by implementing the architecture within Cedar (Lomp,
Richter, Zibner, & Schöner, 2016), a software framework that enables the interactive,
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Fig. 11. The camera image (center) induces activation patterns in two space/feature maps defined over the horizon-
tal dimension of retinal space (right). Activation is visualized with a color code: blue marks activation levels below
threshold, green marks activation levels near threshold, yellow and red marks activation levels above threshold.
The camera image also provides input to the spatial map (left). Here, activation (vertical axis) is plotted against
the horizontal dimension of retinal space (horizontal axis). Activation is shown in blue, the output of the sigmoid
threshold function is shown in red.

graphical specification of DFT architectures. Cedar numerically solves the neural dynamic
equations, visualizes activation time courses, and allows online model parameter adjustment.
The agent and its environment are simulated in Webots (Michel, 2004) which we interfaced
with Cedar. The neural architecture generates time courses of robot commands acted out by
the simulated robot in Webots, which sends back sensory information that provides input to
the neural architecture.2

4.1. Visual perception and memory

Visual exploration generates perceptual states in which one object at a time is visually
attended and entered into scene memory. While perception and memory are mind-to-world
intentional states, visual exploration itself is a world-to-mind form of intention as it brings
about intended states of the agent’s neural architecture. Visual exploration is, in fact, the
default intention-in-action of the architecture.

Below, we refer to Fig. 8 for the neural dynamic network that supports visual exploration.
The sensor surface shown at the bottom of that figure is illustrated in Fig. 11 with its activa-
tion state in response to visual input. Color and height features are extracted from the camera
image, and input into two retinal space/feature maps. Salience is extracted and input into a
spatial map. At the visual perception layer of the architecture (second region from bottom
in Fig. 8), the spatial selection field selects a single location from the spatial map, generat-
ing a peak that represents selective spatial attention.That peak provides ridge input into two
space/feature fields at the visual perception level which also receive input from the analo-
gous fields at the sensor level. Where the ridge overlaps with that input peaks build in each
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space/feature field forming the neural representation of the perceptual intentional state that is
about the selected object. While these perceptual states are in retinal (or camera) coordinates,
memory is built in an allocentric frame. The memory state is built by coordinate transforming
the object’s location and binding that transformed location to the object’s feature information
that is extracted from the retinal representation.

Fig. 12 illustrates time courses of activation that bring about the attentional selection of an
object and its commitment to memory. At time, t0, visual exploration has not yet started and
activation of all neural nodes is below threshold. The two objects in the visual array induce
two subthreshold activation bumps in the retinal perceptual layer which are not transferred to
the allocentric memory layer as the coordinate transformation only transmits above thresh-
old activation. The space/color memory trace contains two bumps from previously observed
objects that are now out of view to the left of the agent, one blue and one purple. These induce
two subthreshold bumps into the memory selection field shown at the bottom.

At time, t1, the intention node for visual exploration (violet) has passed threshold, which
raises the activation level of the associated CoS-node (green) and boosts the spatial selection
field (second panel). That boost causes the formation of a single peak selected over the left-
most location by chance, which provides ridge-input into the space/color retinal selection
field (third panel). Where that ridge overlaps with the subthreshold bump from sensory input,
a peak forms, part of the perceptual intentional state about the blue cube in the scene. The
peak in the spatial selection field is now transmitted through the coordinate transform to the
allocentric selection field (fourth panel), inducing a peak at the corresponding location in
space. This peak projects ridge input into the space/color memory gate field (fifth panel).
That ridge intersects with an orthogonal ridge from the attended color field (bottom left in
8), but remains below threshold, so that no memory trace is being formed yet (second panel
from bottom). The spatial ridge input into the memory selection field (bottom panel) does not
overlap with the pre-existing subthreshold bumps from the memory trace, so no peak forms
at this time.

