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Integrating “What” and “Where”
Visual Working Memory for Objects in a Scene
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Imagine sitting at a computer late at night. As 
you close your eyes, you have a compelling sense 

of the space around you. You can point to the cof-
fee cup on the right and reach for the phone to the 
left (making sure not to bump the water cup). And 
this map of the local surroundings is impressively 
updateable—objects may have come and gone over 
the past 5 minutes, but it seems trivial to keep track 
of them. On the other hand, the mental represen-
tation of your surroundings also has severe limita-
tions. If you try to bring to mind a complete image 
of your desk with all the objects on it, you will likely 
have considerable trouble recalling the fine details 
of objects and arrangements. And when you open 
your eyes again, you may realize that you have 
missed a lot of things, and that some items that you 
thought you remembered really look quite different 
from what you had imagined.

Experimental research on visuospatial cogni-
tion and memory has elucidated the impressive 
capabilities of adults to form an internal repre-
sentation of a visual scene but also the sometimes 
shocking limitations of human scene perception 
and memory. Adults can form maps quickly: They 
can form detailed scene representations of three 
to four objects in a few hundred milliseconds, and 
these representations can subserve the detection 
of changes in those objects a second or two later, 
even when all the objects have swapped positions 
(Johnson, Hollingworth, & Luck, 2008; Wheeler & 
Treisman, 2002). Moreover, give an adult 19 more 
seconds to scan the richly structured surrounds, 
and this person can detect often subtle changes in 
the details of objects in complex scenes after view-
ing more than 400 total objects—up to 24 hours 
later (Hollingworth, 2005)! Other experiments, 
however, show that human scene memory can 
also be surprisingly limited in certain situations. 

Studies on change blindness demonstrate that 
observers frequently overlook even substantial 
changes in an image they are studying, as long as 
the change co-occurs with some visual disruption 
such as an eye movement (Pashler, 1988; Rensink, 
O’Regan, & Clark, 1997). People can even fail to 
notice that they are talking to a new person when 
that person changes from one moment to the next 
(Simons & Levin, 1998). These studies highlight 
that humans do not form instant and photographic 
memories of visual scenes. Instead, forming a scene 
memory, as well as using that memory for change 
detection and other tasks, is an active process that 
takes time and uses neural resources and thus 
comes with specific limitations in its capacities.

What exactly are the processes that underlie 
our ability to form a usable internal representation 
of a visual scene? To construct a scene representa-
tion, one must parse complex visual environments, 
which often involves visual search and object-based 
attention (Luck & Vecera, 2002; Wolfe, 1998). One 
must establish a spatial frame (McNamara, Halpin, 
& Hardy, 1992; Pick, Montello, & Somerville, 
1988)  and stay aligned with this frame despite 
continual eye, head, and whole-body movements 
(Darling & Miller, 1993; Soechting & Flanders, 
1989). Moreover, one must establish robust object 
representations in real time that are localized and 
updateable in this frame (Huttenlocher, Hedges, 
& Duncan, 1991; Huttenlocher, Hedges, & Vevea, 
2000; Spencer & Hund, 2002). And all of this must 
be coordinated by complex neural processes, from 
object-related cells in inferotemporal cortex (Baker 
& Olson, 2002; Tanaka, 2000), to cells in parietal cor-
tex involved in spatial transformations (Andersen, 
1995), to cells in prefrontal cortex involved in the 
maintenance of spatial and featural information in 
working memory (Rao, Rainer, & Miller, 1997).
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Typically, these different aspects of visuospatial 
cognition have been studied separately. Although 
this piecemeal approach has been highly success-
ful, it has created an often overlooked challenge: It 
may not be so easy to put the pieces back together 
again. A growing number of examples demonstrate 
that ignoring integration can lead to major theo-
retical quandaries (Bridgeman, Gemmer, Forsman, 
& Huemer, 2000; Jackendoff, 1996). Central to 
these theoretical challenges is a key question: Can 
piecemeal accounts of visual-cognition “scale up” 
to something as complex as an updateable scene 
representation?

Different pieces of the visuospatial cognition 
puzzle have been discussed in previous chapters. 
Chapter  5 presented a DF model of visual atten-
tion that represented multifeature objects in a neu-
rally grounded manner. The model also captured 
behavioral data showing the inf luence of working 
memory (WM) on attention and saccade planning. 
This highlighted the interplay between selection 
at the level of working memory and integration 
at the level of a retinal representation. Next, in 
Chapter 6, we presented a neural system that could 
detect changes in object features by operating on 
lower-dimensional fields. This captured the behav-
ioral details of how people actively compare, for 
instance, a WM for colors to a new percept.

Critically, however, objects don’t live in the 
abstract world of features—objects are integrated 
wholes anchored to spatial positions in an “allo-
centric” or world-centered frame. In Chapter 7, we 
examined the spatial side of this problem: How do 
people know where something is, given changes 
in the position of the eyes, head, and body? 
Here, we discussed a mechanism for updating 
spatial positions—creating a body-centered or 
world-centered frame from given retinal informa-
tion. And we showed the power of this transforma-
tion mechanism by using it to understand aspects of 
how humans use spatial language.

Of course, the spatial-language examples were 
limited in a fundamental way—we don’t just use 
objects to establish a reference frame; we also want 
to fill that frame with content. Thus, we need to 
bring together spatial and featural information at 
the level of an allocentric or scene-centered frame. 
That’s one goal of this chapter—to integrate “what” 
and “where.” And in the process, we will shed light 
on how people build a fast, f lexible representation 
of a local scene such that they can detect changes 
in the world and update their WM in a few hundred 
milliseconds.

More generally, this chapter tackles the theo-
retical challenge of scaling up from simpler to more 
complex neural systems. We do this here by inte-
grating the piecemeal accounts from Chapters 5–7 
and demonstrating that an integrated system can 
form a fully functional scene representation that 
interfaces with human behavioral data. Chapter  9 
will continue this arc, asking whether the inte-
grated theory of visuospatial cognition can be 
extended into the real world in the context of an 
autonomous robot. This highlights the broad func-
tionality that emerges from the integrated system. 
Together, Chapters 8 and 9 demonstrate that DFT 
does, in fact, scale up from simpler to complex neu-
ral systems.

