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Integration and Selection in Multidimensional 
Dynamic Fields
SEB A S T I A N SC HNEEGA NS,  JONA S  L INS ,  A ND JOHN P.  SPE NC E R

This chapter opens Part  2 of the book, which 
will deal with the integration of lower-level 

perception-action with higher-level cognition. We 
begin this chapter with a second look at lower-level 
visual perception. Recall that Chapters  1–3 intro-
duced several aspects of the neural dynamics of 
early vision. Here, we’ll expand on these concepts, 
introducing a new type of field—multidimensional 
dynamic fields. These fields have some concrete 
advantages. For instance, they enable the fast, f lex-
ible integration of colors and spatial positions, lead-
ing to a neural population response—a peak—that 
indicates, for example, that the red cup is on the 
left side of the visual field. There are also some 
downsides, however:  Multidimensional fields are 
computationally costly; a full multidimensional 
representation of the visual world would require 
more neurons than are present in the human brain.

This, in part, motivates a discussion of the f lip 
side to real-time integration—selection. Here, we 
will discuss the advantages of having a system that 
can selectively “attend” to particular aspects of 
information captured in a multidimensional field. 
One advantage is that information can be repre-
sented in a simpler, less neurally costly format such 
as the one-dimensional fields used in Chapters 1–4. 
Selection also conveys advantages for behavior. For 
instance, after 10 minutes of cooking dinner in the 
kitchen, we might not really care that the red cup was 
on the left side of the visual field. By then, our eyes, 
head, and body have moved. Instead, we might just 
want to remember that the red cup was somewhere 
on the counter and then engage in a visual search for 
that item. This example nicely illustrates the simple 
forms of “cognition” that we’ll tackle here:  main-
taining a perceptual goal—find the red object—in 
a self-sustaining or working memory state in a way 
that can inf luence early visual processing.

This, of course, is a pretty modest form of cog-
nition. More sophisticated forms of dynamic think-
ing will emerge across the remaining chapters in 
Part 2. Critically, however, the insights about inte-
gration and selection discussed here set the stage 
for the discussion of higher-level cognition in sub-
sequent chapters.

N E U ROP H Y SIOL O G Y 
OF   H IG H E R-DI M E NSIONA L 
R E P R E SE N TAT IONS
In Chapter  2, we introduced the concept of 
dynamic fields (DFs) using examples that spanned 
different spaces, including location, direction, 
and amplitude. Many of these examples involved 
spaces that span multiple dimensions, such as the 
visual space that describes two-dimensional posi-
tions on the retina. So far, however, we have only 
treated the mathematics and dynamical properties 
of one-dimensional DFs. Now we will extend this 
discussion to multidimensional fields. The space 
spanned by a higher-dimensional representation 
may be composed of multiple dimensions of the 
same type, as in the case of a two-dimensional rep-
resentation of spatial location, or the representation 
may combine spaces with qualitatively different 
features, such as a location dimension and a metric 
feature like edge orientation or hue value. For both 
types of representations, numerous examples can 
be found in neural populations in the brain, ref lect-
ing the many multidimensional perceptual and 
motor spaces that are relevant for the behavior of an 
organism.

An obvious example for a feature space with mul-
tiple qualitatively equal dimensions is physical space. 
While physical space itself is three-dimensional, we 
typically perceive spatial aspects of the environ-
ment via two-dimensional sensory surfaces, such as 
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the body surface with touch receptors in the skin, 
or the retinas in the eyes. Correspondingly, we 
find neural population code representations that 
span the two-dimensional space of locations on 
the body surface or two-dimensional visual space. 
An instance of the latter was already presented in 
Chapter  3, in the form of neural populations in 
the superior colliculus, which are involved in the 
planning of saccadic eye movements. In the neu-
ral population forming the superficial layer of the 
superior colliculus, each neuron has a localized 
receptive field in retinal visual space, and its activ-
ity ref lects the presence of salient visual stimuli at 
the corresponding visual location. The neurons 
of this population taken together cover the whole 
visual space with their receptive fields and provide 
a map of salient stimulus locations. The population 
activity can therefore most appropriately be mod-
eled by a two-dimensional DF spanning the visual 
space. This has been employed to model neural 
activity in the superior colliculus during saccade 
preparation by Marino, Trappenberg, Dorris, and 
Munoz (2012).

Many more neural representations of visual 
space exist throughout the visual-processing hier-
archy in the cortex, beginning with the primary 
visual cortex. Importantly, most of these repre-
sentations are not purely spatial, but encode addi-
tional visual features, such as the orientation of 
edges in the visual image, movement directions, 
spatial frequency of visual patterns, and color. One 
of the earliest probes of visual response properties 
in primary visual cortex was conducted by Hubel 
and Wiesel (1959). They found that many neurons, 
termed simple cells, showed a pronounced orienta-
tion tuning within their spatial receptive fields. 
Each such neuron receives (indirect) synaptic 
input from a small patch of the retina and, due to 
the specific synaptic connectivity pattern, shows 
high activity only if the visual image in this region 
of the retina contains an edge with a particular ori-
entation. The whole population of neurons covers 
all orientations at all possible retinal locations with 
their tuning curves (Blasdel, 1992)  and forms the 
basis for the perception of shape and motion. The 
feature space covered by this neural population is 
three-dimensional, spanned by two dimensions 
of visual space and one orientation dimension. 
Neurons can be effectively positioned within this 
cube based on their orientation tuning—which 
orientation they prefer—and their spatial tuning or 
receptive field—the region in visual space within 
which they respond to stimulation.

Similar feature maps exist for other visual fea-
tures, including spatial frequency (Issa, Trepel, &  
Stryker, 2000), movement direction, color 
(Livingstone & Hubel, 1984b), and ocular domi-
nance (which is relevant for stereo vision; Blasdel & 
Salama, 1986). All of these neural populations form 
representations over a space spanned by two spa-
tial dimensions and at least one feature dimension. 
To capture the activity of these neural population 
with a DF model, we can define a field as an acti-
vation distribution over this three-dimensional (or 
higher-dimensional) space. We will use the visual 
representations over multiple spatial and feature 
dimensions in the early visual cortex as a central 
example in this chapter, although we will simplify 
the spatial aspects of these representations to make 
it easier to visualize the field dynamics.

Before moving to the dynamics of multidimen-
sional fields, a few comments are in order. First, 
it is important to stress the difference between 
the functional dimensionality of a representa-
tion as captured in, say, a three-dimensional DF, 
and the anatomical layout of neurons in cortex. 
Anatomically, the neurons forming cortical rep-
resentations are necessarily arranged on the 
two-dimensional cortical surface (note that sub-
cortical structures may have different anatomi-
cal layouts). The feature maps in the early visual 
cortex, for instance, form a complex, interleaved 
pattern on the cortical surface, and a great deal of 
research is aimed at investigating the anatomical 
layout of such maps (Hübener, Shoham, Grinvald, 
& Bonhoeffer, 1997; Swindale, Shoham, Grinvald, 
Bonhoeffer, & Hübener, 2000). We entirely disre-
gard this anatomical layout and only consider the 
functional dimensionality of a representation. This 
is motivated by a central goal—to bridge between 
the functional properties of neural populations in 
the brain and the dynamics of behavior. We dis-
cussed these issues extensively in Chapter  3 with 
the distribution of population activation (DPA) 
approach. Recall that the DPA approach was able 
to capture neural population dynamics within sen-
sory and motor cortex despite the fact that these 
cortical areas have radically different anatomi-
cal layouts (with a topographical organization in 
visual cortex and a non-topographical anatomical 
layout in motor cortex). It is important to keep this 
emphasis on functional topography in mind.

Another key issue that arises with multidi-
mensional fields is how one knows “the functional 
dimensionality” of a representation. Knowing this 
amounts, in part, to knowing which dimensions are 
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relevant for a given type of behavior. The neurophys-
iological experiments just described approached 
this by varying particular perceptual dimensions 
(orientation, spatial location) and asking which 
dimensions affect neural responses. Similarly, 
behavioral researchers might probe this ques-
tion by varying particular perceptual dimensions 
(color, spatial location) and asking which dimen-
sions affect behavioral responses such as reaction 
times and accuracy. A  central characteristic of a 
multidimensional representation is that neural or 
behavioral responses systematically vary across the 
space of possible manipulations. For instance, neu-
rons in visual cortex are responsive to variations in 
both orientation and spatial position and these neu-
ral responses capture all possible orientation–space 
combinations. This is qualitatively different from 
an assembly of neurons in which one subgroup 
changes its response depending on stimulus loca-
tion, and another, separate group responds selec-
tively to certain orientations.

As a final remark, it is worth pointing out 
that such multidimensional neural representa-
tions are costly, much more so than separate 
low-dimensional representations. This applies 

both to the computational model and to biologi-
cal neural systems. Assume, for instance, that we 
want to form a population code representation for 
a five-dimensional space. If we want to sample the 
space along each dimension homogeneously with 
100 neurons, the full representation would require 
a total of 10 billion (1005) neurons—compared 
to just 500 neurons to sample each dimension 
individually. Thus, it is necessary that the neural 
system is sparing in its use of multidimensional 
representations. As we will see in the remainder 
of this chapter, a seemingly high-dimensional rep-
resentation can be achieved by coupling multiple, 
lower-dimensional fields together.

T H E  M AT H E M AT IC S 
A N D  DY NA M IC S  OF 
H IG H E R-DI M E NSIONA L   F I E L D S
Mathematically, the extension of a DF to more 
than one dimension is straightforward (see Box 5.1 
for a formal description). Let’s first look at an 
example with two dimensions of the same type, 
like a two-dimensional spatial field. In this case, 
an activation value is assigned to every point in 
this two-dimensional space, such that we obtain 

BOX 5.1  LATERAL INTERACTIONS IN MULTIDIMENSIONAL FIELDS

The general formulation for the differential equation of a DF over a multidimensional space F 
is as follows:

 τ !u u h s k g u d
F

x x x x x x x( ) = − ( ) + + ( ) + −( ) ( )( )′ ′∫ ′

It has the same form as for the one-dimensional field, but the position in the field is now 
described by a vector, x ∈F. If we break up this vector, we can describe the activation of a 
two-dimensional field as a function of two scalar parameters, x and y. This yields a field equa-
tion of the form

τ !u x y u x y h s x y k x x y g u x y dx dy, , , , ’, ’( ) = − ( ) + + ( ) + − −( ) ( )( )′ ′ ′ ′∫∫ y

A typical lateral interaction kernel (with a Mexican-hat shape) in two dimensions can be 
described as a difference of two Gaussians, a narrow excitatory component and a wider inhibi-
tory component, with an optional global inhibition term:
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a two-dimensional activation distribution (see 
Figure 5.1). The field equation now specifies the rate 
of change of activation within this two-dimensional 
space. As before, changes in activation are gov-
erned, in part, by an interaction function which 
specifies how local and far-away neighbors inf lu-
ence one another. Critically, the interactions now 
have to be extended to two dimensions. For two 
qualitatively similar dimensions (like two spa-
tial dimensions) that share the same metrics, the 
interaction strength can be defined directly as a 
function of distance in the two-dimensional space. 
Analogous to the one-dimensional case, a typical 
kernel may take the form of a two-dimensional dif-
ference of Gaussians (with a “Mexican hat” shape), 
creating excitation over short distances and inhi-
bition for longer distances. To compute the effect 
of these interactions, the interaction kernel is now 
convolved along both dimensions with the field 
output (the sigmoid function of the activation value 
at every point in the field). This is then added to 
the resting level, stimulus inputs, and the current 
pattern of activation to determine the evolution of 
activation through time.