At time, t2, activation at the intersection of the two ridges in the memory gate field has
pierced threshold. The resulting peak drives the build-up of a new bump in the memory trace
which induces a peak in the memory selection field at the bottom. That peak has fully formed
by time, t3. Inhibitory projection to the memory gate field destabilizes the peak there, ending
the build-up of memory trace at that location. Feature values extracted from the memory
selection field have been forwarded to the expected color/height fields in the object match
subnetwork (top left in Fig. 8), activating the match nodes and ultimately the CoS node of
visual exploration (top panel). The CoS node has inhibited the visual explore intention node,
whose boost input to the spatial selection field has thus fallen away, driving that field through
a reverse detection instability. The peak in that field is almost gone at this time. Its decay
is complete by time, t4. By removing excitatory input, decay of activation has propagated
to the space feature fields, also causing deactivation of the match nodes and, a little later,
of the CoS-node (top panel), so that all fields fall back to their initial subthreshold state.
The memory trace retains the new bump, providing support for future reactivation of the
memory intentional state. The temporal order from intentional state to CoS to inhibition of
the intentional state characterizes visual exploration as a world-to-mind intention.
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Fig. 12. Time courses of activation during visual exploration of one object are illustrated through snapshots at
discrete moments in time. These are marked by gray vertical lines. The top row shows the activation time courses
of the intention- and CoS-nodes of the visual explore behavior, and of the color- and height-match nodes. All other
rows use the two plotting conventions of Fig. 11. The next two rows show the selective spatial and color/space
fields from the perceptual layer in retinal coordinates, x. The remaining four rows show fields of the memory layer
in allocentric coordinates, xw. While only the color feature channel is illustrated, analogous patterns emerge in the
height feature channel.

After time, t4, the decay of the CoS node enables the reactivation of the visual exploration
intention as the default intention, which leads to the attentional selection of the next object in
the visual scene and ultimately its commitment to scene memory.

4.2. Intention-in-action and prior intention

The two intentions-in-action recall and drive are part of the composite prior intention
locate. Locate provides the color and height cues for the recall. These cues originate from
the agent’s belief system. In the simulated example, the agent is looking for a yellow bucket
to pick up yellow paint that, according to a learned belief, will help paint a particular canvas
to obtain a desired color. Fig. 13 only illustrates the portion of this sequence in which the
agent recalls the location of the yellow bucket and drives to that location.

At time, t0, the locate intention node (top panel) is just passing threshold, while the recall
intention node is not yet activated. All fields are subthreshold. The space/feature recall fields
for color and height are preactivated by the memory traces left during earlier visual explo-
ration of four objects (from left to right): a purple bucket, a purple canvas, a yellow canvas,
and a yellow bucket. These are the four objects in the right half of the scene. The agent
faces the purple bucket close to the center of the allocentric coordinate frame. The simulated
localization sensor provides input at that ego-position to the current location gate field (bot-
tom panel), inducing a peak there, which in turn induces a peak in the start location field
(second panel from bottom) at the same location. That peak provides input to the drive CoS
field (third panel from bottom), where it causes a subthreshold activation bump.

At time, t1, the locate intention node is fully activated and has induced activation of the
recall intention node (top panel). The locate intention also provides excitatory input to the
drive intention and to the precondition node that links recall to drive. Because the recall
intention node is active, the precondition node prevents the drive intention node from activat-
ing. The activated recall intention node gates the feature cues for the yellow bucket into the
respective cue fields (third and fourth rows from top), where peaks have formed at “yellow”
and “tall.” These peaks provide ridge input into the space/feature recall fields (fifth and sixth
rows). In each field, two entries of the memory trace overlap with the ridges, generating acti-
vation close enough to threshold to enable projection to the recalled position field (seventh
row). This field’s resting level has been boosted by the recall intention node and the peak
detectors of each recall cue field. Only the one location (to the right) at which inputs from the
two space/feature recall fields converge is sufficiently activated to create a peak. This peak
represents the location of the object that matches both search cues, “yellow” and “tall.”
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Fig. 13. Temporal evolution of activation during recall and drive. The top panel shows time courses of relevant
intention-, CoS-, and precondition nodes. At five moments in time, marked by vertical bars, the agent (second
row), and the activation state of a set of fields are shown, five from the recall subnetwork, and four from the drive
subnetwork. The same conventions are used as in Fig. 12.

At time, t2, the peak in the recalled position field has fully stabilized causing the recall
CoS node to activate. This inhibits the precondition node which releases the drive intention
node from inhibition, leading to its activation. A subthreshold bump at the recalled location
is building in the drive intention field but has not yet reached threshold.