T OWA R D  A N   I N T E G R AT E D 
T H E ORY  OF   V I SUA L 
WOR K I NG   M E M ORY
The concrete goal we have set for ourselves in this 
chapter is to build a DF architecture that supports 
the active representation of integrated objects in an 
allocentric reference frame, that is, a scene repre-
sentation that identifies which object is where. Our 
approach derives from the large literature exploring 
the nature of object and scene representations using 
novel objects with simple features (e.g., colored 
squares, oriented lines). Researchers within this 
tradition have examined how representations of 
simple novel objects are formed (Vogel, Woodman, 
& Luck, 2006); the role of attention and WM in the 
encoding, maintenance, and retrieval of objects 
(Luck & Vogel, 1997; Rensink, 2000, 2002); how 
objects are linked to configurations and scenes 
(Hollingworth, 2006, 2007); and how object rep-
resentations are updated (Moore, Mordkoff, & 
Enns, 2007).

We are focused here on this literature for three 
main reasons. First, this literature presents some 
daunting theoretical challenges. For instance, Luck 
and Vogel (1997) showed that people can form 
multiple object representations in 100 ms that are 
sufficiently detailed to detect a change in 1 of 16 
feature values (4 simple feature values for each of 
four objects) 900 ms later. This clearly requires a 
fast and f lexible cognitive system.

A second reason for focusing on novel, simple 
objects is that we are ultimately interested in form-
ing a theory of visuospatial cognition that speaks 
to developmental origins. Evidence suggests that 
infants have developed relatively well-structured 
cortical fields for simple features like color and 
orientation by midway through their first year 
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(Banks,  Shannon, & Granrud, 1993; Bornstein, 
Krinsky, & Benasich, 1986; Teller & Bornstein, 
1987). Such fields might then serve as the founda-
tion on which objects are built. Thus, by focusing 
on the representation of novel, simple objects, we 
hope to connect our interests in adult visuospatial 
cognition with those related to the very early inte-
gration of “where” with “what.” We will pick up on 
this theme in Part 3 of the book.

A third reason for focusing on novel, sim-
ple objects is to tap into a rich literature on the 
neurophysiology of object representations. 
Neurophysiological evidence suggests a func-
tional and anatomical segregation of the visual 
system into dorsal and ventral streams that repre-
sent spatial location (“where”) and object property 
information (“what”), respectively (Ungerleider & 
Mishkin, 1982). The dorsal pathway extends from 
early visual cortex through the parietal lobe into the 
frontal cortex. Recall from Chapter 7, for instance, 
that regions of the parietal cortex are critically 
involved in spatial transformations.

Regarding the ventral pathway, converging 
evidence from electrophysiological recording 
studies in monkeys (Felleman & Van Essen, 1991; 
Livingstone & Hubel, 1988)  and functional imag-
ing studies in humans (Pessoa & Ungerleider, 
2004; Todd & Marois, 2004; Tootell et  al., 
1998) suggests that object properties such as color, 
form, size, and direction of motion are coded in a 
distributed manner through the parallel activation 
of large numbers of neurons across different neural 
populations (Fujita, Tanaka, Ito, & Cheng, 1992; 
Komatsu & Ideura, 1993; Llinas & Paré, 1996). As 
one progresses through this pathway from primary 
visual area V1, through extrastriate areas V2–V4, 
and on to areas TEO and TE of the inferior tem-
poral lobe, there are several clear changes in neural 
response properties (Luck, Girelli, McDermott, & 
Ford, 1997). First, there is an increase in the com-
plexity of the features coded. For example, whereas 
neurons in V1 respond preferentially to rather 
simple stimuli such as oriented line segments, cells 
in TE may respond to complex stimuli such as 
faces (Desimone, Albright, Gross, & Bruce, 1984; 
Desimone & Gross, 1979; Tanaka, 1996). Second, 
there is an increase in receptive field sizes and an 
accompanying decrease in the spatial resolution of 
receptive fields for individual neurons (Desimone 
& Gross, 1979; Gross, Rocha-Miranda, & Bender, 
1972). Note that even though spatial resolution 
decreases, object representations in the ventral 
pathway are still anchored to spatial positions. 

For  instance, studies show that position depen-
dence persists throughout the ventral visual path-
way, even into areas such as the inferior temporal 
cortex, which was once thought to be spatially 
invariant (Aggelopoulos & Rolls, 2005; DiCarlo & 
Maunsell, 2003; Op De Beeck & Vogels, 2000; for 
review, see, Kravitz, Vinson, & Baker, 2008).

Although this type of distributed encoding 
can be computationally efficient, as discussed in 
Chapter  5, it can be difficult to determine which 
features belong together as attributes of a single 
object (Damasio, 1989; von der Malsburg, 1996; 
Treisman, 1996, 1999). In Chapter 5, we discussed 
a solution to this problem which is conceptually tied 
to Treisman’s feature integration theory (Treisman 
& Gelade, 1980):  By allocating visual-selective 
attention to occupied regions of retinal space, the 
features of a given object can be linked by virtue of 
a shared spatial dimension.

But what then—how are objects represented 
beyond this retinal frame at the level of the scene? 
According to Treisman, once the features of an 
object are linked, attention helps construct a lim-
ited number of multifeature object representations 
(e.g., the object files of Kahneman, Treisman, & 
Gibbs, 1992). Such object representations make 
it possible to maintain the experience of a unified 
object across changes in position or physical prop-
erties through time. According to feature integra-
tion theory, once attention is withdrawn from an 
object, feature bindings come undone, and the 
representation of the object disintegrates into its 
constituent features (Horowitz & Wolfe, 1998; 
Rensink, 2000, 2002).

