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Abstract— We present ROBOVERINE, a neural dynamic
robotic active vision process model of selective visual attention
and scene grammar in naturalistic environments. The model
addresses significant challenges for cognitive robotic models
of visual attention: combined bottom-up salience and top-
down feature guidance, combined overt and covert attention,
coordinate transformations, two forms of inhibition of return,
finding objects outside of the camera frame, integrated space-
and object-based analysis, minimally supervised few-shot con-
tinuous online learning for recognition and guidance templates,
and autonomous switching between exploration and visual
search. Furthermore, it incorporates a neural process account of
scene grammar — prior knowledge about the relation between
objects in the scene — to reduce the search space and increase
search efficiency. The model also showcases the strength of
bridging two frameworks: Deep Neural Networks for feature
extractions and Dynamic Field Theory for cognitive operations.

I. INTRODUCTION

Most goal-oriented interactions with the environment en-
tail a preceding visual search. Effective feature guidance
[1] helps reduce the number of saccades needed to find
the target object in a scene, and the combination of overt
and covert attention shifts [2] allows us to scan complex
scenes efficiently despite the visual system’s limitations.
Natural scenes tend to be cluttered but highly structured,
and humans use their knowledge about the relation between
objects in scenes - the scene grammar [3] - to reduce
the search space. Importantly, humans are not limited to
finding objects they already know. Cognitive robotics aims
to develop autonomous agents with cognitive abilities similar
to humans (see [4] for a recent overview of the state-of-the-
art in human-inspired robotic vision). Begum and Karray [5]
created a list of issues and challenges that a cognitive model
for robot attention needs to address:

1) Combine covert and overt modes of attention.
1.1) Cope with at least four coordinate systems: world,

head, camera, and image coordinates.
1.2) Integrate space-based and object-based inhibition of

return.
1.3) Cope with objects leaving the camera frame or being

only partially visible due to head movement.
2) Integrate space- and object-based analysis.
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Fig. 1. A simplified overview of the problem (left) and the cognitive
operations needed to solve it (right).

3) Learn an object’s visual features with minimal human
supervision from different view angles.

4) Autonomous switching between exploration and visual
search based on the task.

5) Learning while working, without needing a separate
training phase (online learning).

Here, we present ROBOVERINE, a neural robotic pro-
cess model that addresses these issues (Figure 1) building
upon our previous work on human attention ([6], [7]). We
show that it can control an autonomous agent in different
simulated environments. Furthermore, we also included a
neural process account of scene grammar (see [8] for a
related approach). Interfacing the neural architecture based
on Dynamic Field Theory (DFT; [9]) with a pre-trained
headless convolutional neural network (CNN; VGG16: [10])
for feature extraction was necessary to enable interaction
with natural scenes. The interface is based on neurally plau-
sible learning and combines the two frameworks’ strengths.
DFT delivers autonomous process organization, sequence
generation, and working memory. The CNN extracts the
complex features needed for object recognition. We use the
Bienenstock-Cooper-Munro (BCM) rule [11] to learn the
mapping from the distributed representation of the CNN
feature maps to the localist representation of a 3D neural
field defined over space and visual category. This localist
representation over parafoveal space enables the cognitive
operation of attentional selection around the current fixation
point, combining overt and covert attention in the model.
Importantly, this also allows for continually learning object
recognition templates for new classes and guidance templates
that support visual search for the new classes. Such online
learning is essential for efficient human-robot interaction [5].



II. METHODS

The neural process model is based on Dynamic Field
Theory (DFT; [9]), a mathematical framework that aims to
understand how cognition emerges from neural population
activation and discrete events that arise from instabilities in
the underlying dynamics. The time-continuous evolution of
graded activation patterns, u(x, t), of a neural population,
tuned to a dimension x, is formalized as a dynamic neural
field. The activation u(x, t) changes over time t, on the time
scale τ , according to the integro-differential equation [12]:

τ u̇(x, t) =−u(x, t)+h+ s(x, t)+wξ (x, t)

+
∫

ω(x− x′) σ(u(x′, t)) dx′
(1)

As long as the activation is below the threshold of the
sigmoidal function σ(u) = 1/(1+ exp[−βu]) the system’s
attractor state is established by the stabilizing term, −u(x, t),
the negative resting level, h, and the external input, s(x, t).
Above threshold activation engages lateral interactions de-
fined by the kernel, ω(x − x′), that combines local exci-
tation and global inhibition leading to the formation of
self-stabilized supra-threshold activation peaks. Such peaks,
the units of representation in DFT, are induced when in-
creasing input pushes sub-threshold activation states through
the detection instability. Peaks disappear when decreasing
input drives them through the reverse detection instability.
The two instabilities delimit a bistable regime. Weighted
Gaussian white noise, wξ (x, t), induces fluctuations that
enable switching between stable states near instabilities.