At time, t3, the drive intention node has been fully activated and a peak has formed in
the drive intention field that represents the target position close to the right border of the
allocentric frame. This causes the agent to initiate a right-ward movement toward that target
position. This also causes a second subthreshold bump to arise in the drive CoS field (second
row from bottom) at the predicted end-point of that movement. This bump does not overlap
with a second bump induced by the peak in the start location field (bottom row), which is
sustained, while input from the current location field falls away when that field is inhibited
during movement. The agent has almost finished its movement at time, t4, its current position
being reflected by the subthreshold bump in the current location field (bottom row).

Finally, at time, t5, the movement of the agent has terminated, releasing the current location
field from inhibition. The reactivated peak in that field leads the start location field to switch
to a new peak at the current location, that will be the starting location for the next movement.
This switch causes a peak to form in the drive CoS field and the drive CoS node to become
activated, which ultimately inhibits the drive intention node (top row), which is followed at
the end of the time series by a decay of the drive CoS node. The recall and drive sequence has
terminated and the system is ready to perform the next action.

Drawing back the view point to look at the larger scale, we illustrate in Fig. 14 how a
sequence of world-to-mind intentions unfolds autonomously in time as a global goal, the
desire to paint an object in a particular color, is pursued. The bar at the top represents that
paint intention, which is terminated when its CoS (shown in the second line) is activated. All
the other world-to-mind intentions are engaged to realize this paint intention. The mind-to-
world intentions that interact with these world-to-mind intentions are not shown.

First, the activate belief intention becomes active (line 3, far left). While beliefs linking
coat, canvas, and outcome color are mind-to-world intentions, the process of activating a
belief is a world-to-mind intention because it is aimed at bringing about a particular state of
the neural architectures (a part of the world), here the activation of a matching belief node.
Once the CoS of this intention is activated (line 4, far left), the associated intention (line 3)
is deactivated. Note that the belief itself will remain active through the entire sequence (not
shown).

The sequence of events that follows is organized by the network illustrated in Fig. 10
which is primed by the paint intention node. The CoS of activate belief inhibits the pre-
condition node of collect, releasing from inhibition and thus activating the collect intention
(blue bar on the left of line 3). As a prior intention, collect generates a sequence of intentions-
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Fig. 14. A survey over the temporal structure of world-to-mind intentions that are generated toward the goal of
painting a canvas to achieve a desired color. The bars mark the time intervals during which the labeled inten-
tions and their conditions of satisfaction are activated above threshold. This time structure was recorded from a
simulation of the complete architecture while the intention to paint (top row) was active.

in-action (column of bars below that blue bar). These include the locate intention, and the
recall and drive intentions we analyzed in Fig. 13, as well as visual search, reaching, and
pick-up paint intentions.

The collect intention terminates once its CoS has been detected. This inhibits the precon-
dition node of the apply intention (Fig. 10), which is the next prior intention to activated
(orange bar in line 3). The apply intention entails a similar set of lower-level world-to-mind
intentions. In this simulation, the attempt to recall a canvas object of the requested color from
memory fails as no such object has been previously committed to memory. So, the CoD of
the recall behavior becomes active (line 8 around time 22 s). The system then explores the
environment for an object of the required color. When a first object of that required color is
found, visual search brings it into the attentional foreground, which reveals that it does not
match the required height feature value (it is a bucket rather than a canvas), so another CoD is
activated, and explore is reactivated. Finally, a suitable object is found, attentionally selected,
reached for with the robot tool, and covered with a coat of paint.

Note how all through this sequence the world-to-mind intentional states are activated for
variable durations. Their CoS are briefly activated when the predicted outcome is detected.
This is the process signature of world-to-mind forms of intentionality.

4.3. Achieving a desire

Beliefs and desires are the psychological modes most removed from the sensory-motor
level. The activation of beliefs and their autonomous learning follows methods described in
Tekülve and Schöner (2020). Here, we focus on illustrating how the agent satisfies a desire.
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Fig. 15 shows the time courses of neural nodes and fields at the very last moment of a sequence
of actions, when a desire to paint a canvas in a new color is finally achieved.

When the sequence begins at time, t0, the agent is already positioned near the canvas object,
a blue cube, which it has attentionally selected and to which it has reached. The spray inten-
tion, which makes the robot dispense paint on the object, is not yet active (see nodes in top
panel). In the retinal space color map (third row), all three visible objects are represented as
peaks. These provide input to both the excitatory and inhibitory layers of the transient detec-
tor (rows 4 and 5). The suprathreshold peaks in the inhibitory layer project inhibitorily onto
the excitatory layer, so that activation there remains below threshold. The color of the canvas
object and the desired outcome color are each represented by peaks in single feature fields
(bottom two rows).