This raises a fundamental question about visual 
short-term memory:  Are features maintained as 
integrated object representations or independently 
in separate feature maps? Luck and Vogel (Luck & 
Vogel, 1997; Vogel & Luck, 1997; see also Vogel, 
Woodman, & Luck, 2001)  investigated this ques-
tion in a series of change detection experiments 
using visual arrays composed of simple colored 
shapes. Participants were shown arrays of 1 to 12 
items for 100 ms, followed by a 900 ms delay inter-
val and then a test array that remained visible for 
2000 ms. When the test array appeared, it was 
either identical to the original display or one item 
had been changed (e.g., to a different color). Same/
different judgment accuracy sharply declined for 
arrays containing more than four items, which 
suggests that visual working memory (VWM) has 
a limited capacity of approximately three to four 
items (Cowan, 2001; Irwin & Andrews, 1996; 
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Sperling, 1960). Surprisingly, when participants 
viewed stimuli defined by a combination of four 
different features—color, shape, orientation, and 
the presence/absence of a gap—with the possi-
bility that any one of these features could vary at 
testing, participants were just as accurate as when 
they looked for changes along a single dimension 
(Irwin & Andrews, 1996). Based on these find-
ings, Luck and Vogel proposed the integrated object 
hypothesis—that individual features are bound into 
object representations by perceptual processes 
and that these representations remain integrated 
in VWM without requiring attentional resources. 
The capacity limitations then act on the level of 
bound object representations, not on the level of 
individual feature values memorized.

What neural processes support the active main-
tenance of integrated objects in VWM? Empirically, 
this has been probed using functional neuroimag-
ing as adults perform a standard change detection 
task. Research shows activation in a distributed 
network of frontal and posterior cortical regions 
in this task. In particular, WM representations are 
actively maintained in the intraparietal sulcus, the 
dorsolateral prefrontal cortex, the ventral-occipital 
cortex for color stimuli, and the lateral-occipital 
complex for shape stimuli (Todd & Marois, 2004, 
2005). In addition, there is suppression of the tem-
poroparietal junction during the delay interval in 
the task, and activation of the anterior cingulate 
cortex during the comparison phase (Mitchell & 
Cusack, 2008; Todd, Fougnie, & Marois, 2005). 
Moreover, there is greater activation of this net-
work on change than on no-change trials, and the 
hemodynamic response on error trials tends to 
be less robust (Pessoa, Gutierrez, Bandettini, & 
Ungerleider, 2002; Pessoa & Ungerleider, 2004).

At a theoretical level, there is currently no uni-
fied theory that effectively integrates “what” and 
“where” in a way that interfaces with these neural 
and behavioral data. Several neurally plausible 
models have been proposed that address the inte-
gration of “what” and “where” in some way (Deco, 
Rolls, Horwitz, 2004; Lee, Mumford, Romero, & 
Lamme, 1998; Van der Veld & de Kamps, 2001). 
These models are generally quite sophisticated on 
the “what” side, providing a detailed account of 
ventral stream processes that, for instance, inte-
grate multiple features together into objects (Deco 
& Rolls, 2004; Olshausen, Anderson, & Van Essen, 
1993). Nevertheless, these models provide a lim-
ited view of dorsal stream processes. For instance, 
several models use the concept of a “salience map” 

that tags specific locations in space as important 
for attention or WM (Itti & Koch, 2000; Mozer & 
Sitton, 1998; Treisman & Gelade, 1980). However, 
the salience map is not linked to a particular frame 
of reference, nor is it updated as eyes, head, and 
body are moved. Conversely, there are detailed 
models of the spatial aspects of planning sequences 
of saccades and scanning a visual scene (Dominey 
& Arbib, 1992; Fix, Rougier, & Alexandre, 2011), 
but these provide no or only a very rudimentary 
account of the processing of visual surface features 
necessary to form a scene representation. Moreover, 
many of these models have rather limited ties to 
behavior because they use a biophysical approach 
to neural function. Here, theoreticians attempt to 
build neurally realistic models of single neurons 
(Durstewitz, Seamans, & Sejnowski, 2000; Salinas, 
2003), which are then coupled together into popu-
lations. Although the biophysical approach has 
led to new insights into brain function and neural 
dynamics, these models do an excellent job captur-
ing the behavior of neurons but do poorly at the 
level of behavior (Finkel, 2000).

In the next section, we provide an overview of 
the first theory that effectively integrates “what” 
and “where” to form a WM of integrated objects 
in a scene (an earlier variant of this model was pre-
sented in Johnson, Spencer, and Schöner (2009). 
We discuss how this model was inspired by the 
neural literature on object representations. We also 
demonstrate that the theory effectively captures 
a suite of behavioral findings from the canonical 
probe of object representations—the change detec-
tion task. Chapter  9 then builds on the concepts 
introduced here, taking the integrated theory into 
a real-world, embodied context to demonstrate 
that the theory not only captures behavioral data 
with humans but can organize the behaviors of an 
autonomous robot.

BU I L DI NG  A  SC E N E 
R E P R E SE N TAT ION 
I N   DY NA M IC  F I E L D   T H E ORY
To represent integrated objects, we need to bind the 
many features that characterize an object together. 
In principle, this can be done in high-dimensional 
dynamic fields, with one dimension for each fea-
ture value. In Chapter  5, however, we saw how 
this leads to a combinatorial-explosion problem in 
which astronomical numbers of neurons would be 
required to represent any possible combination of 
feature values. Chapter 5 showed how this problem 
can be avoided by representing individual feature 
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dimensions in separate DFs. The separate DFs are 
then bound across a shared dimension, which in 
Chapter 5 was retinal visual space.

Chapter  5 also showed how information 
about an individual object can be selected from 
a multipeak pattern. Here, we selected informa-
tion using lower-dimensional fields, in that case, 
one-dimensional fields. Peaks in these selective 
attention fields projected ridges into the multidi-
mensional field localized along only one dimension. 
The intersection of these ridges pulled a spatially 
aligned pattern of peaks into the attentional fore-
ground. In visual search, this provides a way to 
bring any object into the attentional foreground 
that matches the expected feature values. When 
driven by VWM, this mechanism implemented 
a form of biased competition to selectively direct 
attention at objects that match the feature value in 
working memory.