Different dynamic regimes arise for varying kernel param-
eters. In the self-stabilized regime, peaks resist fluctuations
in input strength due to bistability. In the selective regime,
a peak can only be formed over one location, bringing
about a selection decision when multiple sites received
localized input. In the sustained activation regime, peaks
persist after removing localized input completely, a neural
implementation of working memory.

Networks of fields are build by coupling different fields,
including dimension expanding and dimension contracting
coupling patterns. Cognitive and motoric processes emerge
from such networks. Together with the dynamic instabilities,
such networks enable sequences of discrete processing steps.

III. MODEL
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Fig. 2. An overview of the neural dynamic process model.

The neural dynamic process model, depicted in a sim-
plified outline in Figure 2, autonomously controls a robot
to visually explore its environment driven by salience, and,

in the presence of a search cue, to perform active visual
search for real-world object categories in naturalistic scenes.
It keeps the location of a found target in working memory,
enabling object-oriented behavior such as grasping. Search
efficiency is increased by using the known semantic structure
of the scene, the scene grammar, to bias search toward loca-
tions that are in an appropriate spatial relation to a detected
anchor object [3]. The model will also find objects whose
location violates the expectation of the scene grammar, and
will learn new guidance and recognition templates for novel
object categories in continual few-shot online learning.

The full model shown in Figure 3 is a set of coupled
integro-differential equations, in which neural activation
evolves continuously in time. Events and transitions arise at
discrete moments in time from instabilities in the dynamics.
Various cognitive operations emerge from this neural dynam-
ics. The labels in the figure and the terms we use to describe
the operation of the model below refer to the functional
significance of time courses of activation in different sub-
networks (referenced by uppercase letters) and component
neural fields. The model was implemented and numerically
simulated in cedar [13]. The robotic agent and the simulated
environments were created and simulated using Webots [14].

A. Feed-forward feature and salience maps

The model’s bottom-up pathway simultaneously extracts
low-resolution retinal (D) and higher-resolution parafoveal
(I) features from the camera image (A) through a parallel
preattentive process.

1) Functional visual fields: Taking inspiration from the
human attentional system, we incorporated neural processes
for three types of functional visual fields (FVF) [2]: the
exploratory FVF, the attentional FVF, and the resolution
FVF. The exploratory FVF is responsible for overt attention
shifts by selecting the next fixation location in it’s retinotopic
subspace guided by low-resolution coarse feature informa-
tion. In contrast, the attentional FVF is the central parafoveal
area around the fixation point within which covert attention
shifts are possible. The resolution FVF is the area within
which highly detailed feature information can be extracted,
allowing objects to be identified covertly. For simplicity, we
assume that resolution and attention FVFs are the same in
the model.

2) Exploratory FVF feature extraction: Preattentive color
and preattentive shape are extracted from a scaled-down
version (120 x 180 pixel) of the camera image (299 x
448 pixel). Preattentive color is extracted from hue-space
(D3). Preattentive shape is extracted from the intermediate
conv 4-3 convolutional layer of the VGG16 network (D4).
Each space/feature map field (E) receives input from the
corresponding feature stack (D1,D2), and their activation is
marginalized along the feature dimension by using a center-
surround filter (H1) as the projection kernel, resulting in one
feature conspicuity map (K3) for each feature. These serve
as input to the salience map (K1) [15] of the model.

3) Attentional FVF feature extraction: From the original
camera image (299 x 448 pixels), color and visual category
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Fig. 3. The neural dynamic process model.



are extracted from the attentional FVF image (B), taken
from the center (80 x 80 pixels). Color is extracted from
hue-space (I1) and serves as input to the attentional FVF
space/color map (I2). Visual category is the result of a
learned mapping from the last convolutional layer (conv 5-3)
of the headless VGG16 CNN (I10) to the attentional FVF
space/visual category map (I12).