Between times, t0 and t1, the spray intention activates as the precondition node from reach
deactivates. This has induced the dispense action, and the blue canvas object has changed
physically from blue to purple, the desired outcome. The peak in the retinal space color
map at the location of the canvas shifts along the color axis. This provides fresh excitatory
input into the excitatory layer of the transient detector, not yet matched by inhibition from
the inhibitory layer. A transient peak arises in the excitatory layer, at maximum at time t2,
which drives a peak detector and then the change detection node above threshold (top). The
inhibitory layer of the transient detector catches up beyond time, t2, leading to the decay of
activation in the excitatory layer and subsequently to decay of the activation of the change
detection node. All other intention and CoS nodes decay too. During the dispense intention,
the currently attended color is gated into the canvas color field, which boosts the already
present peak of sustained activation. Through a small set of additional fields and nodes (not
shown), the CoS of the current intentions are activated, and so is ultimately the CoS of the
paint intention itself. This deactivates the paint intention node and terminates the whole paint-
ing episode. The desired outcome has been achieved.

The transient detector signals a change of canvas color that is temporally aligned with the
spray intention, a literal condition of satisfaction for a world-to-mind intention. The system
thus autonomously detects intentional acts that cause events. This also provides the basis for
autonomously learning the contingencies of its actions by modulate the Hebbian learning
dynamics (Tekülve & Schöner, 2020).

5. Discussion

Acting intelligently in the world minimally entails (1) initiating, terminating, and sequen-
tially organizing individual actions, (2) basing behaviors on perceptual information that is not
immediately available on the sensory surfaces, and (3) using knowledge about the world (4)
to achieve goals. The neural processes that deliver these competences must be endowed with
stability, the capacity to resist change. At the sensory-motor level, this enables behavior to
persist in the face of disturbances from the environment and from the agent’s own actuators
and sensors. At higher levels, the stability problem is one of process organization, keeping
processes other than the current one from interfering, while remaining open to online updat-
ing and and coupling among processes.
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Fig. 15. Temporal evolution of activation during the spray intention. Same conventions as in Fig. 12. See text for
detailed description.
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Our analysis of these core problems was facilitated by borrowing terms from the philosophy
of mind. We hypothesized that intelligent thinking and acting are based on intentional states
that are about the world in two directions of fit, mind-to-world and world-to-mind (Searle,
1983). Intentional states were given stability properties by instantiating them as attractors of
a neural dynamics. At any moment in time, only a tiny fraction of all potential intentional
states will be realized. Their instantiation and termination entails bifurcations of the neu-
ral dynamics. We borrowed the concept of the condition of satisfaction, originally a logical
characterization of intentional states (Searle, 1983) to analyze the temporal organization of
these bifurcations in the two directions of fit. These ideas were made concrete by building
an exemplary neural dynamic architecture of an intentional agent. We used Searle’s notion
of psychological modes (Fig. 1) to organize that architecture and to illustrate that the neu-
ral dynamic principles reach the competences of intelligent behavior. To articulate the chief
insights obtained from this exemplary study, we review the mapping of neural dynamic mech-
anisms onto these borrowed concepts.

5.1. Mind to world intentions

Mind-to-world intentional states are neurally instantiated as stable supra-threshold activa-
tion patterns in perceptual, memory, or belief representations. Perceptual states are conven-
tionally thought of as input-driven in neural networks with predominant feed-forward connec-
tivity. In our neural dynamic analysis, perceptual states are stable activation peaks localized
within low-dimensional feature spaces including visual space. Their stability comes from
recurrent connectivity (called neural interaction in DFT), that is dominant in the sense that it
may overrule input. Perceptual states are thus not necessarily or uniquely determined by input
but may be influenced by prior perceptual decisions (Hock & Schöner, 2010) and top-down
influences. Interaction creates a bistable regime in which neural attractors representing per-
ceptual states are separated from input-driven subthreshold activation patterns. Along increas-
ing input, this bistable regime is delimited by the detection instability at the upper end and the
reverse detection instability at the lower end. Thus, even seemingly very low-level perceptual
states such as the detection of an element of localized contrast entail decisions. Empirical evi-
dence comes in the form of perceptual hysteresis and perceptual switching (Hock & Schöner,
2023). Perceptual states typically also entail selection decisions, most commonly in the form
of selective attention controlled by top-down influences (Grieben et al., 2020), or in the form
of perceptual multistability (Hock, Schöner, & Hochstein, 1996).