Although attentional selection was effective at 
selectively operating on different types of informa-
tion, there was a critical limit:  These processes of 
selection and integration only work when objects 
are attended one by one. If multiple objects are 
brought into the foreground at the same time, then 
misbindings can occur:  It would be unclear, for 
instance, which feature value was associated with 
which spatial location. Moreover, using retinal 
space as a binding dimension was computationally 
efficient but also fallible, as revealed by illusory con-
junctions that may occur, for instance, when spatial 
overlap and brief stimulus presentation lead to spu-
rious correspondences among different objects.

The more dramatic limitation of using retinal 
space as a binding dimension occurs when one 
considers that the eyes make, on average, 170,000 
saccades per day. It would obviously not make sense 
to use retinal space to keep track of the locations 
of objects, as these would change with every gaze 
shift. To build a representation of which objects are 
where, locations instead have to be represented in 
the space in which objects reside—an allocentric 
or world-centered frame. Here, spatial positions 
remain invariant across gaze changes. A scene rep-
resentation is thus an integrated representation 
of the visual features of objects grounded in an 
allocentric frame.

Chapter 7 introduced a neural dynamic mecha-
nism for how information in a retinal frame can be 
transformed into a body-centered frame. Recall 
that this mechanism exploits higher-dimensional 
dynamic fields that combine spatial information in 
the retinal frame with a representation of the gaze 

angle relative to the body. Spatial information in 
a body-centered frame can be projected out from 
this integrated representation. We also described 
how this same mechanism can be used to create 
an object-centered frame anchored to a reference 
object for a model of spatial language.

What would it take to transform an integrated 
object representation distributed across multiple 
space-feature fields from Chapter 5 into a body- or 
object-centered frame? In the complete case, each 
field would be minimally three-dimensional (one 
feature dimension and two retinal spatial dimen-
sions). A  five-dimensional transformation field 
would then be required to associate the two retinal 
coordinates with the two gaze coordinates, while 
carrying the feature dimension along for the ride. 
Unfortunately, however, every feature dimension 
would need its own transformation field! This clearly 
would be a huge waste of neural resources because 
the same computation would be done over and over 
for each feature dimension. In effect, this would 
undo the gains obtained when we split up feature 
dimensions into separate neural fields.

Fortunately, the concepts first discussed in 
Chapter  5 guide us to a solution. Remember that 
if we select one item at a time, we can extract its 
spatial position and its feature values into separate, 
lower-dimensional neural fields without losing 
any information. Using this idea, we perform the 
reference frame transformation on a purely spatial 
representation, such as the retinal spatial atten-
tion field used in Chapter 5, to obtain an allocen-
tric spatial representation. We then recombine this 
transformed spatial information with the feature 
information of the selected object. As a combined 
representation for scene memory, we use another 
stack of space-feature fields, analogous to the retinal 
level, but now in an allocentric frame of reference. 
Again, remember that the recombination of space 
and feature values is possible as long as we treat 
only a single item at a time. It can then be imple-
mented through the intersection of ridge inputs in 
a higher-dimensional field, whereas this would lead 
to misbindings if done for multiple items in parallel. 
The upside of this approach is the neural compu-
tational savings: We do not need a transformation 
field for each feature dimension—transforming 
the purely spatial representation is sufficient. The 
downside is that this form of integration requires 
that the items to be memorized are attended 
sequentially, one object at a time.

The integrated DF architecture representing 
integrated objects in an allocentric frame is shown 
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in Figure 8.1. To keep the system simple, we have 
again limited space to a single dimension. The above 
considerations are nonetheless valid; a scene repre-
sentation system with full two-dimensional visual 
space is presented in Chapter 9. Moreover, we con-
sider only the two simple feature dimensions of ori-
entation and color in this architecture, and do not 
employ any hierarchical system with increasingly 
complex visual features. This allows us to focus on 
the integration of feature and spatial information 
in scene perception, although it limits the possible 
visual stimuli we can deal with to simple oriented 
bars. In Figure 8.1, the lavender-shaded region in 
the lower right of the figure shows the visual atten-
tion model from Chapter  5. There are two retinal 
fields (that correspond to the visual sensory fields 
in Chapter  5):  one defined over retinal space and 
a color (hue) dimension; the other defined over 
retinal space and an orientation dimension. These 

fields project to a one-dimensional spatial attention 
field, and two one-dimensional feature attention 
fields. Note that, as in Chapter 5, both retinal fields 
are coupled to the shared spatial attention field to 
enable the binding of features into an integrated 
object representation. Moreover, the attention 
fields have global inhibition to ensure that only one 
peak is built at a time.

The rose-shaded region in the top panel of 
Figure 8.1 shows the transformation field from 
Chapter  7. This field transforms spatial informa-
tion in the retinal frame into a body-centered (or 
world-centered) frame using an estimate of gaze 
direction from a gaze field. The result is a peak in 
the allocentric spatial attention field (which, again, 
has global inhibition). Recall that in Chapter 5, we 
implemented a specific variant of saccade planning 
and generation to capture findings from the remote 
distractor paradigm. In Figure 8.1, we show a “gaze 
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control” field as a placeholder for these details. 
Note that we have also included an inhibition-of-
return (IOR) field coupled to the retinal spatial 
attention field. We use this IOR field in the demon-
strations and exercises that appear later in the chap-
ter to implement an autonomous version of covert 
attention. We will return to these details in the next 
section.

The unshaded region of Figure 8.1 in the lower 
left shows the scene-level WM and attention fields. 
The WM representation should be multi-item 
to enable functional interaction with multiple 
objects in the world in a way that remains invari-
ant over time as gaze shifts. Moreover, data suggest 
that this WM must integrate features and spatial 
positions—that is, people robustly remember 
which objects were where in the scene. Accordingly, 
the scene-level WM is implemented as a stack of 
space-feature fields, with different feature dimen-
sions bound through the shared, allocentric spatial 
dimension. These WM fields receive ridge inputs 
from the allocentric spatial attention field and the 
feature attention fields to form localized peaks at 
the intersection points. In addition, the fields are 
coupled bidirectionally with the one-dimensional 
WM fields (discussed later) to form a distributed 
WM representation over multiple feature spaces. 
The peaks in the scene-level WM fields are formed 
sequentially, one item at a time, and then remain 
self-sustained when attention is shifted to another 
item or the stimuli are removed.