Multidimensional fields support the same stable 
states and instabilities between them as described 
in Chapters 1–4, provided that the interaction ker-
nels are set up in an analogous fashion (with local 
excitation and surround inhibition, e.g., as differ-
ences of Gaussians). In particular, the interactions 
promote the formation of localized peaks of acti-
vation in the multidimensional space. A detection 
decision occurs when a peak forms in response to 
external input, and bistability can be observed when 
the input strength is subsequently decreased. For 
sufficiently strong interactions, peaks can become 
self-sustained. Moreover, strong long-range inhibi-
tion can generate a selection behavior in which acti-
vated regions compete with each other and a single 
peak forms in response to multiple localized inputs. 
And with localized excitatory and inhibitory inter-
actions, multiple peaks can form and, under some 
conditions, be self-sustained in the absence of 
input. There are some additional stable states pos-
sible in multidimensional fields that do not occur 
in one-dimensional fields (see, e.g., Owen, Laing, & 
Coombes 2007), but generally these do not play a 
role in DF models so we will not discuss them here.

Here, cexc  is the strength of the lateral excitation, and σx,exc and σy,exc are the width param-
eters along each dimension. Remember that these width parameters may be chosen indepen-
dently of each other—the interactions may be broad along one dimension, but sharp along the 
other. The parameters cinh, σx, ,inh  and σy,inh 

analogously describe the inhibitory Gaussian compo-
nent, and cglob is the strength of global inhibition.

If the field is defined over two qualitatively equal dimensions, as in a representation of 
two-dimensional physical space, the interaction kernel can be simplified to the form
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Here, the same width parameters σexc and σinh are used along both dimensions.
The external input s(x, y) for such a field can in the simplest case be specified using two-

dimensional Gaussian patterns. For a single localized stimulus at a location [ , ],p px y  the input 
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The situation is slightly different for multidi-
mensional fields with qualitatively different dimen-
sions. Let’s take as an example a field that spans a 
spatial dimension along one axis and the angular 
space of visual edge orientation on the second axis 
(yielding a simplified model of the orientation rep-
resentation in early visual cortex). Since a distance 
in physical space cannot directly be translated into 
a distance in the space of edge orientations, there is 
no predefined metric in the combined field that we 
can use to specify a distance-based interaction ker-
nel. Mathematically, this is a rather trivial issue. We 
can define any metric for the combined space we 
like. We can do so implicitly simply by specifying a 
two-dimensional interaction kernel, for instance, a 
Gaussian with interaction widths defined for both 
dimensions (see Box 5.1).

However, we need to consider what the mean-
ing of this metric is. In a nutshell, it specifies which 
points in the combined space should be consid-
ered similar (and thus have excitatory connec-
tions between them in the DF model) and which 
considered dissimilar (and have inhibitory con-
nections between them). In particular, it defines 
how much the distance within one dimension 
(such as spatial position) affects similarity com-
pared to the distance along the other dimension 
(such as orientation). How do we choose a metric 
that is appropriate for a specific DF model? If we 
want to simulate a specific neural population and 
sufficient neural data are available, we can base the 

metric on neural tuning curves or the pattern of 
lateral connections within the neural population. 
Alternatively, we can choose a metric based on 
functional considerations. It is important to note 
here that the metric relationship doesn’t have to be 
the same for different DFs defined over the same 
combined feature spaces. For example, depending 
on the functional role of a field or the properties of 
a modeled neural population, it may be appropri-
ate for one field to have broad spatial interactions 
combined with sharp interactions for the orienta-
tion dimension, and vice versa for another field. In 
practice, the critical point is that the specific form 
of the interactions across each dimension leads to 
behavioral and neural signatures that are, in prin-
ciple, observable. Thus, even in fields with quali-
tatively different dimensions where the metrics 
can have an arbitrary feel, this is ultimately not the 
case once the mapping to the brain and behavior 
are considered.

Fields that span more than two dimensions 
can be formed in an analogous fashion:  The field 
is defined as an activation distribution over the 
higher-dimensional space, an interaction kernel in 
the same space is defined, and interactions are com-
puted as the multidimensional convolution of the 
kernel with the gated field output. The number of 
possible dimensions is only limited by the increas-
ing computational load and by considerations of the 
neural plausibility of population representations 
over very high-dimensional spaces.

FIGURE 5.1: Two-dimensional field and interaction kernel. (a) A dynamic neural field defined over two-dimensional 
visual space is shown. Activation for each field position is color coded, with dark blue being lowest and red, highest 
activation. Two stimuli in the visual scene provide localized input to the field, creating activation peaks surrounded by 
inhibition. (b) A difference-of-Gaussians kernel over two-dimensional space. This symmetrical kernel function creates 
excitation over short distances and surround inhibition over longer distances.



126 I N T EGR AT I NG  PERCEP T ION-ACT ION  W IT H  COGN IT ION

R E A L -T I M E  I N T E G R AT ION 
A N D  SE L E C T ION  I N 
DY NA M IC   F I E L D S
In this section, we explore the functional role of 
multidimensional DFs using feature maps in early 
visual processing as examples. For now, we only 
consider a single visual feature, namely color. More 
precisely, we represent color through an activation 
distribution over the space of hue values (see, e.g., 
Wachtler, Sejnowski, & Albright, 2003, for the neu-
ral representation of color in early visual cortex). 
A full DF model of the feature maps in early visual 
cortex would then span two spatial dimensions 
and this hue dimension. While we do employ such 
three-dimensional DFs in both behavioral models 
and robotic architectures (see Chapters  7 and 9), 
here we simplify the model by considering only 
one spatial dimension. In particular, we assume 
that all stimuli are presented along a horizontal 
line and we can, therefore, ignore the vertical posi-
tion. The resulting two-dimensional field (over one 
horizontal spatial dimension and one color dimen-
sion) retains all the functional properties of the full 
model but allows an easier description and illustra-
tion of activation patterns.

As a convention for the depiction of this field,  
we display the spatial dimension on the x-axis with  
the color (hue) dimension on the y-axis (Figure 5.2). 
This field receives external input—visual 
input on the retina combined with early visual 
processing—that is localized along both axes. The 
presentation of a green spot of light in the left half 
of the visual field in Figure 5.2, for instance, cre-
ates an input localized in the left part of the field 
with a vertical position that ref lects the hue value 
“green.” If this input is strong enough, it creates 
a localized activation peak that is stabilized by 
lateral interactions. Given that this field ref lects 
processing in early visual cortex, we do not use 
strong neural interactions with global competition. 
Consequently, if a second stimulus is presented—a 
blue spot of light on the right side of the visual field 
(see Figure 5.2)—it produces another localized 
activation peak that is separated from the first one 
both along the spatial and the color dimension. 
When a stimulus is turned off, the corresponding 
activation peak goes through the forgetting insta-
bility and returns to the resting state.

We now add two one-dimensional fields to this 
system. The first is a purely spatial representation, 

FIGURE 5.2: Read-out from space-color field to separate one-dimensional fields. The two-dimensional field is defined 
over the combined space of color (hue value, vertical axis) and horizontal spatial location (horizontal axis). It receives 
localized visual inputs that ref lect the combination of color and location for each stimulus. These stimulus features can 
be read out into separate one-dimensional fields for color and spatial location, shown aligned with the corresponding axis 
of the two-dimensional field. The read-out is performed by integrating the field output over the disregarded dimension.
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spanning only the spatial dimension from the 
two-dimensional field, and the other is a color rep-
resentations that spans the dimension of hue values 
(Figure 5.2). In the illustrations, the feature axes of 
these two fields are aligned with the correspond-
ing axes of the two-dimensional field such that the 
effects of projections between the two fields can be 
seen more clearly.

We will assume here that only the two-  
dimensional field receives direct visual input. This 
ref lects the situation in the nervous system. The 
earliest visual representations in the cortex are spe-
cific to both surface features and their locations. 
As described earlier, they are composed of neurons 
that act as localized detectors for simple features 
and show high activity if, for example, a certain ori-
entation or a certain color is present at a specific 
location in the visual image. Representations like 
the one-dimensional color field instead ref lect the 
presence of a color in the visual image independent 
of its location and can be seen as a higher level of 
abstraction. Accordingly, the one-dimensional 
fields in this architecture receive their input from 
the two-dimensional field. As shown in Figure 5.2, 

these one-dimensional fields enable us to “read 
out” the positions and colors of all stimuli in the 
scene. The (horizontal) positions of all stimuli are 
given by the peak locations in the one-dimensional 
spatial field, while the colors of the stimuli are 
given by the peak locations in the one-dimensional 
color field.

The basic operation that enables this form of 
“read-out” is to integrate (i.e., sum up) the output 
over the disregarded dimension (see Box 5.2 for 
a formal description of this operation). That is, 
to extract the spatial locations of all stimuli, we 
integrate the output of the two-dimensional field 
over the color dimension. The result is close to 
zero for all spatial locations that do not contain 
any peaks, and significantly different from zero 
only around the peak positions. This integrated 
output provides the input to the one-dimensional 
spatial field. It is, however, not fed in directly. 
Rather, this input is first smoothed with another 
Gaussian kernel, ref lecting our assumption 
that projections are not point-to-point but are 
smoothed by the synaptic spread found in neu-
ral populations. The input strength is also scaled 

BOX 5.2  DYNAMIC FIELD ARCHITECTURE FOR SPACE-FEATURE 
INTEGRATION

The basic architecture for the integration of space and surface features described in this chap-
ter consists of three fields:  the two-dimensional visual sensory field, u x yvis , ,( )  defined over 
one spatial and one feature dimension; the one-dimensional spatial field, u xspt ( );  and the one-
dimensional color field, u ycol ( ). For the projection from the visual sensory field to either the 
spatial or the color field (the “read-out”), we need to integrate the field output over the disre-
garded dimension. The integrated output is then convolved with a one-dimensional Gaussian 
interaction kernel. For the spatial field, this yields the field equation

τ !u x u x h s x k x x g u xspt spt spt spt spt,spt spt( ) = − ( ) + + ( ) + −( ) ( )(′ ′∫ )) + −( ) ( )( ) ′ ′ ′ ′∫ ∫dx k x x g u x y dy dxspt,vis vis ,

The last term in this equation describes the input from the visual sensory field. The inner 
integral computes the visual sensory field’s output for one spatial position, integrated over 
all feature values. The outer integral then describes the convolution with the interaction ker-
nel kspt,vis  (the index here specifies that this kernel mediates the projection from the visual 
field to the spatial field). Analogously, the field equation for the color field reads

τ !u y u y h s y k y y g u ycol col col col col,col col( ) = − ( ) + + ( ) + −( ) ( )(′∫ ′ )) + −( ) ( )( ) ′ ′∫ ∫dy k y y g u x y dx dycol,vis vis , ′ ′

Here, the output of the visual sensory field is integrated over the spatial dimension (inner 
integral in the last term of the equation), and the result is convolved with the Gaussian interac-
tion kernel kcol,vis  along the color dimension.
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in such a way that the state of the spatial field 
is not completely dictated by the input. This 
allows modulations of, for instance, the resting 
level in the spatial field to impact whether this 
field builds one peak or multiple peaks from the 
input it receives. The color information can be 
extracted from the two-dimensional field in an 
analogous fashion by integrating the field output 
over the spatial dimension. This summed output 
is likewise smoothed and scaled and fed as input 
into the one-dimensional color field.