The locations of activation peaks in feature space reflect the content of a perceptual state.
Its alignment with the world results from how peaks arise in detection and selection deci-
sions when inputs render subthreshold activation patterns unstable. Locations at which the
sum of all inputs, localized and homogeneous boosts, first exceeds threshold are likely to
win the competition with other locations and form a stable activation peak. Such a per-
ceptual intentional state may be “in error” when it remains stable, while its content is no
longer aligned with the state of affairs in the world. Perceptual intentional states are dis-
solved when such misalignment ultimately induces the reverse detection instability of the
peak.

 15516709, 2024, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13491 by G

regor Schoner - R
uhr-U

niversität B
ochum

 , W
iley O

nline L
ibrary on [03/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



28 of 34 J. Tekülve, G. Schöner / Cognitive Science 48 (2024)

Memory intentional states are likewise instantiated as stable activation peaks in neural
fields or as stable, suprathreshold activation states of neural nodes. Peaks in neural fields
over feature dimensions are perceptually grounded forms of memory intentional states, while
neural nodes provide the neural substrate for the simplest form of conceptual representations
(Sabinasz, Richter, & Schöner, 2024). Memory intentional states are instantiated when sub-
threshold activation states become unstable in detection instabilities induced by boost input,
either global in free recall or partial in cued recall. The content of memory states, repre-
sented by the locations of the peaks or the identity of the neural nodes, is determined by
memory-traces, subthreshold activation patterns that reflect earlier suprathreshold activation
states. The dynamics of memory traces (Sandamirskaya, 2014) is an approximate description
of the much more complex neural mechanisms of memory formation, a long-standing and
ongoing research topic in computational neuroscience (Zeng, Diekmann, Wiskott, & Cheng,
2023). Memory intentional states match the world by virtue of being aligned with the mem-
ory traces. The memory traces themselves may be best thought of as “background” in the
parlance of intentionality (Chapter 5 of Searle, 1983), rather than as intentional states by
themselves.

Belief intentional states are neurally instantiated as stable suprathreshold levels of activa-
tion in dedicated neural nodes which represent contingencies by virtue of the pattern of con-
nectivity to concept nodes acquired during learning. Beliefs in this sense are propositional,
consisting of concepts bound together by this learned connectivity (Sabinasz et al., 2024).
Belief states are activated in detection instabilities, when inputs make the subthreshold states
unstable. Which belief is selected depends on the prior activation of subsets of the concepts
nodes. Global competition among belief nodes makes that only one belief can be stable at any
given time. Belief states match the world by virtue of how the learned connectivity that binds
belief nodes to concept nodes reflects patterns of coactivation of the concept notes obtained
during exploration. Activated beliefs may fail to match experienced events, which leads to
their deactivation and the learning of a new belief.

In all forms of mind-to-world intentionality, the intentional states match the word by virtue
of how they came about. There is no need for a neural representation of their condition of
satisfaction separate from the neural representation of the intentional state itself. In fact, these
states can be in error, and when that happens additional processes such as change detection
must intervene to uncover that (Johnson, Spencer, Luck, and Schöner, 2009).

5.2. World-to-mind intentions

World-to-mind intentional states are neurally instantiated by suprathreshold activation pat-
terns that drive motor behavior (intentions-in-action), generate sequences of actions (prior-
intentions), or provide goals for sequences of actions (desires). Intentions-in-action are repre-
sented by neural activation peaks in fields of movement parameters that directly drive motor
systems and bring about physical actions of the body. These peaks are thus created before the
action is initiated and must remain stable until the action has been successfully completed.
The successful termination of an intended action, its CoS, must, therefore, be represented in a
separate neural field or node. These receive subthreshold input from the neural representation
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of the intention that predicts the outcome of the action. When perceptual information matches
the prediction, perceptual input overlaps with the input from the intention field, inducing a
detection instability. The suprathreshold CoS activation inhibits the neural representation of
the intention-in-action, terminating that state in a reverse detection instability. As a result,
input to the CoS from the intentional state falls away, inducing a reverse detection instabil-
ity in the CoS neural representation. This leaves all neural representations pertaining to the
intention-in-action in a deactivated state.