The scene-level attention fields are used to 
select one item from the scene WM, for instance, to 
compare it to a selected perceptual item. They also 
have a role in indicating when the memorization 
or comparison for one item is complete and atten-
tion should be allowed to shift to the next item. 
Each scene-level attention field receives localized 
input from the corresponding scene WM field, 
with each WM peak inducing a hill of subthresh-
old activation in the scene attention field. Ridge 
inputs from the one-dimensional attention fields 
(which may specify either a spatial location or a 
feature value, depending on the task) can induce 
peaks from these localized activation hills and 
thereby select one WM item. This can be seen in 
the Figure 8.1, where the system has formed a WM 
representation of the present stimuli and has cur-
rently selected the item on the right both in reti-
nal and in the scene-level attention fields. Like the 
one-dimensional attention fields, the scene-level 
attention fields feature global inhibition and allow 
only a single peak.

Once a scene representation has been created by 
sequentially attending to items and forming peaks 
in the scene WM field, it can be used for different 
tasks. In Chapter  9 we will describe how a scene 
representation in working memory can be used for 
planning actions in a robotic context. Here, we will 
focus on change detection tasks, which have played 
a prominent role in psychophysical experiments 
for probing the properties of working memory. 
Chapter 6 showed how change detection may arise 
within DFT. Here, change detection was based on 
comparing a WM representation of metric featural 
information with current sensory input. This was 
achieved using a three-layer architecture in which 
WM peaks inhibited associated sites in a contrast 
layer via a shared layer of inhibitory interneurons. 
The contrast field then became active only when 
current sensory inputs failed to match the contents 
of working memory.

This principle is implemented in the 
green-shaded portions of Figure 8.1. Each feature 
dimension has a feature WM field and a feature 
contrast field. Similarly, the allocentric spatial 
pathway has a spatial WM field and a spatial con-
trast field. We do not employ separate inhibitory 
fields here as in Chapter  6, but replace them by 
direct inhibitory projections from the WM fields 
to the contrast fields in order to limit the complex-
ity of the architecture. Note that the contrast fields 
receive direct input from the retinal fields as well as 
input from the attention fields. The retinal connec-
tion enables the system to detect changes in spatial 
or featural information in parallel. As we discuss 
later in the chapter, this captures key aspects of 
behavioral data from the change detection task (see 
Chapter 6). The reciprocal connection between the 
contrast and attention fields allows the system to 
direct attention to changes it has detected.

Two other aspects of the green-shaded regions 
in Figure 8.1 are worth highlighting. First, note 
that the WM fields have reciprocal connections 
to the attention fields. These implement the 
biased competition effects explored in Chapter  5. 
Second, peaks in the one-dimensional WM fields 
are built via input from corresponding attention 
fields, and the WM fields are reciprocally coupled 
to the scene WM fields. The former connection 
ensures that peaks are built in WM—both in 
the one-dimensional WM fields and in the scene 
WM fields—only when an item is moved into 
the attentional foreground. The latter connec-
tions ensure that the pattern of WM peaks remain 
consistent between the higher-dimensional and 
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lower-dimensional fields. In particular, the bidirec-
tional coupling with the spatial WM field ensures 
that the peaks in the scene WM fields remain spa-
tially aligned, which stabilizes the spatial binding of 
the different feature values that belong to one item.

The change detection process captured by the 
three-layer architecture will detect the introduc-
tion of a new value along any dimension in paral-
lel (and draw attention to the change). But how do 
people detect changes when no new features are 
introduced? For instance, how do people detect 
that the red cup of coffee seen a few seconds ago is 
now in a new spatial position (but is the same cup), 
but the blue cup of tea has been replaced with a blue 
cup of coffee? This requires comparing the con-
junction of features in the current retinal fields with 
the conjunction of features in the scene WM fields.

One approach to this challenge would be to repli-
cate the three-layer structure at the level of the scene 
representation, that is, to add a stack of allocentric 
contrast fields. The problem is that, even with this 
kind of structure, we could not compare multiple 
items in parallel, because we would still need to bring 
the items into the allocentric frame one by one. The 
alternative is to compare items based solely on the 
individual feature dimensions, but to augment the 
mechanism so that the comparison can be focused 
on individual items. Conceptually, the idea is to 
bring each item from the current stimulus array into 
the attentional foreground one at a time and to select 
an appropriate candidate item for comparison from 
the scene WM field. This selection takes place in the 
scene attention field, and depending on the task, it 
can be based either on the position or on the features 
of the attended perceptual item. The actual compar-
ison between the perceptual and the memory item 
and the detection of changes then takes place in the 
feature contrast fields. These fields receive input 
from the feature attention fields (excitatory) and 
the scene attention fields (inhibitory) and will form 
a peak if a mismatch occurs between these inputs. 
The feature contrast fields, therefore, play a double 
role in change detection: They perform both a par-
allel change detection for multiple feature values 
(between the multipeak retinal fields and the multi-
peak WM fields) and a sequential change detection 
for selected items (between the single-peak feature 
attention fields and the single-peak scene attention 
fields).

The sections that follow go through a series of 
simulations to demonstrate the functionality of 
the integrated model in different variants of the 
change detection task. Before proceeding to that 

discussion, however, it is useful to consider how the 
architecture in Figure 8.1 was inspired by the neu-
ral literature on object representations.

In Chapter  5, we discussed the neural basis 
for the biased competition architecture (see 
lavender-shaded region of Figure 8.1). Brief ly, the 
retinal fields capture key aspects of early visual 
cortical representations (e.g., in V1 and V4), the 
gaze control system captures aspects of saccade 
planning and execution in the frontal eye fields 
and superior colliculus (see Chapter  5), and the 
spatial and featural projections off the retinal fields 
mimic properties of visual-selective attention (e.g., 
in areas of parietal cortex for spatial attention). 
More generally, the attention fields are the starting 
point for two clear visual pathways in Figure 8.1—a 
“dorsal” stream for “where,” or spatial, informa-
tion, and a “ventral” stream for “what,” or featural, 
information.