Let’s take a look at the resulting representation 
in the complete system (Figure 5.2). If the visual 
stimulus consists of the green point of light on the 
left and the blue point of light on the right, we have 
two localized peaks in the two-dimensional field. 
There are likewise two activation peaks in each of 
the one-dimensional fields. The spatial field has one 
peak on the left and one on the right, ref lecting the 
stimulus positions; the color field has one peak at the 
hue value for “green” and one peak at the hue value 
for “blue.” At this level of description, then, the two 
one-dimensional fields ref lect the same spatial and 
color values represented in the two-dimensional 
field, and they do so in a much more compact form. 
Assume that in the DF model we sampled each 
dimension with 100 discrete nodes. In this case, the 
two one-dimensional fields can be modeled with a 
total of 200 nodes, while the single two-dimensional 
field requires 100 100 =10,000×  nodes to sample 
with the same resolution.

So what is the advantage of having the 
two-dimensional field, besides the fact that it may 
more accurately ref lect the actual neural represen-
tation in the visual cortex? One key piece of infor-
mation that is lost in the one-dimensional fields is 
the integration of colors and space—the particular 

combinations or “bindings” of spatial and color 
values. Concretely, with only the information from 
the one-dimensional fields, one can tell that there 
is a blue and a green item, and that one item is on 
the left and one on the right. One cannot tell, how-
ever, whether the green item is on the left or on 
the right. To show this, imagine that the two items 
in Figure 5.2 switched their locations. Now the 
peaks in the two-dimensional field will ref lect the 
change as both activation peaks move to previously 
unoccupied locations. The activation patterns 
in the one-dimensional fields, however, remain 
unchanged—there is still a blue and a green item 
in the scene, and the same two spatial locations are 
occupied.

Knowing the locations of specific features and, 
likewise, the conjunction between features is criti-
cal for many aspects of goal-directed action. If you 
want to reach for an apple, for instance, it is not 
sufficient to know that there is a red item in the 
visual scene along with a blue and yellow one, and 
that one of them is to the right, one in the middle, 
and one to the left. You have to know which of the 
items actually is the red one to make the correct 
movement. This requires the real-time integra-
tion of color and spatial position captured by the 
two-dimensional field.

On the other hand, behaviors do not always 
depend on fully “bound” information; sometimes 
only a subset of the possible perceptual dimensions 
is relevant. Once the right target is selected, for 
example, the neural system that drives the actual 
planning and control of the reach movement does 
not need to know that the item is red. It is, therefore, 
desirable to have a purely spatial representation to 
stabilize this aspect of behavior, because reach-
ing behaviors are invariant with respect to color. 

The visual sensory field in turn receives ridge inputs from the spatial field and the color 
field, which are also smoothed with Gaussian interaction kernel. These ridges can be expressed 
in the field equation in a relatively simple fashion, as inputs that depend only on either the 
x-position or the y-position within the two-dimensional field:
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The second to last term specifies the input from the spatial field, the last term the 
input from the color field. The double integral term describes the lateral interactions in the 
two-dimensional field, as detailed in Box 5.1.
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Similarly, when you think about the apple and con-
jure up its image, you do not have to link this image 
to a specific location. Thus, invariance to object 
location is often a desirable feature of behaviors 
such as object recognition.

These examples highlight the yin and yang 
of integration and selection in neural systems. 
Integration is critical when specific feature combi-
nations for multiple items are simultaneously pres-
ent or must be simultaneously maintained in, for 
instance, working memory (a case we will return 
to in Chapters 8 and 9). This is certainly the case 
in early visual processing where multiple items are 
likely to be simultaneously present in the visual 
field. Knowing which features correspond to which 
objects is absolutely critical, as is doing this quickly 
and f lexibly. Indeed, it is worth emphasizing that 
the two-dimensional field can quickly build a peak 
for any combination of (horizontal) spatial position 
and color. The f lip side to integration is selection. 
Selection is critical to avoid computational and neu-
ral overload and to stabilize particular “local” deci-
sions. This was the case in the reaching example 
when decisions about a spatial location—and not 
about color—were important for planning a reach.

Given that both integration and selection are 
critical to visual cognition, how do we efficiently 
use both types of neural representation in con-
cert, avoiding duplication of effort on the one 
hand and errors on the other? For instance, how 
do we avoid scenarios like the one just described, 
where we don’t know whether the green item is 
on the left or the right? A simple way to avoid this 
problem is to force all fields to have a single peak. 
In this case, the single activation peak in each 
one-dimensional field informs us of the color and 
the position of the stimulus, and the activation pat-
tern in the two-dimensional field does not add any 
further information. We can also add another spa-
tial dimension and more feature dimensions (e.g., 
orientation, spatial frequency) and still get the full 
information from the separate one-dimensional 
fields. That is, we can know that the red, shiny, 
apple-shaped object is near the upper left corner of 
the desk.

Of course, this scenario does not take advan-
tage of the multiple, integrated representations 
possible in the two-dimensional field, nor would 
it work effectively in a real, cluttered visual world 
where multiple items are simultaneously visible. 
But the considerations here lead to an insight:  By 
selecting perceptual items one at a time in the 
one-dimensional fields, we can make use of these 

lower-dimensional representations in many situ-
ations, while still avoiding “binding” errors. This 
can be viewed as an implementation of selective 
attention (Desimone & Duncan, 1995). If the selec-
tivity is primarily driven by attention to a single fea-
ture value, we would refer to this as feature-based 
attention. Reversely, selectivity based on attention 
to a spatial value would ref lect spatial attention.

To implement this kind of coupling, we 
need connections that project back from the 
lower-dimensional fields to the higher-dimensional 
ones (the opposite of the “read-out” connec-
tions described earlier). For instance, we want the 
one-dimensional color field in our example sys-
tem to project back and inf luence activation in the 
two-dimensional field over color and space. Since 
the color field does not contain any information 
about stimulus position, its input to the combined 
field should be homogeneous along this dimen-
sion. The one-dimensional field does, however, 
provide specific color information, so it should 
activate the same region along the color axis in 
the two-dimensional field that is active in the 
color field. The resulting input pattern takes the 
shape of a horizontal ridge of activation running 
through the two-dimensional field (Figure  5.3a; 
see Box 5.2 for a formal description of this opera-
tion). Typically, this ridge input should not be so 
strong that it can induce a peak on its own (since 
the peak would form at a random location along 
the ridge). Rather, the strength should be sufficient 
to induce a peak in concert with other inputs. The 
projection from the one-dimensional spatial field 
to the two-dimensional field can be defined analo-
gously: this input drives activation locally along the 
spatial dimension, but is unspecific for color and, 
therefore, generates a vertical activation ridge in the 
two-dimensional field (Figure 5.3b).

With bidirectional connections between 
each one-dimensional field and the combined 
two-dimensional field in place, we can use the DF 
architecture to solve some simple visual tasks. For 
the scenarios discussed later in this chapter, only the 
two-dimensional field receives direct visual input. 
The one-dimensional fields can receive external 
inputs (e.g., a global boost instructing the system to 
“attend” to color or spatial position), but these will 
be from unspecified “top-down” sources at present, 
that is, we’ll implement these “top-down” inf lu-
ences by hand (later in the chapter, we’ll provide 
a detailed account of such processes). Further, we 
set the interactions in the one-dimensional fields 
such that these fields are selective (the single-peak 
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regime). We also use a relatively weak input from 
the two-dimensional field into the one-dimensional 
fields. Thus, if there are multiple visual stimuli 
in the scene, each of them will create an activa-
tion peak in the two-dimensional field, but the 
one-dimensional fields will show only subthreshold 
“bumps” of activation in response to these inputs.

We begin with a simple demonstration. Assume 
our system looks somewhere in the world and 
comes upon a set of visual items. The inputs to 
the two-dimensional field will create peaks of 
activation that ref lect the colors and spatial posi-
tions of the items (Figure  5.4a). In addition, the 
one-dimensional fields will have hills of subthresh-
old activation at the associated positions and color 
values. Now, let’s apply some top-down control by 
boosting the spatial attention field homogeneously 
(Figure 5.4b). This will lead to the selection of one 
of the positions currently stimulated by input from 
the two-dimensional field. The spatial selection 
will be random if all stimuli are of equal strength; 
the selection will be biased if one item is more 
salient (or more intense) than the others. Once the 
position is selected in the spatial field (i.e., a peak 
is built), this field will project input back into the 
two-dimensional field at the associated spatial 
position. This will boost one of the peaks in the 

two-dimensional field far enough to drive up acti-
vation in the color field at the associated hue value. 
We can then either set the “baseline” resting level 
of the color field to build a peak under these condi-
tions or we can extract the color at the selected loca-
tion by boosting the color field (i.e., by “attending” 
to the associated color).

We can also implement a more “local” type of 
top-down inf luence. Say we want to look for a blue 
item. In this case, we can implement a top-down 
inf luence by providing a direct input to the color 
field that induces a peak at the “blue” location 
along the color axis (Figure 5.5). The projection 
from the color field to the two-dimensional field 
then induces a horizontal ridge input for that color. 
Assuming that one of the stimuli in the visual scene 
is indeed blue, there is already an activation peak 
in the two-dimensional field that lies right on this 
input ridge. This peak will be strengthened by the 
ridge input and become larger than the other peaks 
in the field. Since this peak also projects back to the 
color field, the two peaks will reciprocally excite 
each other and grow further, but the lateral inhibi-
tion should limit the spread of activation. In addi-
tion, the amplified peak in the two-dimensional 
field will also project more strongly to the spatial 
field. Consequently, the position of the blue item 
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FIGURE  5.3: Ridge input from one-dimensional fields to a two-dimensional field. (a) The projection from the 
one-dimensional color field provides specific (localized) input along the color dimension but is homogeneous along 
the spatial dimension. This produces a horizontal ridge of subthreshold activation in the two-dimensional field over the 
combined space of color and location. (b) The input from the one-dimensional spatial field conversely is unspecific for 
color and consequently produces a vertical activation ridge.



FIGURE 5.4: Spatial selection of a visual stimulus. (a) Visual stimuli induce peaks in the two-dimensional space-color 
field, which in turn project to the one-dimensional fields for space and color. This is analogous to what is shown in Figure 
5.2, but here the strength of the read-out projections is reduced such that the activation in the one-dimensional fields 
remains subthreshold. (b) The spatial field receives a global excitatory “boost” input. This lifts the activation for the 
two stimulus locations in this field beyond the output threshold and initiates a selection process due to the competitive 
lateral interactions. Here, the location on the right has prevailed and an activation peak has formed, which projects a 
ridge input back into the space-color field. As a consequence, the input-driven activation peak for the right stimulus is 
strengthened in the space color field and projects more strongly to the color field. This difference in projection strength 
can then be used to determine the color of the spatially selected item in a subsequent step.

FIGURE 5.5: Selection of a spatial location for a given color. Here, localized visual input to the two-dimensional field 
is combined with a ridge input from the color field. A desired color is set in the one-dimensional color field through an 
external input, creating an activation peak at the position for “blue.” The color field then projects a horizontal ridge into 
the combined space-color field. This two-dimensional field also has formed two localized peaks, ref lecting the present 
visual stimuli. The input ridge from the color field crosses one of these peaks and amplifies it. When the spatial field is 
now boosted homogeneously, the spatial location of this item is selected.
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receives stronger input than the positions of all 
other stimuli in the visual scene. When we then 
boost the spatial field to select a location, neural 
interactions in the spatial field will lead to the for-
mation of a single peak at the location of the stron-
gest input. Therefore, we will most likely create a 
peak on the right at the location of the blue item 
(see Figure 5.5).