Prior intentions are neurally represented in the same way but project to other prior inten-
tions or intentions-in-action. Through connectivity involving precondition nodes and compet-
itive inhibitory coupling, prior intentions generate sequences of actions. Projection onto the
neural representation of the CoS of prior intentions reflects predicted outcomes. When inputs
from other prior intentions match these predictions, the same cascade of instabilities as for
intentions-in-action occur, leading to the deactivation of the prior intention.

Desire intentional states are represented by suprathreshold activation patterns that project
onto those prior intentions and intentions-in-action that help to realize the desire. Their con-
tent specifies the goal of the ensuing world-to-mind intentions. The outcome predicted by
a desire preactivates the neural representation of its CoS, whose activation ends the desire
intentional state.

For all world-to-mind intentional states, the world matches the mental state by virtue of
how the world’s state is changed by an intentional action. This match is the condition of satis-
faction, and it must be neurally represented separately from the intentional state because it is
activated at different moments in time. In fact, all world-to-mind intentions are characterized
by the ordinal structure of their activation in which the intentional state is activated first and
remains activated for variable amounts of time until its CoS is activated, which leads to both
states becoming deactivated.

This signature time structure of world-to-mind intentional states helped us clarify that cog-
nitive processes may have the world-to-mind direction of fit even though they are not directly
motoric in nature. Visual search, cued recall, and activating a belief are examples. These pro-
cesses must bring about specific activation states in specific parts the neural dynamic architec-
ture. As the neural architecture is itself part of the world, these are world-to-mind intentions.
Note, however, that the activation states such intentions are aimed to bring about are not the
activation state of the intention itself, of course. So, there is no contradiction or circularity
here. This insight is critical to building autonomous cognitive architectures in neural process-
ing terms.

The neural dynamic architecture demonstrated in this paper was aimed to explore the reach
of these concepts. While set in a small toy world, the autonomous agent was capable of gen-
erating sequences of intentional states in both directions of fit at increasing distance from the
sensory surfaces (Fig. 1). At the lowest level, perception and motor behavior come natural
to neural dynamics. At the middle level, we showed how memory traces are acquired from
which memory states can be activated and demonstrated the capacity to generate sequences
of actions. Failures can be addressed by switching to alternate sequences. At the highest level,
we showed how knowledge can be activated to achieve the desired outcome. Knowledge took
the form of conceptual representations, which binds concepts in different roles together, albeit
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in very elementary form (see Sabinasz et al., 2024 for expansions). The autonomous acqui-
sition of such knowledge from a single experience has been documented earlier (Tekülve
& Schöner, 2020). Only the goal states of the architecture remained entirely trivial and
static.

Within the DFT framework, the chief innovations of this paper are the use of knowledge
to achieve desired outcomes and uncovering the temporal structure of the autonomous neural
processes that enable intelligent behavior. Each mental or behavioral decision emerges as
an event at a discrete time from the underlying time- and state-continuous neural dynamic
processes. This form of neural process autonomy sets the neural account presented here apart
from related efforts which we briefly review next.

5.3. Other cognitive architectures

Cognitive architectures such as ACT-R (Anderson et al., 2004), SOAR (Laird, 2012), and
others pursue similar goals by combining symbolic with subsymbolic representations, with
extension linking to sensory-motor processes as well (Trafton et al., 2013). While mapping
ACT-R modules roughly onto the brain, not all operations within this framework are consis-
tent with the principles of neural function as postulated in connectionism and in DFT (Taatgen
& Anderson, 2008). In particular, ACT-R production rules are “fired” by calling functions
to which information is passed, a core challenge in neural networks (see Richter, Lins, &
Schöner, 2021 for discussion).

The LIDA model (Franklin, Madl, D’mello, & Snaider, 2013) is aimed to overcome some
limitations of earlier cognitive architectures in symbol grounding (Harnad, 1990). The “atten-
tion phase” of processing in LIDA based on Global Workspace Theory (Baars, 1993) guides
all action and learning of the model. This could be viewed as functionally analogous to the
neural dynamic mechanism of selective attention. In fact, parts of LIDA’s cognitive cycle
have been implemented in DFT (Franklin et al., 2013) to prove neural plausibility, while other
components are still implemented within the computer metaphor using object-oriented pro-
gramming in Java. LIDA’s overall structure and its elaborate memory systems may provide a
road map for future DFT architectures. The key challenge lies in finding neurally consistent
solutions for LIDA’s numerous codelets.