Moving along the dorsal pathway, the model 
implements the spatial transformation needed 
to move from a retinal frame to a body- or 
world-centered frame. As discussed in Chapter  7, 
this captures evidence of gain-modulated neurons 
in area LIP. Continuing along the dorsal pathway 
into the green-shaded region, we see allocentric rep-
resentations of space involved in change detection. 
These fields will mimic aspects of neural activa-
tion in the intraparietal sulcus (IPS). For instance, 
Todd and Marois (2004) reported that IPS activa-
tion increased across set sizes in a change detection 
task as people remembered one to four objects. 
Critically, the neural signal showed an asymptote 
beyond four items, indicating a capacity-limited 
neural representation. The DF model discussed 
in Chapter  6 shows a similar capacity limit (see 
Johnson, Spencer, & Schöner, 2009).

The ventral pathway in Figure 8.1 also captures 
aspects of the neural literature on object represen-
tations. As in neural data, this pathway is divided 
into different neural populations for different fea-
ture dimensions. Moreover, the scene-level fields 
are sensitive to both featural and spatial informa-
tion, like many neural populations in the ventral 
pathway, including regions of the inferior temporal 
cortex. Finally, the WM fields in the ventral path-
way will show a capacity-limited increase in neural 
activation. This has been observed in multiple cor-
tical fields in the ventral pathway in fMRI studies of 
change detection (see Pessoa & Ungerleider, 2004; 
Todd & Marois, 2004).

In summary, then, the model in Figure 8.1 
captures many aspects of the visual-processing 
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pathways revealed by neurophysiological and neu-
roimaging studies. In the sections that follow, we 
examine whether this same model can also capture 
behavioral constraints from studies of VWM.

SE QU E N T I A L  F OR M AT ION 
OF   V I SUA L  WOR K I NG 
M E M ORY  F OR   OBJ E C T S 
I N   A   SC E N E
In the next sections, we demonstrate the behavioral 
functionality of the DF model shown in Figure 8.1 
using an interactive simulator that implements the 
model. The simulator is the focus of the exercises 
for this chapter. You may want to use the simula-
tor as you work through this chapter to illustrate 
and explore the different functions of the model. 
We employ one significant simplification for these 
simulations, in that we assume that gaze direc-
tion always remains fixed. This is permissible for 
the experimental tasks we want to emulate in the 
model, since these can generally be solved by shift-
ing covert attention instead of making overt eye 
movements. As a result, the transformation field 
and gaze control system have been omitted from the 
architecture, and a one-to-one projection between 
the retinal and allocentric spatial dimensions is 
implemented. Figure 8.2 shows a snapshot of the 
simulator. Note that we have aligned the allocentric 
spatial attention and contrast fields with the scene 
attention fields to highlight their spatial correspon-
dence when an object is attended. Similarly, we 
have aligned the allocentric spatial WM field with 
the scene WM fields to highlight their spatial cor-
respondence. Keep in mind that all of these fields 
actually share the same allocentric spatial dimen-
sion, but other constraints on the arrangement of 
fields in the figure do not allow us to present them 
all aligned with each other.

The buildup of a WM representation for a visual 
scene is performed sequentially in the model. To 
this end, one item at a time is selected and a distrib-
uted representation of its features and its location 
is formed. Attentional selection of an item occurs 
at the retinal level (lavender-shaded parts of model 
in Figure 8.1). It results from the properties of the 
one-dimensional attention fields (for space and 
feature) and their coupling to each other via the 
retinal fields. In particular, the inputs from the 
retinal fields vie for attention through competitive 
interactions in the attention fields. When one item 
begins to gain strength in one attention field, this 
inf luences competition in the other attention fields 
via the coupling through the retinal fields (this 

is directly equivalent to the biased competition 
model detailed in Chapter 5). The result is a consis-
tent selection of the feature values and spatial loca-
tion of a single item from the visual scene. In Figure 
8.2, the left item has been selected, resulting in a 
single peak in the retinal spatial attention field, the 
color attention field at the hue value for red, and the 
orientation attention field at an orientation of 135°. 
Note that the WM and contrast fields can also play 
a role in the attentional selection. We will ignore 
the contrast fields for now and take a detailed look 
at their function and inf luence on attention in the 
next section.

When an object has been selected in the atten-
tion fields at the retinal level, activation is projected 
along the spatial and feature pathways. The retinal 
spatial attention field projects to the allocentric spa-
tial attention field via the (hypothetical) transfor-
mation mechanism that establishes a bidirectional 
mapping between the two frames of reference. As 
can be seen in Figure 8.2, a peak has formed in the 
allocentric spatial attention field on the left. The 
peaks in the one-dimensional attention fields now 
drive the formation of WM peaks: The allocentric 
spatial attention field drives the one-dimensional 
spatial WM field and induces a peak there. At the 
same time, each feature attention field induces a 
peak in its corresponding feature WM field. Now 
both the one-dimensional attention fields and the 
one-dimensional WM fields project ridge inputs 
into the scene WM fields: The spatial fields create 
vertical ridges, the feature fields create horizontal 
ridges. The ridges from the attention fields and the 
corresponding WM fields lie on top of each other 
(although the WM fields may induce additional, 
weaker ridges once several items have been encoded 
in WM). The combination of all four inputs induces 
an activation peak at the intersection point between 
the horizontal and vertical ridges in each scene WM 
field. These peaks provide the integrated represen-
tation of the allocentric position and the features of 
the attended item, bound together via the spatial 
dimension.