The same mechanism can also be applied in the 
opposite direction. Say that instead of looking for 
a blue object we want to figure out what object is 
over to the left. We start with the same setting as 
before, but now we first induce a peak at the pre-
defined location in the spatial field (i.e., “left”). 
This peak induces a vertical ridge input in the 
two-dimensional field, which amplifies any activa-
tion peaks that it overlaps. When the color field is 
then boosted, it forms a peak at the location of the 
strongest input, yielding the color of the spatially 
selected item.

In these examples, we have assumed that there 
is always a single peak located right on the ridge 
input. This doesn’t always have to be the case. For 
instance, one may be looking for a red object, but 
there is none present. There may be similar items 
however, ref lected by peaks in the two-dimensional 
field that are close to the position for “red” along 
the color dimension. Since the input ridge is not 
perfectly localized on a single discrete color, such 
peaks will still overlap with the ridge input and 
be strengthened by it to a certain degree. It may 
also happen that multiple items in a scene match 
the desired color (either perfectly or partially), 
so that there are multiple peaks supported by the 
ridge input.

The response behavior of the system in such 
scenarios depends on the detailed settings of the 
connections between the fields and the boost that is 
applied to generate the response. On the one end of 
the spectrum, we can imagine a system with strong 
competitive interactions and a strong external 
boost in the spatial attention field. Such a system 
will always produce a single location as a response, 
typically the location of the best matching item, or a 
random location if no stimulus matches the desired 
color at all. On the other end of the spectrum, with 
a relatively weak boost and no competition in the 
spatial attention field, a peak may form only if there 
is a good enough match in the visual sensory field 
that will provide a strong input to the spatial atten-
tion field (the response peak will than form through 
a detection instability rather than a selection insta-
bility). In this latter case, multiple peaks may form 

as a response if there is more than one matching 
item in the scene. These different behaviors may 
(to some degree) also emerge in a single system 
depending on different modulatory inputs.

The scenarios used thus far are closely tied to 
the details of early visual processing. In the sec-
tions that follow, we expand upon these scenarios 
by embedding them within particular research 
paradigms. This highlights both how research par-
adigms can be useful in expanding a simple neural 
architecture, and how specific neural models can be 
constrained by experimental findings and inform 
the search for new phenomena and the generation 
of novel predictions.

I N T E G R AT ION  A N D 
SE L E C T ION  I N   A N 
AU T ONO M OUS  V I SUA L 
E X PL OR AT ORY   SY ST E M
The examples presented thus far all present snap-
shots in time of, for instance, how the visual system 
attends to a location to select the feature present 
there. In this section, we generalize these processes 
by embedding them within a broader neural system 
that can actively maintain a perceptual goal (e.g., 
a working memory for a color), perceive features 
in space, attend to those features and locations, 
and move its “eyes” (e.g., its virtual camera). This 
enables the system to move beyond one interval 
of time—beyond one selection decision—toward 
cycles of perceiving, attending, remembering, and 
looking. In this sense, one goal of this section is to 
close the loop on perception and action to create 
a more embodied and autonomous view of visual 
processing and exploration.

To provide a little background for this model, 
let’s quickly review some properties of the 
human visual system. First, the distribution of 
light-sensitive neurons over the area of the retina 
in the human eye is very uneven. The cone cells in 
particular, which provide color information and 
high-acuity spatial information, are highly con-
centrated in the fovea at the center of the retina. 
A  correspondingly large portion of the visual cor-
tex is dedicated to process the sensory informa-
tion from this foveal region. In order to perceive 
the fine details of a visual stimulus, it is necessary 
to fixate it, that is, to bring its image into the fovea. 
This is achieved by saccades, rapid eye movements 
of which humans can make several per second. 
(In Chapter 7, we will address the problem of how 
visual spatial representations can be kept stable 
despite the constant shifts of the retinal image.) 
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Saccadic eye movements are strongly coupled to 
spatial attention. If a certain location in the visual 
scene captures our attention (e.g., by a movement in 
that region), we will likely make a saccade to bring it 
into the fovea and perceive it in greater detail. This 
coupling between attention and saccade planning is 
not absolute, however. It is possible to intentionally 
suppress saccades and to attend to a location with-
out fixating it.

The specific model we describe here—which we 
will refer to as the biased competition model—was 
motivated by decades of work examining the inter-
actions among visual working memory (VWM), 
visual attention, early perceptual processing, and 
saccade planning and execution. These interac-
tions have been examined from diverse vantage 
points. For instance, in models of visual search, 
VWM is proposed to be the substrate for a search 
template, serving to guide attention and gaze to 
objects that match task-relevant features in the 
array (Hamker, 2005). Similarly, models of atten-
tional selection propose that competitive interac-
tions among stimuli are “biased” by signals from 
VWM (Deco & Lee, 2004). And models of trans-
accadic memory and integration depend on VWM 
to span saccades and integrate features across per-
ceptual disruption (Fazl, Grossberg, & Mingolla, 
2009). Across these literatures, data suggest that 
visual attention controls the information initially 
encoded into VWM (Irwin, 1992; Irwin & Gordon, 
1998; Schmidt, Vogel, Woodman, & Luck, 2002), 
and attention precedes the eyes to the next saccade 
target (Hoffman & Subramaniam, 1995; Kowler, 
Anderson, Dosher, & Blaser, 1995). The content of 
VWM, in turn, modulates the selection of objects 
as the targets of attention and gaze.

The biased competition model implements 
particular hypotheses regarding how VWM inter-
acts with attention and early visual processing 
and inf luences the most rapid and elementary 
forms of saccadic orienting. The starting point 
for this model is the DF model used previously 
with a two-dimensional visual sensory field, a 
one-dimensional spatial attention field, and a 
one-dimensional feature attention field. We expand 
this model in two directions here, enriching the 
spatial pathway to capture the planning and execu-
tion of saccadic eye movements and enriching the 
feature pathway to capture aspects of visual work-
ing memory.

The model architecture is generally inspired 
by the two-streams hypothesis (Mishkin & 
Ungerleider, 1982). This hypothesis posits that 

visual information is processed in two at least 
partly independent streams, the “where” and the 
“what” stream. The “where” (or dorsal) stream 
deals primarily with the spatial aspects of visual 
information that form the basis for movement plan-
ning (including eye movements). The “what” (or 
ventral) stream is focused on surface features used 
for object recognition, and neurons in the higher 
areas along this path show very large spatial recep-
tive fields, corresponding to low spatial selectivity 
(Desimone & Gross, 1979). We will return to this 
hypothesis in Chapter  8 and discuss it in greater 
detail there. Architectures similar to the one pro-
posed here have been used to model visual search, 
for instance by Hamker (2004, 2005). In these 
papers, a subset of cortical areas involved in visual 
search was modeled, namely the frontal eye field (as 
a purely spatial representation, but limited to six 
discrete locations), the inferotemporal cortex (as 
a purely feature representation), and area V4 (as a 
combined spatial and feature representation that 
receives visual input).

In accordance with the principles described 
in previous chapters, we refrain from claiming 
such a strict one-to-one relationship between 
individual neural fields and cortical areas for our 
model. Instead, we propose that the fields ref lect 
certain aspects of distributed neural representa-
tions. In this view, the one-dimensional fields of 
the feature pathway in the model ref lect the pure 
feature aspects of neural representations in the 
“what” stream, including V4, the inferotemporal 
cortex, and contributions from the prefrontal cor-
tex for working memory. The one-dimensional 
spatial fields model aspects of several cortical and 
subcortical areas involved in spatial attention and 
saccade control, including posterior parietal cor-
tex, frontal eye field, and superior colliculus. The 
two-dimensional field ref lects early visual repre-
sentations with relatively small spatial receptive 
fields and sensitivity for simple surface features, as 
found in areas V1 to V4.

The full model architecture is shown in 
Figure  5.6. The spatial pathway consists of two 
fields spanning the space of horizontal retinal posi-
tion and mirrors previous neural field models of 
saccadic movement planning (Kopecz & Schöner, 
1995; Trappenberg, Dorris, Munoz, & Klein, 2001; 
Wilimzig, Schneider, & Schöner, 2006). The spa-
tial attention field is as before. This field receives 
direct input from the two-dimensional visual sen-
sory field (integrated over the color dimension) 
and projects back to it. Lateral interactions in this 
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field implement a soft winner-takes-all mecha-
nism:  If multiple distant regions are activated, 
they compete with each other by means of local-
ized self-excitation and global inhibition, typically 
leading to the selection of a single area that receives 
salient visual input. The feedback to the visual sen-
sory field increases that field’s activation locally 
along the spatial dimension but is homogeneous 
along the color dimension. It thus implements a 
form of spatial attention. To capture the charac-
teristics of the human visual system, the spatial 
dimension in the two-dimensional field and in the 
two fields of the spatial pathway is scaled logarith-
mically. Thus, the foveal region at the center of the 
field has an increased spatial resolution and a higher 
responsiveness, especially to small stimuli.

The second field in the spatial pathway is 
new—the saccade motor field. This field receives 
input from the spatial attention field and has strong 
local excitatory and global inhibitory interactions. 
If the spatial attention input drives the field acti-
vation over the output threshold, the saccade field 
quickly forms a strong activation peak at the stimu-
lated location and suppresses the activation in all 
other parts of the field. The peak in this field is the 
movement plan for the saccadic eye movement.

To actually execute the saccade, we add a sac-
cade motor system. In this system, the amplitude of 
the saccade is scaled by the position of the peak in 

the field—the farther the peak is from fixation, the 
larger the saccade amplitude. (Note that amplitude 
is the critical dimension in our examples because 
the task only involves eye movements along a hori-
zontal dimension.) The formation of an activation 
peak in the saccade motor field initiates a sac-
cadic eye movement. The peak directly produces a 
motor signal as long as it persists, scaled according 
to the distance of the peak from the foveal region 
in the field (with a stronger signal as this distance 
increases). At the same time, the field output also 
provides input to a saccade reset node (simulat-
ing a pool of homogeneously connected neurons). 
This input is not scaled with the peak position, so 
the activation of the saccade reset node rises with 
a largely fixed time course and reaches the output 
threshold after a certain duration. In effect, this 
node acts as a simple neural integrator that mea-
sures the total output of the field. Once the node 
reaches threshold, it strongly inhibits the whole 
saccade motor field, extinguishes the peak there, 
and thereby terminates the saccade. While the sac-
cade is in progress, the external input to the visual 
sensory field is suppressed. When the visual input is 
reinitialized after the completion of the saccade, it 
is shifted to ref lect the new gaze direction.

The two fields of the feature pathway are 
defined over the dimension of color (hue value). As 
in the previous examples, the color attention field 
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FIGURE 5.6: Architecture of the DF model of working memory inf luences on saccade planning. (a) Visual scene, with 
colored stimuli. (b) Visual sensory field. (c) Color attention field. (d) Color memory field. (e) Spatial attention field. 
( f) Saccade motor field. See text for further explanation.
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receives input from the visual sensory field along 
the color dimension (integrating over all spatial 
positions) and projects modulatory input back to it, 
implementing a feature attention mechanism. This 
field is bidirectionally coupled to a new field—the 
color memory field. The coupling between these 
fields enables memorized content to inf luence 
attentional processing, while keeping attentional 
processing open to visual stimulation from the 
visual sensory field. As with the color attention 
field, lateral interactions in the color memory field 
are implemented with local self-excitation and 
surround inhibition. These interactions are stron-
ger, however, in the color memory field, such that 
peaks can be actively sustained even if the input 
that induced the peak is no longer present. This 
implements a neurally grounded form of working 
memory. Note that this self-sustaining activation in 
the memory field is dependent on a global modula-
tory input from a memory control node. This node 
implements a form of “top-down” control, modu-
lating whether peaks in the working memory layer 
should be actively maintained or simply forgotten.