DAC theory (Verschure, 2012) pursues similar goals as we do. DAC provides an overall
processing architecture that is neurally inspired and meant to organize cognition. Similar to
our psychological modes, DAC has layers that increasingly abstract from the sensory-motor
surface. Its three columns, world, self, and action, could be mapped onto different directions
of fit. Some versions of DAC have emphasized strict adherence to neural principles (Duff
& Verschure, 2010), but its more advanced variants continue to take algorithmic shortcuts
(Moulin-Frier et al., 2017).

LEABRA (O’Reilly, Hazy, & Herd, 2016) provides guidelines and principles, broadly
consistent with DFT, that constrain neural networks approaches to cognition. For instance,
LEABRA invokes inhibitory neurons to account for competitive selection, sustained activa-
tion to account for working memory, and weight-change to model long-term memory. As a
synthesis of ACT-R and LEABRA, SAL is aimed to overcome the limitations of LEABRA’s
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cognitive competences (Lebiere, O’Reilly, Jilk, Taatgen, & Anderson, 2008). Even the most
recent variants (Szabados, Herd, Vinokurov, Lebiere, & O’Reilly, 2020) retain, however, cen-
tral algorithmic processing components that are not consistent with neural principles. As a
result, none of these approaches uncover the principles and time structure of neural process-
ing implied by the two directions of fit.

VSA (Levy & Gayler, 2008; Smolensky, 1990; Schlegel, Neubert, & Protzel, 2022) pro-
vides a very different perspective on neurally based cognition. It operates with symbols, rep-
resented by high-dimensional neural activation vectors. An implementation in spiking neu-
ral networks (Eliasmith et al., 2012) has demonstrated links to sensors and motor systems.
Because the underlying principles are quite different, a detailed comparison is not easy and
we would like to postpone this for a future possible debate (see also discussion in Sabinasz
et al., 2024).

5.4. Scaling

How would a neural dynamic architecture of intentional states scale to reach more realistic
and naturalist embodied cognition? This question raises a fundamental issue. We emphasize
that the minds of humans and other animals are structured in a specific way that reflects
their evolutionary origins. That structure is also visible in the functional organization of the
brain. This is a position widely held within the research community of human cognition that
could be contrasted to more abstract characterizations of intelligence based on computational
principles such as productivity, systematicity, and compositionality (Spivey, 2023). The toy
example we used here was meant to provide a minimal version of the specific architecture of
the mind. Components of this architecture are, in fact, simplified variants of more extensive
architectures that, in some cases, have been evaluated against psychophysical and neural evi-
dence. For instance, the visual front end is a simplified version of a model of visual search and
scene memory (Buss et al., 2021; Grieben et al., 2020), the motor system a simplified version
of a general neural architecture of movement generation (Knips, Zibner, Reimann, & Schöner,
2017; Schöner, Bildheim, & Zhang, 2024; Tekülve, Fois, Sandamirskaya, & Schöner, 2019),
and the belief system makes use of a simplified variant of a neural dynamic model of con-
ceptual structure (Sabinasz et al., 2024). In this perspective, scaling the architecture amounts
to providing further neural dynamic components for competences of the same general nature
that find their natural place in the overall architecture. Least developed is the neural process
account for goals (desires). The time structure of the processes instantiating world-to-mind
intentions that we described here points to the orientation of goals toward future outcomes as a
key characteristic that may provide an entry point for a neural account, inspired, for instance,
by ideomotor theory (Herbort & Butz, 2012; Shin, Proctor, & Capaldi, 2010; Vogel-Blaschka,
Kunde, Herbort, & Scherbaum, 2024).
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Notes

1 It might have been more intuitive if the small cubes would have been paint buckets and
the tall cuboids would have been canvases. Somehow, we made the reverse choice early
in the design of the Webots simulation and then got stuck with it.

2 Source code and all parameter values are available online at https://osf.io/m38vz/?view_
only=1125aae86eeb437e9985665b693e0ae4.
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