B. Attentional selection

Visual selective attention is foundational to flexible, goal-
oriented human behavior. In the model, all visual cognitive
processes result from attentional selection.

1) Exploratory FVF attentional selection (overt atten-
tion): The exploratory FVF selection field (O1) selects
a location to fixate next in the retinotopic space of the
exploratory FVF through biased competition [16]. It receives
an excitatory bottom-up bias from the salience map (K1), and
two excitatory top-down guidance biases from the feature
guidance spatial map (L3) and the coordinate transformed
scene guidance spatial map (V 3) fields. Through its connec-
tion pattern, the fixation node (O5) induces a peak in the
center of the exploratory FVF selection field (O1) when the
saccade CoS node (G4) signals the completion of a saccade.
This peak prevents the selection of another location until the
peak becomes de-activated by the end fixation node (O4) that
operates on a slower timescale. The inhibition of return field
(IOR; M) biases attention away from previously attended
locations, enabling sequences of selection decisions. If no
selection decision is made in the exploratory FVF selection
field (O1), during a fixed time window, the explore node
(O6) will become active and drive an exploratory saccade in
the head-centered space by enabling peak formation in the
exploratory FVF bias selection field (R2). The exploratory
FVF selection field (O1) serves as coordinate transformed
input to the exploratory FVF head-centered selection field
(R1) that drives the saccadic system by inducing a peak in
the saccade map (WM) (S1)),

2) Attentional FVF attentional selection (covert atten-
tion): The attentional FVF selection field (I8) selects a
location in the attentional FVF to be attended covertly. The
intention node (N2) and the condition of dissatisfaction node
(CoD; N1) constitute a neural oscillator [12]. The inten-
tion node (N5) homogeneously boosts the attentional FVF
selection field (I8), allowing the field to make a selection
decision. That field is homogeneously inhibited by the CoD
node (N1), destabilizing any peak that has built. This field
receives excitatory bottom-up bias input from the salience
map (K1) and excitatory top-down guidance bias from the
feature guidance spatial map (L3). Further, it receives a
spatial bias that favors the center of the attentional FVF
and the attentional FVF space/visual category bias (I7)
that increases the probability of selecting a location that is
associated with a known visual category. This bias results
from marginalizing the activation of the attentional FVF
space/visual category map (I12) along the visual category
dimension. The attention FVF IOR (I5) guides attention
away from covertly attended locations and is homogenously

inhibited at the end of a fixation. At each covertly attended
location, the attended color (I4) and visual category (I14) are
extracted through selection in the corresponding attentional
FVF space/feature selection field where input from the
corresponding attentional FVF space/feature map overlaps
with the localized input from the attentional FVF selection
field (I8).

C. Visual search

Visual search requires the neural activation in working
memory of a guidance template for the target object [1] that
biases selection through top-down feedback loops. A peak
in the target position (WM) field (Q2) terminates the visual
search.

1) Search cue: A simulated language interaction (e.g.
“Look for a cup in the kitchen”) triggers the model’s visual
search by activating a word (P4) and a scene concept node
(P13). The selective scene/anchor word/word) field (H6)
is a simplified long-time memory (LTM) representation of
learned scene/anchor word/word combinations. The same is
true for the anchor word/relation/word) field (H2). If an
association between the current scene and word exists, a
peak is formed in the anchor word (WM) field (H5), which
then becomes the new target of the current visual search
by providing input to the word field (P1) which activates
the corresponding word concept node through bidirectional
coupling. The model autonomously switches back to the
original target if no anchor object is found in the scene. If an
association between the current anchor word and word exists,
a peak is formed in the anchor relation (WM) field (H1).
An active word concept node (P4) activates the associated
visual category (P7) and color concept nodes (P8) through
bidirectional Hebbian connections. This ultimately leads to
corresponding peaks in the expected visual category (H8)
and color (H7) fields that represent the current search cue.

2) Feature matching: Matches between expected (H7,
H8) and attended (I4, I14) features are detected through
the corresponding match detection fields (N5). If all features
match the expected values, the condition of satisfaction node
(CoS; R5) [17] is activated. Depending on the state of the
anchor word (WM) (H5), the currently attended location is
committed to the anchor position (Q3) or the target position
(Q2) working memory.