V I SUA L  WOR K I NG  M E M ORY 
A N D  S AC C A DE  OR I E N T I NG 
I N   T H E  R E M O T E  DI ST R AC T OR 
PA R A DIG M
To understand how the biased competition model 
integrates VWM, attention, early perceptual pro-
cessing, and saccade orienting, it is useful to consider 

the model in a specific behavioral paradigm. This will 
help ground discussion of the model; it also serves 
the function of showing how a DF model can be 
used to explain—in quantitative detail—behavioral 
performance from well-controlled experimental 
paradigms.

We focus here on one case study—the remote 
distractor paradigm from Hollingworth and col-
leagues (Hollingworth, Matsukura, & Luck, 2013). 
The design of this paradigm is shown in Figure 5.7. 
Each trial began with fixation of a central cross and 
the presentation of a color memory square for 300 
ms. The memory stimulus was followed by a blank 
delay of 700 ms. Next, the saccade target and a dis-
tractor were presented. Participants were instructed 
to execute a saccade to the target as rapidly as pos-
sible. They were also instructed that the distractor 
was irrelevant to the task, and they should avoid fix-
ating it (to emphasize this, the distractor was only 
present on some trials). The target always appeared 
much further from central fixation than the dis-
tractor and was larger than the distractor, removing 
any significant ambiguity in the task of orienting 
to the target. After participants fixated the target, 
the target display was replaced with the memory 
test stimuli, which consisted of two color squares. 
Participants indicated which of the two test squares 
matched the color of the memory square presented 
at the beginning of the trial.

Schneegans, Spencer, Schöner, Hwang, and 
Hollingworth (2014) used this paradigm to 

Saccade task
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FIGURE 5.7: Remote distractor paradigm testing the inf luence of color working memory on saccade planning. The para-
digm combines two tasks, a working memory task and a saccade task. The working memory task consists of presentation 
of a color stimulus at the beginning of each trial, and a memory test at the end of the trial in which the subject has to 
select the memorized color from two alternatives. During the memory period, a saccade task is executed, in which the 
subject has to make a timed saccade to a target stimulus while suppressing saccades to a simultaneously appearing dis-
tractor. The target is distinguished from the distractor by its larger size and its position, always appearing farther from 
the fixation point than the distractor. The colors of the target and the distractor stimulus are varied to test inf luences of 
color memory on saccade planning: Either the target item, the distractor item, or neither of them matches the currently 
memorized color.
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examine how V WM and feature-based attention 
interact during the planning of orienting sac-
cades in this very simple task. A central manipu-
lation from this study is shown in the right panel 
of Figure 5.7: on some trials, the target matched 
the color held in memory; on other trials, the dis-
tractor matched the color held in memory; and 
on still other trials, none of the items matched 
the color held in memory. Behavioral results are 
shown in Figure 5.8. Even though the distractor 
was irrelevant to the task and it was always pre-
sented in the opposite direction relative to the 
target, participants still looked to the distractor 
on some of the “no-match” trials. Most critically, 
orienting to the distractor was systematically 
modulated by the contents of V WM. When 
the distractor matched the color in V WM, par-
ticipants looked toward the distractor on nearly 
half of the trials. By contrast, when the target 
matched the color in V WM, participants almost 
never looked at the distractor.

The biased competition model allows us to 
describe the real-time neural processes that under-
lie performance in this task, including the for-
mation and maintenance of a color memory, the 
perceptual processing in response to the target 
and distractor stimuli, and the specification of a 
saccadic eye movement. Here, we give a detailed 
description of this model, unpacking the processes 
that underlie performance in the remote distrac-
tor paradigm. We then quantitatively compare 
the model’s performance relative to data from 
Schneegans et al.

Each simulated trial begins with the presen-
tation of the memory stimulus at the initial fixa-
tion point (Figure 5.9a). This stimulus produces a 
strong activation peak in the visual sensory field, 
which is located in the foveal region (at the field 
center) along the spatial axis, while the position 
along the color axis ref lects the stimulus color (a 
red hue). The projections along the feature path-
way induce a peak for the stimulus color in the color 
attention field, which in turn provides input to the 
color memory field. During this phase of the trial, 
the memory control node is strongly activated to 
ref lect the task instruction to memorize the color 
of this stimulus (the cognitive processes leading 
to this activation are not explicitly modeled). This 
node projects global excitatory input to the color 
memory field, thereby lifting the memory field’s 
overall activation level. This allows the field to form 
an activation peak at the position of the localized 
input from the color attention field and memorize 
the color of the red item.

The stimulus also elicits activation in the spa-
tial pathway, which projects activation back onto 
the visual sensory field and further strengthens the 
activation in the foveal region. It does not, however, 
elicit a saccadic eye movement because the central 
section of the spatial attention field does not project 
to the saccade motor field (since an eye movement 
is not needed when an item is currently in the foveal 
region). Instead, the peak in the spatial attention 
field acts to stabilize fixation by suppressing activa-
tion in peripheral regions through global inhibitory 
interactions.
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FIGURE 5.8: Empirical and simulation results for the remote distractor paradigm. The histograms show the distribution 
of saccade endpoints in the saccade task for three different conditions: if the memorized color matches the color of the 
target, the distractor, or neither of them. In all three conditions, there is a bimodal distribution with a part of the saccades 
landing near the distractor and a part in the range of the target. The proportion of saccades to the distractor changes 
significantly between the three conditions: If the target matches the memorized color, there are nearly no saccades to the 
distractor; if the distractor matches, nearly half of the saccades land on or near the distractor location. If neither matches, 
there is an intermediate number of saccades to the distractor. The DF model reproduces these results.
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After the memory stimulus is turned off, 
the activation of the memory control neurons is 
reduced to an intermediate level. At this level, the 
peak in the color memory field is sustained by the 
lateral interactions in this field, but no new peaks 
can form. The sustained activation in the memory 

field preactivates the corresponding region in the 
color attention field. This preactivation remains 
below the output threshold and does not drive 
strong neural interactions. Consequently, there is 
no visible effect of the memory activation in the 
visual sensory field.
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FIGURE 5.9: Simulation of one saccade task trial in the DF model. (a) The memory cue is presented in the center of the 
visual scene, forming a peak in the visual sensory, color attention, and spatial attention field. The color attention field 
projects activation further to the color memory field, which is boosted during this task period to form a self-sustained 
peak for the shown color. The saccade motor field is not activated, since the central portion of the spatial attention does 
not project to it. (b) The target and distractor stimuli are presented (together with a fixation point). All visual items 
compete for spatial attention, realized through the lateral interactions in the spatial attention field. This competition is 
biased indirectly by the color attention: The red distractor item matches the memorized color, and a peak for this color 
can form more quickly in the color attention field due to converging input from the memory field. This strengthens the 
representation of the distractor item in the visual sensory field. (c) The location of the distractor item is selected in the 
spatial attention field, and a peak at the same location is induced in the saccade motor field. This initiates a saccade to 
the distractor stimulus. (d) After the saccade, the distractor is fixated and the retinal scene has shifted accordingly. The 
memorized color is still represented in the color memory field.
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Next, the memory stimulus is replaced by a 
smaller fixation cue at the same position, which 
excites weak spatial attention to the foveal region. 
After the delay, the peripheral target and distrac-
tor stimuli appear along with the fixation cue (see 
Figure  5.9b). All three stimuli produce activation 
peaks in the visual sensory field. The size of each 
peak is initially determined by the size and position 
(distance from the fovea) of each stimulus. As acti-
vation in the network continues to cycle, however, 
feedback from the other fields begins to have an 
inf luence.

In the spatial attention field, three active 
regions are formed by the input from the visual 
sensory field. These compete with each other via 
lateral interactions, as well as through indirect 
interactions within the visual sensory field. This 
competition is additionally biased by a preshaping 
of the activation profile in the spatial attention field 
to account for cognitive inputs ref lecting the task 
instructions. In particular, the foveal area support-
ing fixation and the region where distractors are 
presented are suppressed, while the spatial range 
where targets are presented (farther from the fovea) 
is preactivated. This ref lects the task instructions 
to make a saccade as fast as possible to the far tar-
gets and to ignore the distractor.

At the same time, activation peaks form in the 
color attention field. The competitive interactions 
in this field alone are relatively weak, so that at 
least transiently, multiple peaks may coexist. Only 
through interactions with the spatial pathway, a 
selection of a single color is achieved at a later time. 
There is, however, a significant preactivation in 
this field at the position of the memorized color 
due to feedback from the color memory field. If the 
color of one of the stimuli matches the memorized 
color, a peak at the corresponding location in the 
color attention field will form more quickly and 
reach greater strength than peaks at other positions 
(Figure 5.9b). The representation of the matching 
stimulus in the visual sensory field is then strength-
ened by earlier and stronger feedback from the 
color attention field. This, in turn, biases the activa-
tion profile in the spatial attention field.

The competitive interactions in the spatial 
attention field amplify small differences in the 
strengths of individual inputs, and the relatively 
small biasing effect of the color memory match 
can change which peak prevails in this field. For 
the given task, the weak fixation activation is vir-
tually always overcome and either the target or the 
distractor location is selected. The target stimulus 

has a competitive advantage due to its larger size 
and the preactivation of the spatial region in which 
the targets appear, but this advantage is frequently 
overcome by the inf luence of the distractor stimu-
lus if the latter matches the memorized color (as 
shown in Figure  5.9c). Once a sufficiently strong 
localized peak has formed in the spatial attention 
field, it can drive activation in the saccade motor 
field beyond the output threshold. When this hap-
pens, the strong lateral interactions in the motor 
field and the coupling to the saccade reset neurons 
produce a stereotypical activation time course, 
with a rapid formation of a peak at the position of 
the input and its extinction after a fixed duration. 
With this mechanism, the amplitude of the eye 
movement is determined primarily by the location 
of the activation peak, with only small effects of 
input strength.

The resulting distribution of saccade ampli-
tudes is shown in Figure 5.8. The distribution is 
bimodal in all conditions, with one mode centered 
approximately over the distractor position and one 
over the range of target positions. The proportion 
of saccades made to the distractor in each condi-
tion ref lects the biasing effect of color memory 
described earlier: It is largest if the distractor stim-
ulus matches the color of the memory stimulus, is 
reduced in the no-match conditions, and nearly dis-
appears in the target match condition. This pattern 
accurately ref lects the empirical effects. Note that 
the model also captures saccade latencies from this 
paradigm, as well as behavioral results from several 
other variants of the remote distractor paradigm. 
Interested readers are referred to Schneegans et al. 
(2014) for details.