The peaks in the scene WM fields project acti-
vation to the scene attention fields. This is a full 
two-dimensional projection, meaning that it does 
not induce ridges of activation but localized activa-
tion hills in the scene attention field. These activa-
tion hills form at the same positions as the peaks in 
the WM fields. Like the scene WM field, the scene 
attention field additionally receives ridge inputs 
from the one-dimensional attention fields (for 
features and allocentric space). These ridge inputs 
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alone are not sufficient to induce peaks, but once 
the additional localized input from the scene WM 
field arrives at the intersection point of these ridges, 
the activation in the scene attention field reaches 
the output threshold and a peak forms.

Since the peak in the scene attention field can 
only form after the WM representation is estab-
lished, it can be used as a confirmation signal that 
the currently attended item has been memorized. 
It is therefore used in the model to drive a dis-
engagement of attention from the current item, 
which allows the selection of another item in the 
scene. This is implemented via a set of dynamic 

nodes (not shown in the figure). One peak detec-
tor node is associated with each scene attention 
field, which receives globally summed output 
from the field. These nodes act as binary switches 
that become active (i.e., produce an output signal) 
whenever the total output of the corresponding 
field exceeds a fixed threshold—that is, when a suf-
ficiently strong peak has formed there. These two 
peak-detector nodes drive a third node, called the 
condition-of-satisfaction (COS) node. This node 
becomes activated only when both peak detector 
nodes are active, thus indicating that the memori-
zation is complete for all features. The COS node 
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FIGURE 8.2: Activation patterns in the scene representation architecture during memorization of the first item. The 
fields are arranged analogous to Figure 8.1, only the placement of the allocentric spatial fields (top left) is slightly 
changed: The allocentric spatial attention field and the contrast field are spatially aligned with the scene attention fields, 
the spatial WM field is spatially aligned with the scene WM fields. The current visual scene is depicted in the top right; it 
provides localized inputs to the retinal fields. In the depicted situation, the leftmost item (red diagonal bar) is selected in 
the retinal fields and one-dimensional attention fields. Feature and spatial information is then transmitted via separate 
paths, and representations of the item’s features and position are formed in the one-dimensional WM fields. They are 
then combined again in the two-dimensional scene WM fields to memorize the conjunction of features in this specific 
item. Abbreviations: atn, attention field (scene, feature [ftr], retinal spatial [spt/ret], or allocentric spatial [spt/al]); con, 
contrast field (feature or spatial [spt]); IOR, inhibition of return field; ret, retinal field; WM, working memory field 
(feature, spatial, or scene).
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boosts the IOR field, which forms a peak for the 
currently attended object location. This peak is 
self-sustained, and it suppresses activation for this 
spatial position in the spatial attention fields. The 
effect is a disengagement of attention from the 
item at that position (which is facilitated by global 
inhibition from the COS node to the feature and 
scene attention fields). Moreover, because the IOR 
peaks are sustained, attention will not be redirected 
toward previously attended items.

After this sequence of events, one item from 
the scene is encoded in WM. There is one peak in 
each scene WM field, and one in each of the feature 
and spatial WM fields. The peaks are self-sustained 
through lateral interactions in each of the fields 
(local excitation and local surround inhibition) 
and mutual excitation between the fields. Each 
one-dimensional WM field projects a weak ridge 
input to the scene WM field and receives a weak 

input back from it. This coupling keeps the peak 
positions in all of the WM fields aligned. The two 
scene WM fields are coupled indirectly via the spa-
tial WM field. There is also a continuous coupling 
of the one-dimensional WM fields to the retinal 
scene through weak parallel inputs from the retinal 
fields. The peaks in the attention fields have disap-
peared after the activation of the COS node, which 
in turn causes the COS node itself to return to its 
resting level. The whole process can now start anew 
for the next item in the scene, with the sustained 
peak in the IOR field ensuring that the same item is 
not attended twice.

Since all of the WM fields support multiple peaks 
(using only local surround inhibition), additional 
peaks can form for subsequent items. This is illus-
trated in Figure 8.3. Here, WM representations have 
already been formed for two of the items in the scene, 
and the third item is now attended. New peaks emerge 
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FIGURE  8.3: Adding a third item to a partially formed scene representation in WM. Here, WM peaks have already 
formed for the left and middle item in the visual scene (see peaks in scene WM matching the retinal field), and now the 
item on the right is encoded in WM. The item is selected through spatial and feature attention, and peaks form in the 
one-dimensional WM fields for location and features. The one-dimensional attention and WM fields then project to the 
scene WM fields. While the input from the spatial and feature WM fields is ambiguous, the single-ridge inputs from the 
attention fields uniquely determine a position for a new peak in each scene WM field. Abbreviations as in Figure 8.2.
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in the one-dimensional WM fields for the attended 
item due to input from the one-dimensional attention 
fields. The attention and WM fields together now 
project to the scene WM fields. Note that in addi-
tion to the ridges for the currently attended item (one 
horizontal and one vertical ridge in each scene WM 
field), there are additional, weaker ridge inputs from 
the other peaks in the space and feature WM fields. 
However, new peaks form in the scene WM fields 
only from the intersection of the strongest ridges, 
representing the position and features of the cur-
rently attended item. Also note that there are multiple 
hills of activation in each scene attention field, each 
reflecting one peak in the corresponding scene WM 
field. Again, only one of them can turn into an actual 
peak, the one where the localized input from the scene 
WM field and ridge inputs from the one-dimensional 
attention fields come together.

In this fashion, the items are memorized 
sequentially, and the binding between the indi-
vidual features of each item can be retained even 
though they are transmitted via different pathways. 
This does not mean that the WM representations of 
the items are isolated from each other. Both in the 
one-dimensional and two-dimensional WM fields, 
individual peaks may interact in the same ways as 
described in Chapter 6. Peaks may repel each other 
due to lateral inhibition, and in some cases they 
may merge when particularly close. These interac-
tions are what primarily limits the precision of the 
memory as well as its total capacity in the model.