3) Feature guidance: An active visual category concept
node (P7) induces a peak in the preattentive shape guid-
ance feature field (T 4) through Hebbian-learned connection
weights. The same is true for a color concept node (P8)
and the preattentive color guidance feature field (T 5) These
fields give input to the feature guidance cue fields (L1 and
L2). Peaks from at locations where this input overlaps with
the input from the corresponding space/feature map field (E1
and E3). Activation in these fields is marginalized along the
feature dimension and serves as input to the feature guidance
spatial map (L3), whose resting level is dynamically down-
regulated through inhibitory coupling.

4) Scene guidance/grammar: The model reduces the
search space by using anchor objects and their known



spatial relation to other objects in the scene. To provide
attentional bias relative to a found anchor object, the model
uses a set of coordinate transformations [18] of activation
patterns that represent operators in relational spatial language
[19]. This spatial pattern is formed in the relation/space
field (V 2) through an overlap between the anchor relation
(WM) (H1) and the synaptic relation connection patterns.
The marginalized activation along the relation dimension is
input to the scene guidance spatial map (V 3), and this field
is inhibited if an anchor object is found or after enough
time has elapsed through homogeneous inhibition from the
termination node (V 4). The position of the anchor object
(V 6) is first coordinate transformed from head-centered to
allocentric table space and then used to transform the scene
guidance peak into allocentric space. The allocentric scene
guidance peak is then transformed back to head-centered and
retinotopic space to serve as input bias to the corresponding
exploratory FVF selection fields (O1 and R1).

D. Learning

Autonomous learning was implemented respecting neural
plausibility. All non-fixed synaptic weights in the model are
adapted by different variants of the Hebbian learning rule
during learning. Since the model learns online and contin-
uously, learning periods must be restricted to meaningful
events. Learning is initiated, therefore, by a learn boost (U1)
that triggers an active transient activation pattern (U2,U3)
[20]. A single such transient is sufficient to learn a new
object class. The object is moved around in the attentional
FVF during learning. During the transient learning phase, all
plastic connections in the model adapt in parallel according
to their respective update rules.

1) Learning of an object classification template: Complex
feature maps m f (where f is the feature index) are extracted
from the attentional FVF image (B) through a pre-trained
headless VGG16 network (I10). The object classification
template consists of connection weights, wmf,uafsv , that per-
form the transformation from the distributed representation
in the feature maps, m f , to the localist representation in
the attentional FVF space/visual category map, (I12) (uafsv,
J5). This mapping preserves spatial information to some
degree, enabling the model to classify multiple objects in
the attentional FVF through covert attention shifts similar
as in human attention.

These connections weights are updated according to a
dynamic version of the BCM ([11]) rule:

τwẇmf,uafsv(x, t) = η ·σ(ulearn(t)) · y · (y−Θ) · mf(x1,x2, t)
Θ

y = σ(uafsv(x, t))

τΘΘ̇ = (y2 −Θ),
(2)

where η is the learning rate and ulearn is the transient activa-
tion of the learn node (U2). Before learning starts, the visual
category field (P9) provides input to the attentional FVF
space/visual category map (I12) through the visual category
gate field (I15). This enables the association between a visual

category concept node (P7) and the object classification
template. At the same time, the learn node (U2) down-
regulates through homogeneous inhibition the resting level of
the attentional FVF space/visual category map (I12). After
learning, the input suafsv to the attentional FVF space/visual
category map (I12) field is:

suafsv(x, t) =
F−1

∑
f=0

mf(x1,x2, t) ·wmf,uafsv(x, t). (3)

2) Learning of the guidance templates: The synaptic
weight pattern, wpsgfvc , between visual category concept
nodes (uvc, P7) and the preattentive shape guidance feature
field (upsgf, T 4) is updated according to a dynamic version
of the Hebbian learning rule [21]:

τẇpsgfvc(x, t) = η ·σ(ulearn(t)) ·σ(uvc(t))

·(σ(upsgf(x, t))−wpsgfvc(x, t))
(4)

The synaptic weight pattern, wpcgfc , between color concept
nodes (uc, P7) and the preattentive color guidance feature
field (upcgf, T 5) is updated according to an analogous rule:

τẇpcgfc(x, t) = η ·σ(ulearn(t)) ·σ(uc(t))

·(σ(upcgf(x, t))−wpcgfc(x, t))
(5)

To enable association, the currently attended retinotopic
features (J2 and J4) are gated during learning as inputs to
the corresponding guidance feature field (T 4 and T 5).