M OV I NG  BE YON D  C OL OR :   T H E 
F U NC T ION  A N D  FA L L I B I L I T Y 
OF   V I SUA L  F E AT U R E 
I N T E G R AT ION
We began this chapter with a consideration of 
higher-dimensional representations in neuro-
physiology, such as the two-dimensional repre-
sentation of retinal space. We discussed how many 
neural representations in early visual cortex are 
three-dimensional with a two-dimensional repre-
sentation of retinal space combined with a single 
feature such as hue or orientation. We then showed 
how a simplified DF architecture (designed to 
capture only changes in the horizontal position 
of an object) that combined two one-dimensional 
fields with one two-dimensional field could cap-
ture both the integration of features and space as 
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well as the selection of particular features from 
this integrated representation. Moreover, when 
we expanded this picture to include a saccade 
motor system and a feature memory field, we took 
a first step toward an embodied view of forming a 
perceptual goal, finding a feature-matching object 
in the retinal frame, and generating a saccade to 
this object. This expanded “biased competition” 
architecture effectively captured behavioral find-
ings from the remote distractor paradigm, show-
ing how DFT can provide a useful framework for 
thinking about the neural processes that underlie 
behavior.

In this final section, we push our discussion 
of higher-dimensional representations one step 
further. Thus far, we have only addressed how the 
brain deals with a single non-spatial feature such as 
color. Of course, we don’t just perceive colors; there 
are neural representations of orientation, spatial 
frequency, and other complex features involved in, 
for instance, perceiving a face. Given this, should 
we just expand our framework to move from 
two-dimensional fields to three-dimensional and 
four-dimensional fields and beyond?

A first answer is “no,” because this quickly 
becomes computationally intractable for our 
computer—and for the nervous system. Recall that 
a single five-dimensional field sampled using 100 
neurons per dimension would require 10 billion 
(1005) neurons—compared to just 500 neurons 
to sample each dimension individually. A  second 
answer is also “no,” because the visual cortex does 
not appear to adopt this approach. Rather, data sug-
gest that there is a division of labor in early visual 
cortex, with one population of neurons responsive 
to hue and retinal position, a separate population 
responsive to orientation and retinal position, a 
separate population responsive to the direction of 
motion, and so on (Hubel & Wiesel, 1968, 1977; 
Livingstone & Hubel, 1984a; Lu & Roe, 2008; 
Shmuel & Grinvald, 1996).

But this division of labor leads to a critical 
question:  If different populations of neurons rep-
resent different features, why don’t we have an 
internal or functional sense of this division of 
labor? Put differently, how do we perceive objects 
as integrated wholes? One reason is that there 
is a simple solution to this variant of what has 
been called the “binding” problem in vision:  an 
integrated—but distributed—representation of 
objects can be achieved by coupling all of these 
neural populations together via the spatial refer-
ence frame common to each neural representation.

Concretely, this leads to the expanded biased 
competition model shown in Figure 5.10. For 
simplicity, we have added only one additional set 
of feature-specific fields; in principle, however, 
we could add more feature-specific fields and 
achieve the same functionality without a dramatic 
increase in the neural or computational demands. 
As can be seen in Figure 5.10, we have added a 
two-dimensional visual sensory field, a feature 
attention field, and a feature memory field. Let’s 
assume that these newly added fields represent a 
continuous shape dimension (see, e.g., Drucker & 
Aguirre, 2009), so that we now have distinct rep-
resentations of color and shape. We will refer to the 
individual visual sensory fields as the space-color 
field and the space-shape field. The field couplings 
along the feature pathway are largely equivalent to 
those in the biased competition model. As a crucial 
point for the functionality of the multifeature archi-
tecture, both visual sensory fields are reciprocally 
coupled with the spatial attention field. This means 
that the two visual sensory fields are indirectly con-
nected via spatial attention.

How is a single multifeature item represented 
in this expanded model? The representation of 
such an item initially consists of a peak in the 
space-color field and a peak in the space-shape 
field (Figure 5.10b). Since both features occupy the 
same location, the two peaks are aligned along the 
spatial dimension. The projections from the visual 
sensory fields to the spatial attention field build a 
peak there as well, indicating the item’s location 
(Figure  5.10e). Peaks also form in both feature 
attention fields, indicating the individual feature 
values of the item (Figure 5.10c). In sum, the multi-
feature item is represented by the distributed—but 
coupled—pattern of peaks across these fields.

A problem arises, however, when multiple items 
are presented simultaneously. As discussed previ-
ously, the integration of features and space is lost in 
the one-dimensional fields, but it is often critical to 
know which features are present at which location. 
This leads to a feature-space “binding” problem, 
which we solved previously by forcing the attention 
fields to be in a single-peak state. In the case of mul-
tifeature items, the problem extends to the conjunc-
tion of different features: Which features belong to 
one item and which belong to another?

It turns out that the same attentional 
constraint—forcing attention to be selective—  
solves the feature-conjunction problem as well. In 
particular, when multiple items are presented to the 
model, multiple peaks form in each visual sensory 
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field—one peak per item. Each of these peaks proj-
ects to the spatial attention and feature attention 
fields. Now, if lateral interaction would allow multi-
ple peaks to coexist in these fields, the resulting pat-
tern of spatial and feature peaks would not include 
clear information as to which feature belongs to 
which location or which features belong to the same 
item. So the attention fields need to be selective 
and allow only one peak in each field. Through this 
adjustment, we achieve that when facing multiple 
items the model by default relaxes into a state where 
the single peaks in the two feature attention fields 
belong to the same item. This is because in the spatial 
attention field as well a single peak develops, and the 
spatially localized projection of this peak back into 

the visual sensory fields enhances all peaks at that 
location—the location of a single item—causing the 
peaks of that item to project more strongly into the 
feature attention fields and thus prevail in determin-
ing peak position there. What we have then is the 
coherent representation of one item— but chosen 
randomly from among all items in the scene.

This solves the problem of mixing up the fea-
tures of different items, but for the mechanism to 
be of any practical use a way is needed to control 
which item is chosen. For example, we might want 
to retrieve all the features of an item at a specific 
location. This can be done by forcing the model to 
build a single peak in the spatial attention field, that 
is, by having the model focus on a single location. 

FIGURE 5.10: Architecture of the multifeature model. The model is shown during the presentation of a single item (the 
blue L). The upper three fields (b, c, d) make up the layer for color, while the bottom three fields (b, c, d) represent the 
shape layer. (a) Visual scene (one-dimensional visual space), illustrating the input to the visual sensory fields. (b) Visual 
sensory fields (top: space-color field, bottom: space-shape field). (c) Feature attention fields. (d) Feature memory fields. 
(e) Spatial attention field. ( f) Spatial “read-out” field (formerly saccade motor field). Note that there are no peaks in the 
feature memory and the spatial read-out field because these fields require boosts to form peaks.
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Assume for the moment that we have some way of 
selectively “clamping” activation in the field (we 
will introduce a more natural way later). This will 
boost the features in the visual sensory fields at that 
location which, in turn, will selectively create peaks 
in the feature attention fields.

But what about something more complex—is it 
possible to attend to color and retrieve shape? Under 
normal circumstances people do this without any 
conscious effort, so our model as well should have a 
way to get from one non-spatial feature to another. 
In the canonical task used to probe people’s abil-
ity to do this, participants are brief ly shown a 
multi-item display of multifeature items and are 
asked to report feature B of the item having a desig-
nated target feature A (see, e.g., Ivry & Prinzmetal, 
1991). Often, color and letter identity (shape) are 
used as feature dimensions. The display then con-
sists of a number of colored letters, typically two 
to five. After brief presentation of the display, the 
participant has to report, say, the identity of the red 
letter (or, vice versa, the color of a target letter).

To enable the model to perform this feature 
integration task, some adjustments to the model 
parameters are necessary. Note that these changes 
do not ref lect key differences in the way the neu-
ral system operates, but rather correspond to 
changes in its mode of operation—which may 
adapt to the demands of different tasks. The first 
specific demand of the task is explicit attention 
to a stored target feature value (the analogue to 
what we achieved earlier by “clamping” field acti-
vation). Concretely, at the start of each trial, the 
target-defining feature value is provided by pre-
senting a cue item having this feature. The feature 
is stored in one of the feature memory fields as a 
self-sustained peak, triggered by a brief homoge-
neous boost to the field. Because feature attention 
to the stored target value should be explicit, we have 
increased the strength of the projections from the 
feature memory fields to the feature attention fields, 
so that a full-f ledged peak develops in the feature 
attention field of the target dimension (instead of 
only a subthreshold hill of activation). The second 
novel task demand is the ability to extract a single 
feature value along the second feature dimension 
as the feature response. For this, we have made the 
feature memory fields more selective by increas-
ing inhibition, so that each allows for only one 
self-sustained peak. A modified version of the task, 
which we discuss here later, additionally requires 
participants to indicate not only the second feature 
but also the spatial location of the target item. For 

this version a third task demand arises, namely, the 
ability to extract the spatial location of a single item 
as the spatial response. For this we use the saccade 
motor field as a type of spatial “read-out” field that 
can build a single peak upon receiving a boost, thus 
indicating one location. This amounts to imple-
menting a simple form of covert spatial attention 
where we suppress the saccade motor system.

As described earlier, each trial of the task starts 
with providing the target feature by presenting a 
cue item and storing one of its features in the target 
feature memory field. Figure 5.11a shows the phase 
after presentation of the cue item and before presen-
tation of the test display. In this example, color is the 
target dimension, and shape is the response dimen-
sion. Next, the multi-item test display is shown, let-
ting the model select one item through the dynamic 
interplay of its components. Decisively, this selec-
tion is strongly biased by the color memory peak 
that causes color attention to be directed at one spe-
cific color value (Figure 5.11b), resulting in a ridge 
of activation in the space-color field. This ridge 
enhances the space-color peak it overlaps, and the 
enhanced peak in turn boosts the associated loca-
tion in the spatial attention field, building a peak 
there. This peak then projects a spatially localized 
ridge into the visual sensory fields, enhancing both 
peaks that belong to the item at the respective loca-
tion. This includes the space-shape peak of the 
target item, so that this peak prevails in building 
a peak in the shape attention field (Figure  5.11c). 
Lastly, the shape memory field is boosted to obtain 
the feature response. In the extended version of the 
task, the spatial read-out field is boosted simultane-
ously to also obtain an estimate of the item’s loca-
tion, the spatial response.