3) Learning of word concepts: Word concepts are learned
through co-activation. For this purpose, word input has to
be provided during learning. The connection strength, wwvc ,
between a word concept node (uw, P4) and a visual category
concept node (uvc, P7) is updated according the dynamic
Hebbioan learning rule:

τẇwvc(t) = η ·σ(ulearn(t)) ·σ(uw(t))

·(σ(uvc(t))−wwvc(t))
(6)

The connection strength, wwc , between a word concept node
(uw, P4) and a color concept node (uc, P8) is updated
according an analogous rule:

τẇwc(t) = η ·σ(ulearn(t)) ·σ(uw(t))

·(σ(uc(t))−wwc(t))
(7)

E. Saccade and movement generation

The formation of a self-sustained peak in the Saccade
Map (WM) field (S1) initiates a saccade towards the selected
location. This peak inhibits the Exploratory FVF Selection
and Exploratory FVF Head-Centered Selection fields (O1,
R1), thus preventing new selection decisions while a saccade
is ongoing. The Target Saccade field (G6) transmits the
selected position to the simulated robot (Target Camera Fix-
ation (F4)). The Saccade CoS node (G4) signals a successful
saccade once the Saccade Overlap field (G5) detects the
overlap of the Current Camera Fixation (F3) and the Target
Saccade field. This inhibits the Saccade Map (WM) field
and activates the Fixation node (O5), thereby generating a
fixation peak.



The Arm Sequence (W ) sub-network directs the robot arm
to grab the target object. It can be seen as a placeholder for
more sophisticated behavioral control structures [22] and is
intended to show that information about a searched object
can be used for further object-oriented behavior. The sub-
network implements a sequence of reach and open/close
movements. Each movement primitive is controlled by a pair
of Intention (I) and Condition of Satisfaction (CoS) nodes
that are organized into a sequence using Precondition (P)
nodes [23]. Each Intention passes a movement command
to the robot controller via the EEF Target Position field
(G3) and open/close nodes (G8, G10). The Reach CoS and
open/close CoS nodes (G1, G7, G9) signal the completion of
a movement and activate the corresponding CoS node (W )
of the behavioral sequence. Once the movement sequence is
complete, the Behavior CoS node (W7) resets the model’s
memory, at which point a new word can be given as input.

IV. RESULTS

To showcase the agent’s capabilities, we taught it to iden-
tify four object categories: plate, cup, telephone, and banana.
Subsequently, we created two environments substantially
distinct from each other and from the environment in which
the agent learned the objects. Additionally, we constructed
a basic scene grammar with two rules: the cup is to the
right of the plate, and the banana is below the telephone.
In the demonstrations shown here, the agent operates in the
identity mode, in which it looks for the object that matches
the one presented during the learning phase (for example,
after learning “cup”, it will look for an orange-colored object
with a cup shape). The plots show snap shots of activation
in selected dynamic neural fields. Complete activation time
courses for these fields are available in the supplementary
video.

A. Environment 1: Finding the cup and the banana

In the first task (Figure 4), we demonstrate that the agent
can use feature and scene guidance to find learned objects in
a complex simulated environment. At time 0.04s, the agent
receives the command to find the cup (blue dotted line in
the nodes plot). The cup word node becomes active first,
and shortly after, a switch occurs, and the plate word node
(the anchor object for the cup) becomes active. At time 0.5s,
the feature guidance highlights the plate in the scene, and
this location is selected in the exploratory FVF as a target
for the next saccade. At 0.58s, the plate is covertly attended
and recognized in the attentional FVF, which causes a switch
back to the cup word node being active, the activation of
the cup feature guidance, and a relational bias centered on
the found plate location as input to the exploratory FVF. At
0.88s, the location of the cup is selected as the location for
the next saccade because its feature match and the scene
guidance having the highest activation. At 0.96s, the cup
was covertly attended to and recognized after a saccade to
its location, and at 1.25s, the agent grasped the found cup.
The second half of the plot shows the same for the banana.

It is important to note that this demonstrates how the agent
can process new commands during live operation.