Taken together, the system is able to deter-
mine the shape of an item that was initially selected 
on the basis of its color. This is achieved through 
indirect coupling of different feature representa-
tions via a shared spatial dimension. This indirect 
mechanism is consistent with behavioral evidence. 
In an experiment by Nissen (1985; see also van der 
Velde & van der Heijden, 1993), people were shown 
displays of four items, all colored and shaped dif-
ferently. In the first condition, the participants were 
cued with a color and had to report the location of 
the item in that color or vice versa. Probabilities of 
correct reports were similar for both directions. In 
the second condition, the participants were cued 
with a location and had to report the color and the 
shape of the item in that location. The joint prob-
ability of correctly reporting both color and shape 



FIGURE 5.11: Multi-item trial in the multifeature model with high spatial proximity and different possible outcomes. (a) 
At the start of each trial, a cue item is presented (not shown) and the color memory field is boosted concurrently. This 
causes a peak to build there, which is retained throughout the trial and ref lects the target color. The projection to the color 
attention field activates the respective value there, which in turn biases activation in the space-color field. (b) Next, the 
test display with multiple items is presented. Each of the items is represented by one peak in each visual sensory field. The 
activation ridge from the color attention field enhances the space-color peak of the target item (the green S), causing this 
peak to determine peak position in the spatial attention field. The spatial attention peak projects back into both visual 
sensory fields, enhancing the space-shape peak at that location (and less so the peaks of close-by items). (c) Brief boosts to 
the shape memory field and the spatial read-out field force these fields to form peaks, which correspond to the shape and 
spatial response of the model, respectively. In most cases, the correct shape and location are chosen, as shown here. (d) 
In some cases, the feature-space peak of a distractor item spatially close to the target item (here, the space-shape peak of 
the yellow O) is overly enhanced by the ridge from the spatial attention field. In this case, the erroneously enhanced peak 
may prevail in determining peak position in the shape attention field and, thus, the shape response, resulting in an illusory 
conjunction. Illusory conjunctions are also associated with a shift of peak position in the spatial attention field, which is 
why the location response is as well displaced toward the spatial midpoint between the involved items.
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was equal to the probability of correctly report-
ing color multiplied by the probability of correctly 
reporting shape. This suggests that shape and color 
selection are independent of each other. In the third 
condition, a color was cued and the participants 
had to report the shape and the location of the item 
in that color. Here, the joint probability of cor-
rectly reporting both shape and location differed 
from the product of the individual probabilities, 
suggesting that selection of one depends on selec-
tion of the other. Nissen (1985) hypothesized that 
the selection of location mediates the selection of 
shape, rather than vice versa. A testable prediction 
of this hypothesis is that the joint probability of 
correctly reporting both shape and location given 
color (known from the third condition) should be 
equal to the probability of correctly reporting loca-
tion given color (known from the first condition) 
multiplied by the probability of correctly report-
ing shape given location (known from the second 
condition). The reason is that once a location has 
been selected, it should not matter for the selection 
of shape whether the location was cued directly or 
selected via color. The data confirmed this predic-
tion, strongly suggesting that the extraction of sur-
face features depends on selecting a location first. 
Thus, space takes on the role of binding together 
different surface features.

So the generalized biased competition model 
can effectively represent multifeature items and 
extract the location and features of each of them via a 
mechanism that parallels behavioral findings—but 
it is not the case that the model performs perfectly 
under all conditions. Critically, humans aren’t per-
fect, either. And as we discuss here later, the DF 
model “fails” in precisely the same way humans do.

Although the tasks just discussed sound 
straightforward, they are actually quite difficult, 
because in the typical lab tasks the items are f lashed 
very brief ly (e.g., for 75 ms) and in the visual periph-
ery. Consequently, people make errors—and the 
nature of these errors can be informative about 
how the visual system works. First, there are the 
so-called feature errors, meaning that sometimes 
features are reported that were not present in the 
display. More interestingly, however, subjects are 
also prone to erroneously combine features from 
different items, forming so-called illusory con-
junctions (ICs; Treisman & Schmidt, 1982). For 
instance, if a display contains a green X and a red 
T, observers sometimes report having seen a red 
X. ICs are thought to ref lect a failure at the stage of 
feature integration rather than at the stage of feature 

perception itself, because the involved features are 
actually present in the display but not combined 
properly by the participant. We will comment more 
on this interpretation later.

Several factors have been identified to affect the 
probability that ICs occur. Two key factors are the 
spatial distance between items (Ashby, Prinzmetal, 
Ivry, & Maddox, 1996; Cohen & Ivry, 1989)  and 
the similarity of items along the response feature 
dimension (Ivry & Prinzmetal, 1991). The proba-
bility that ICs occur is higher for smaller inter-item 
distance and higher for more similar feature val-
ues (for instance, red versus orange as opposed to 
red versus green). If our model ref lects the neural 
processes that underlie visual feature integra-
tion, it should sometimes make ICs. For instance, 
the model should sometimes select a shape that 
does not belong to the red target item but, instead, 
belongs to one of the distractor items. Such errors 
indeed occur as we push the model to its limits.

Let us first consider the effect of spatial prox-
imity, using our former example where color is the 
target-defining dimension and shape is the response 
dimension. To get integration errors in some tri-
als, we chose a sufficiently small spatial distance 
between the items in the test display. Together with 
the coarseness of the selection ridges, this can give 
rise to a cascade of events that ultimately results in 
the selection of an incorrect feature. Spatially close 
peaks in the space-color field project to neighbor-
ing regions in the spatial attention field. This can 
lead to a fused peak in the spatial attention field 
(Figure  5.11d). This peak is broad and situated 
somewhere in between the locations of the involved 
items. Consequently, the ridges sent back into the 
visual sensory fields are broad and displaced as 
well. This increases the likelihood that the ridge 
activation may “spill over” to the visual sensory 
peaks of the distractor. When this occurs, the posi-
tion of the spatial ridge may further shift toward the 
distractor due to the reciprocal coupling with the 
spatial attention field. The more the distractor item 
is boosted, the greater the likelihood that the shape 
attention field will select the wrong shape and make 
an IC. In this case, the resulting pattern of peaks is 
composed of the target item’s color and the shape of 
a non-target item (see Figure 5.11d).

The probability for the model to make an IC 
under these conditions depends mainly on the 
width of lateral interaction in the spatial atten-
tion field, the width of excitatory input from the 
visual sensory fields to the spatial attention field, 
and the width of excitatory (ridge) input from the 
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spatial attention field to the visual sensory fields. In 
addition, inter-item distance must be sufficiently 
small. “Sufficiently small” in this case means small 
enough for a spatial ridge to overlap with more than 
one peak in the visual sensory fields and/or small 
enough for the projection of two space-color peaks 
to result in only one spatial attention peak. Thus, 
as found psychophysically, IC probability in the 
model is higher for smaller inter-item distance.

Interestingly, we can push this one step further 
by examining the spatial representation in the model 
in greater detail by employing the above-mentioned 
extended version of the task, that is, use the former 
saccade motor field to “read out” the location of the 
spatial attention peak. Again, we find systematic 
errors that mimic human performance. Hazeltine, 
Prinzmetal, and Elliott (1997) examined where 
human observers perceive ICs relative to the target 
and distractor items. They brief ly presented strings 
of five colored letters to their subjects in which one 
letter was always green. Subsequently, subjects 
indicated whether the green letter had been an O or 
not by responding “yes” or “no,” respectively. After 
that, participants indicated the location on the 
screen at which they had perceived the green letter. 
Hazeltine and colleagues were primarily interested 
in the trials where ICs occurred. They found that 
in these cases, participants indicated that the green 
letter was located at the spatial average of the green 
and O feature locations.

A similar pattern is found in the model. Over 
trials in which ICs are produced, peak location in 
the spatial read-out field tends to form a bell-shaped 
distribution. For small item distances comparable 
to those used by Hazeltine and colleagues, the 
center of the distribution tends to lie around the 
midpoint between the involved items. This makes 
sense, given that ICs are closely associated with the 
spatial attention peak being broadened or shifted 
into the direction of the distracter item. The 
broader the peak is, or the more it is shifted toward 
the midpoint between two items, the more likely it 
is that a trial will yield an IC, and the more likely 
that the spatial response peak will be centered over 
the average attended location.

The effect of feature similarity on IC probabil-
ity can also be observed in the model. ICs occur 
more often when the target item’s feature value 
along the response dimension (shape in our exam-
ple) is close to that of a distractor item. There are 
two main, interrelated causes for this, which are 
similar to the effects observed in the spatial case. 
First, broad projections from the space-shape field 

to the shape attention field may enhance a dis-
tracter peak there that is close to the target item’s 
peak. Second, an equivalent effect may occur in 
the converse projection from the shape attention 
to the space-shape field and, as usually occurs in 
such cases, the two effects may amplify each other. 
Statistically, a slightly enhanced distracter peak 
will determine the final response more often than 
it would otherwise. For very similar items, a third 
possibility is that two feature attention peaks fuse 
into one peak, leading to a deviation of the feature 
response and possibly resulting in an IC. As is obvi-
ous from this description, the two causes for ICs, 
spatial proximity and feature similarity, are very 
closely related and probably modulate each other, 
further elevating IC probability for certain stimu-
lus configurations. Moreover, there may be other 
causes for ICs, which we are still exploring in detail, 
such as item similarity along the target dimension.

In summary, the DF model shows several key 
effects reported in the literature—that ICs are 
more frequent when items are close together, and 
when items share similar features on the response 
dimension. More notably, the model shows the 
observed spatial averaging effects which have 
not been effectively explained by other theoreti-
cal accounts (e.g., Ashby et  al., 1996; Treisman & 
Gelade, 1980). These parallels with the behavioral 
literature suggest that the DF model offers a robust 
theory of visual feature integration and lend sup-
port to the most significant conceptual aspect of 
the model—the role of a shared spatial frame as the 
basis for visual feature integration.

Note that the effects of spatial proximity seen in 
our model are similar to those predicted by Ashby 
and colleagues’ (1996) account, location uncer-
tainty theory (LUT). However, the two models dif-
fer in some key respects. In LUT, effects arise due 
to uncertainty in the position of stimuli during the 
“feature registration” phase. Similar forms of posi-
tional uncertainty could be introduced in our model 
in various ways, for example, by misplacing inputs 
in the visual sensory fields. However, this is not nec-
essary to generate ICs, as our model places the main 
cause for ICs at the level of the attentional mecha-
nisms involved in feature integration, rather than 
at the level of “feature registration.” LUT does not 
specify a mechanism for feature integration; rather, 
it specifies a rule for combining features. The DF 
model, by contrast, specifies a neural mechanism of 
feature integration based on a robust framework for 
thinking about neural population dynamics in early 
visual processing. Thus, in our view, the DF model 



 Integration and Selection in Multidimensional Dynamic Fields 145

offers innovation on several fronts. Nevertheless, 
given that there is substantial overlap between our 
theory of visual feature integration and LUT, these 
two approaches should be viewed as complemen-
tary rather than contradictory.

C ONC LUSIONS
In this chapter, we formalized a new concept—  
multidimensional dynamic fields. These fields 
enable the fast and f lexible integration of multiple 
types of information simultaneously. This is criti-
cal in early visual processing, and multidimen-
sional representations are pervasive in early visual 
cortex. Although multidimensional fields are pow-
erful, they are also costly. Moreover, some behav-
iors do not require full, high-dimensional detail. 
Thus, we explored the notion of selection, using 
lower-dimensional fields. We grounded this dis-
cussion in a concrete example, showing how a DF 
model of “biased competition” could capture find-
ings from the remote distractor paradigm.

Next, we re-examined how multiple features 
are represented in early visual cortex. Here, we 
saw that early visual processing consists of mul-
tiple, multidimensional representations, leading to 
a fundamental question:  If different populations 
of neurons represent different features, why do 
we perceive items as integrated wholes? We then 
expanded the biased competition model, adding 
a second layer of feature-based fields. And, criti-
cally, we coupled these fields along a shared spatial 
dimension. We showed how this can capture both 
visual-feature integration and the failure of integra-
tion in the form of illusory conjunctions.

Although we focused primarily on issues cen-
tral to early visual processing in this chapter, we 
also introduced concepts along the way that will 
be expanded in subsequent chapters. In particu-
lar, we used a simplified view of VWM here. The 
next chapter will pick up on this theme and expand 
our understanding of this critical form of “active” 
memory. Similarly, we only focused on a single 
spatial frame here—the frame of the retina. This is 
not sufficient; we need to understand how humans 
anchor decisions, working memories, and memory 
traces to other spatial reference frames, such as the 
frame of the head, body, and world. We’ll tackle 
that topic in Chapter 7. And then we’ll pull these 
threads together in Chapters  8 and 9 when we 
revisit the “binding” problem in vision, but now at 
the level of a visual scene. We also introduced sev-
eral modulatory mechanisms in this chapter, such 
as the memory control nodes. These hint at forms 

of “higher-level” or “top-down” control. We’ll pick 
up on this topic in several of the later chapters, 
including Chapters 10 and 14, which examine dif-
ferent senses of cognitive control and executive 
function.