B. Environment 2: Finding the cup and the banana

The second demonstration (Figure 5) demonstrates that the
agent can perform the same task as in the first demonstration
despite the environment being significantly different. Since
the time course are similar to those in the first demonstration,
we only highlight noteworthy differences. At time 1.25s, we
see the telephone, the banana’s anchor object, outside the
exploratory FVF image. As a result, the agent autonomously
performs salience-driven exploratory saccades until the tele-
phone becomes visible again. Through feature guidance, its
location is selected as the target of the next saccade at time
2.7s. At 3.1s, the banana feature guidance failed to highlight
the existing banana, so that there is no overlap between the
banana and the relational bias. As a result, the next saccade
does not fixate on the banana directly but on a location near
it. The agent is still able to attend and recognize the banana
covertly in the attentional FVF at time 3.32s. Without the
relation guidance from the scene grammar, the agent would
have needed more saccades to find the banana.

C. Environment 1: Finding the misplaced banana

In the third demonstration (Figure 6), we show that the
agent can find the banana although it is not at the expected
location. Specifically, at time 1.33s, the relational bias has
vanished. The following saccade location is selected through
a combination of feature guidance, salience, and IOR that
favors the location of the banana.

V. DISCUSSION

We presented ROBOVERINE, a neural dynamic robotic
process model that performs active guided visual search in
naturalistic environments. It combines bottom-up salience
and top-down feature guidance and incorporates overt and
covert attention, coordinate transformations, and two types
of inhibition of return. It performs integrated space- and
object-based analysis and can learn new object classes with
minimal supervision. Additionally, it autonomously switches
between exploration and visual search and incorporates a
neural process account of scene grammar. The model com-
bines DNNs for feature extractions and DFT for cogni-
tive operations. DNNs extract relevant features from the
visual field, while DFT provides a robust framework for
cognitive operations like attentional selection, autonomous
learning, decision-making, autonomous process organization,
sequence generation, and working memory. Our model has
significant advantages over an end-to-end learned DNN in
that it operates in a closed behavioral loop. The model’s
stable memory representations enable goal-oriented actions,
while its adaptive recurrent top-down feedback allows top-
down inference processes to switch between modes flexibly
without requiring specific algorithms. Cognitive operations,
like selection, require localist representations along the fea-
ture dimension. Attentional selection, therefore, requires a
localist anatomically bound representation of features over



Fig. 4. Demonstration of the agent looking for the cup and the banana in the first kitchen (see text for an explanation).

Fig. 5. Demonstration of the agent looking for the cup and the banana in the second kitchen (see text for an explanation)

space. Neural populations in the inferior temporal cortex
(IT) represent object identity over space [24]. We suggested
how to learn a mapping from the distributed feature rep-
resentations of a CNN to a localist 3D neural field that
enabled covert attentional selection and object recognition
in the attentional FVF. For demonstration purposes, we
only learned a small number of object categories, but the
model does not have constraints that would prevent it from
scaling to a large number of categories. The model aims
to provide a pervasively neural process account of robotic
active vision inspired by human visual attention. Therefore,

its performance is hard to access using classical benchmarks
since they do not cover its main innovations. While visual
attention has been actively studied for many decades in the
robotics context, a strong focus was on the bottom-up path
of attention [25], [26]. We addressed some of the major
active challenges in this research area [26], [5] by integrat-
ing bottom-up salience, task-driven top-down attention, and
covert and overt attention in one time-continuous model.
Future research involves optimizing the model’s execution
speed for real-time performance. This could be achieved by
using optimized hardware or by replacing parts of the model



Fig. 6. Demonstration of the agent finding the misplaced banana in the first kitchen (see text for an explanation).

with analog algorithmic shortcuts.
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[8] A. Aydemir, K. Sjöö, J. Folkesson, A. Pronobis, and P. Jensfelt,
“Search in the real world: Active visual object search based on spatial
relations,” in 2011 IEEE International Conference on Robotics and
Automation. IEEE, 2011, pp. 2818–2824.
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for action selection and behavioral organization inspired by human
cognition,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, 2012, pp. 2457–2464.

[24] J. J. DiCarlo, D. Zoccolan, and N. C. Rust, “How does the brain solve
visual object recognition?” Neuron, vol. 73, no. 3, pp. 415–434, 2012.

[25] S. Frintrop, E. Rome, and H. I. Christensen, “Computational visual
attention systems and their cognitive foundations: A survey,” ACM
Transactions on Applied Perception (TAP), vol. 7, no. 1, pp. 1–39,
2010.

[26] A. Borji and L. Itti, “State-of-the-art in visual attention modeling,”
IEEE transactions on pattern analysis and machine intelligence,
vol. 35, no. 1, pp. 185–207, 2012.