But also the core integration mechanism with 
two-dimensional fields that we introduced in this 
chapter can be employed far beyond the level of 
early visual processing in problems of “higher-level” 
cognition. For instance, in Chapter 14, we describe 
a DF model of executive function that captures 
people’s performance in a card-sorting task. In this 
task, participants are instructed to sort cards to 
different specified locations, based on the features 
of the card. To solve the task, participants have to 
form an association between each card color and 
the location where it is to be placed.

The model architecture for this simple asso-
ciation task is the same as that for the basic 
space-feature integration mechanism, with 
two one-dimensional fields coupled to a single 
two-dimensional field. The only difference is 
that now the two-dimensional field is augmented 
with a memory trace (see Chapter  2). The task 
instruction can be given by providing unique 
inputs to each one-dimensional field. This effec-
tively teaches the system a particular association, 
for instance, “Put the red card to the left.” Each 
peak in the one-dimensional fields will create an 
associated ridge in the two-dimensional field. 
Where these ridges intersect, a peak can form, 
which in turn lays down a memory trace. The sys-
tem has now learned that red things go to the left. 
Similarly, it can learn that green things are to be 
placed to the right.

After the instruction phase, the DF model can be 
shown a test card. Here, the color on the card’s face 
is input into the one-dimensional color field, form-
ing an activation peak. This peak, in turn, projects 
a ridge into the two-dimensional field. If the input 
ridge overlaps with a localized memory trace, these 
inputs combine, the output threshold is pierced, and 
neural interactions combine to form a peak. This 
peak projects activation into the one-dimensional 
spatial field and the model “responds” that the card 
should be placed at the associated spatial location. 
Note that here, the memory trace provides the local-
ized input for the two-dimensional field, thereby 
taking the role that was filled by direct visual input 
in the models described earlier in this chapter. This 
simple change turns a mechanism for visual search 
into a system for color-space association based on 
learned rules.
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Before concluding, we want to highlight a few 
“big picture” ideas that emerge from the issues 
tackled in this chapter. First, this chapter high-
lighted several cases where DFT offers a robust 
view of the integration of brain and behavior. 
Interestingly, however, this integration was not 
done in a reductionistic sense. That is, we did not 
model the brain at one level of analysis and behav-
ior at a different level. Rather, our contention is 
that neural population dynamics are, ultimately, 
about behaviors—cognitive behaviors. And, as we 
showed in Chapter 4, these can be seamlessly inter-
woven with the sensory and motor surfaces. We’ll 
have more to say about this later. For now, we stress 
our commitment to both neural and behavioral 
constraints in the development of theory.

Second, we want to comment on our use of data 
from several canonical “information-processing” 
tasks. To place this comment in context, some readers 
will know that in the 1990s, when dynamic systems 
theory was first becoming a mainstream theory of 
perception, action, and cognition, several research-
ers argued convincingly that dynamic system the-
ory and information processing were incompatible 
views of mind (see, e.g., Port & van Gelder, 1995; van 
Gelder, 1998). We resonate with those arguments. 
And therein lies a source of tension—how can we 
develop a dynamic systems view of brain and behav-
ior on the one hand, and then spend so much time 
and energy on findings that have emerged from an 
incompatible theoretical framework on the other?

We have approached this tension from a very 
practical perspective. In our view, data gener-
ated from an information processing perspec-
tive are often robust, puzzling, and demanding of 
explanation. Moreover, neurophysiologists often 
adopt an information-processing perspective. 
Consequently, some of the richest data sets in neu-
roscience stem from this theoretical vantage point. 
Nevertheless, there can be a lack of conceptual 
clarity when we take a dynamic systems approach 
and capture findings from information-processing 
tasks. These problems can be compounded when 
we label DFs with terms like perception, atten-
tion, and memory. Thus, we want to highlight a 
few key places where our account diverges from 
information-processing-style thinking.

A common assumption in information-  
processing accounts is that cognitive and neural sys-
tems have dedicated forms of processing—in one 
variant, such dedicated processing units are called 
modules. Locally, there is a sense of this in DFT in 
that each DF encodes specific types of information. 

This encoding provides the local meaning of each 
field established through the space code principle. 
Critically, however, this does not mean that “process-
ing” occurs in isolated modules. In the biased com-
petition model, for instance, fields were reciprocally 
coupled to other neighboring fields. Concretely, 
this means that the system is not decomposable: the 
biased competition model is just one large differen-
tial equation—a single coupled dynamical system. 
It is certainly the case that there is structure in this 
system—the shape attention field doesn’t “talk” to 
the color attention field. But it is not the case that 
fields can be thought of as isolated processing units.

Similarly, let’s consider a second concept that 
came up in the discussion of illusory conjunctions—  
the notion of a “stage of processing.” DFT certainly 
retains the idea that neural processing can unfold 
through a sequence of (neural) events—something 
akin to a sequence of stages. That said, “stage” 
means something different in DFT in at least two 
ways. First, DFT specifies what separates one 
“stage” of processing from another:  the sequences 
of bifurcations that occur as the system’s neural 
dynamics unfold through time. For instance, input 
in the biased competition model can build peaks 
in the visual sensory fields. This can drive a peak 
in the spatial attention field, which can then drive 
the selection of peaks for the associated object in the 
feature attention fields.

Critically, however, the examples in this chap-
ter also highlight that the organization of “stages” 
(i.e., the sequence of bifurcations) can be f lexibly 
recombined depending on the task and context. For 
instance, in the IC task, the sequence of bifurca-
tions is very different from what we just described. 
First, the model must bring up the goal—to detect 
the target shape—in the memory field. This builds 
a peak in the attention field. Consequently, when 
the input comes into the visual sensory fields, the 
target shape can be boosted. This peak is stronger, 
which drives a peak in the spatial attention field, 
which boosts the peak in the color field, which leads 
to a selection decision in the color attention field.

In summary, then, care must be taken when 
considering information-processing concepts in 
the context of DFT, even though we will routinely 
agree with information-processing researchers 
that their neural and behavioral data are often 
very cool. Although we see many analogies with 
information-processing-style of thinking, they are 
merely that—analogies. In our view, DFT requires 
a very different mindset. We’ll comment on this 
more in subsequent chapters.
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E X E RC I SE S  F OR   C H A P T E R   5
Exercise 1: Basic Instabilities in a 
Two-Dimensional Dynamic Field
Start the two-dimensional field simulator by running 
the file launcherOneLayerField2D. This 
simulator is very similar to the one-dimensional, 
one-layer simulator from Chapter  2, except that 
the field is now defined over a two-dimensional 
space. The two visualizations in the graphical user 

interface (GUI) show the field activation and field 
output (sigmoid function of the field activation), 
both color coded. The input and the interaction ker-
nel are not shown separately. There are two localized 
stimuli, s1 and s2 , for which you can control both x- 
and y-position, and two ridge inputs, s3 and s4 ,  for 
which only the position along one dimension can 
be controlled. For an alternative visualization of the 
activation distribution in the two-dimensional field, 
you can also run the file launcherOneLayer-
Field2D _ surfacePlot, which is function-
ally equivalent.

Find appropriate interaction strengths cexc ,  
cinh ,  and cglob  to reproduce all of the basic inst-
abilities in this two-dimensional field:

a) Detection instability: Formation of a peak 
from localized input, with bistability 
and hysteresis effect when the stimulus 
amplitude is varied (use the visualization of 
the output to clearly distinguish between 
supra-threshold peaks and subthreshold 
hills of activation).

b) Selection instability: Formation of a single 
peak from multiple localized inputs, and 
suppression of the other inputs.

c) Memory instability: Peaks remain 
self-sustained even if the input is turned off 
completely; either limited to a single peak 
when using global inhibition, or allowing 
multiple memory peaks with surround 
inhibition.

Exercise 2: Ridge inputs
Explore the behavior of the field with ridge inputs  
(s3 and s4):

a) Return to interaction settings that 
create a detection instability. Set up one 
or two localized stimuli that are too weak 
to induce peaks (only subthreshold hills 
of activation, with stimulus amplitude 
lower than the negative resting level, 
a hS < − ). Now use a weak ridge input 
that overlaps with one of the localized 
stimuli to induce a supra-threshold 
activation peak.

b) Choose interaction strengths that produce 
selection decisions. Use a ridge input to bias 
a selection between two localized inputs. 
First set up the stimuli, then use the Reset 
button to observe the selection.
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In both cases, vary the overlap between the 
ridge input and the localized input. For the selec-
tion, also vary the distance between the two peaks 
in one dimension, so that a single ridge overlaps 
with both of them.

You can also try to create localized peaks from 
a ridge input alone. You can get either a single peak 
or multiple peaks along the ridge, depending on the 
type and strength of inhibition. Note that the peak 
location is random along the dimension for which 
the ridge input is homogenous. Finally, you can 
create peaks from the intersection of orthogonal 
ridges.

Exercise 3: Coupling Between 
One-Dimensional and 
Two-Dimensional Fields
Run the file launcherCoupling. This simu-
lation implements the space-feature association 
mechanism described in this chapter. The fields 
in the simulation are identified by one-letter indi-
ces:  v for the two-dimensional visual field, s for 
the one-dimensional spatial field, and f for the 
one-dimensional surface feature field. Sliders exist 
for setting the lateral interaction strengths for 
all three fields, as well as the coupling strengths 
between the fields (hover over each slider to get a 
description of the affected parameter). In addition, 
on the right side of the GUI there are sliders to set 
localized stimuli for all three fields

Set appropriate interaction strengths to repro-
duce different coupling behaviors described in the 
chapter:

a) Induce two activation peaks in field v 
by localized inputs, and set up lateral 
interactions in that field to make the peaks 
stabilized. Perform a read-out operation 
into the two separate one-dimensional 
fields. Set projection strengths such that 
peaks are induced in both field s and field 
f. Add weak feedback projections from 

the one-dimensional fields to field v. If 
necessary, adjust lateral inhibition strengths 
to prevent excessive growth of activation 
levels.

b) Now reduce the coupling strengths 
such that the input from field v induces 
only subthreshold activation in both 
one-dimensional fields, but no peaks. 
Create a selection regime for these two 
fields by setting the lateral interaction 
strengths to appropriate values (local 
excitation and global inhibition, no local 
inhibition). Now boost field s (by increasing 
its resting level hS) to randomly select the 
location of one stimulus, and then boost 
field f to select the surface feature value of 
the stimulus at that location. Make sure that 
there is an indirect coupling between the 
two one-dimensional fields via field v, and 
that field f always selects the feature value 
that belongs to the item spatially selected in 
field s.

c) With the same settings and the same 
localized inputs in field v, perform a visual 
search for a surface feature. Induce a peak in 
field f by a direct stimulus input to this field. 
Now select the location of the matching 
item by boosting field s.

d) Implement the memory-based 
feature-space association for the 
card-sorting task described in this 
chapter. Make the localized inputs to 
field v subthreshold (this simulates the 
memory trace for learned associations). 
Set the one-dimensional fields up in a 
regime where they can have multiple 
peaks. Induce a peak in field f by a direct 
stimulus. This peak should induce a 
detection decision in field v if the resulting 
ridge input is close enough to one of the 
localized hills of activation. The spatial 
location of that peak in v should then be 
read out into the spatial field s.

 