The result after a scene with three items has 
been processed is shown in Figure 8.4. When the 
stimulus array is turned off, the peaks in the IOR 
field decay. Unlike WM peaks, they are only sus-
tained as long as they receive some input from the 
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FIGURE  8.4: Scene representation as in Figure  8.3, after the sequential memorization of items is completed and the 
stimulus array has been turned off. Self-sustained activation peaks for each item are present in the scene WM fields, as 
well as peaks for the individual features and locations in the one-dimensional WM fields. The peaks in the scene WM 
fields induce subthreshold hills of activation in the scene attention fields, which will be used in the subsequent tasks to 
select individual items from WM. The contrast fields show depressions for the memorized feature values and locations, 
since they only receive inhibitory input from the WM fields. The peaks in the IOR field have decayed after the visual 
input was turned off, such that the system is ready to attend to the same locations again. Abbreviations as in Figure 8.2.
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retinal fields. The model is now ready to process a 
new stimulus array and compare it to the WM rep-
resentation. We will use the WM representation 
shown in Figure 8.4 as the basis for comparison in 
all tasks described in the next sections.

PA R A L L E L  DE T E C T ION 
OF   F E AT U R E  C H A NG E S
Change detection tasks are a prominent tool to 
investigate the properties and capacities of VWM, 
and they come in many different forms. We have 
already discussed such tasks in Chapter  6, where 
we presented a DF model for detecting changes in a 
single feature or spatial dimension. Here, we extend 
this discussion to include multiple feature dimen-
sions. In the sections that follow, we extend things 
further to examine how people detect changes 
in conjunctions between space and features, and 
between different feature conjunctions.

The first challenge for the extended change 
detection architecture is to reproduce what was 
described in Chapter 6—the detection of changes 
in a single dimension (either space or feature). For 
instance, in one of the experiments presented by 
Treisman and Zhang (2006), subjects were first 
presented with a sample array of three colored 
shapes, which they were asked to memorize. After a 
delay period, the test array was shown. It either con-
tained the same colors and shapes as the first one, 
or one of the colors or shapes was replaced by a new 
value not contained in the sample array. Note that 
in this setting, the locations of the individual items 
as well as the feature conjunctions are irrelevant for 
the correct response.

The extended DF model solves this task in 
a fashion directly analogous to the mechanism 
explained in Chapter  6. Changes can be detected 
in parallel, that is, without sequentially attend-
ing to each item. The different contrast fields in 
the model constitute the places where the actual 
change detection is happening. We have ignored 
the contrast fields in the previous section since they 
are not necessary for initial formation of the scene 
memory. However, they do inf luence the atten-
tional mechanisms, even during the memorization 
phase, in a meaningful way. We shall brief ly revisit 
here their function during memorization, which is 
directly related to the change detection task itself.

Each contrast field—both for surface features 
and for space—receives direct excitatory input 
from the corresponding dimension of the retinal 
fields. As can be seen in Figure 8.2, they imme-
diately form peaks when a new stimulus array is 

presented (as long as there is no matching represen-
tation in the WM fields). These peaks indicate the 
novel features present in the visual input. Peaks are 
stabilized by moderate lateral interactions to allow 
a distinct transition between peak and no-peak 
states. Lateral inhibition is only local, so multiple 
peaks can form simultaneously in response to the 
parallel inputs from the retinal fields.

The main antagonist to this multi-item excit-
atory input from the retinal fields is an inhibitory 
input from the one-dimensional WM fields. As 
these WM fields can likewise have multiple peaks, 
they can also project inhibition to multiple loca-
tions in the contrast fields. The contrast fields 
then perform a comparison between the memory 
and perceptual representations in each dimension 
(features and space), simply through a summa-
tion of these inputs: Where the inhibitory memory 
input and the excitatory retinal input match, they 
cancel each other out; where the retinal input is 
not matched by a memory input, it can generate a 
peak. This is the same principle as in the three-layer 
model described in Chapter  6, although here it is 
implemented via a direct inhibitory projection.

The effect of this can be seen when compar-
ing Figures 8.2, 8.3, and 8.4, . In Figure 8.2, at the 
beginning of the memorization process, there are 
peaks for all three items in each contrast field. In 
Figure 8.3, two items have already been memorized. 
The peaks for these items’ feature values in the con-
trast fields are gone, the activation patterns in those 
regions are relatively f lat (excitatory and inhibitory 
inputs cancel each other out). The features of the 
third item, for which memorization is not yet com-
plete, are still considered “novel.” Finally, in Figure 
8.4, the memorization is complete, and the visual 
stimulus and the resulting excitatory inputs are 
gone. As a result, we see the inhibitory troughs in 
the contrast fields created by active inhibition from 
the WM peaks. Note that there are other inputs 
that affect the contrast fields (excitation from the 
feature/spatial attention fields and inhibition from 
the scene attention fields). Some effects of these can 
be seen in Figures 8.2 and 8.3, but they do not quali-
tatively alter the behavior during memorization and 
parallel change detection. We will discuss these in 
detail in the next sections.

The same mechanisms described for the memo-
rization period also take effect when a novel stimu-
lus array—the test array—is presented after the 
previous one—the sample array—has been mem-
orized. This enables the model to solve the basic 
change detection task for simple feature changes. 
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If the memorized features match the features pres-
ent in the test array, the inhibitory and excitatory 
inputs to the contrast fields will cancel each other 
out. If there is a mismatch in one feature, the cor-
responding contrast field will receive excitation in a 
region not suppressed by WM input. This can hap-
pen either when there is a qualitatively new feature 
in the display or if there is sufficient quantitative 
deviation between feature values in the memory 
and sample array.

The latter case is depicted in Figure 8.5. As in 
Figure 8.4, three objects have been consolidated 
in WM (see scene WM fields). The test array pre-
sented now is identical to the sample array, with 
one exception:  The color of the leftmost item has 
been changed from red to orange. Consequently, 
when the test array is presented, the hue value of 
this item does not match any of the memorized hue 
values. This allows the excitatory input to the color 

contrast field to form a peak immediately after the 
stimulus presentation. As in Chapter 6, this peak in 
the contrast field is the basis for change detection 
in the model.

Note how detection of change in Figure 8.5 
does not depend on the binding of feature values to 
spatial locations or to each other. The comparison 
only takes place among the values within each indi-
vidual feature field. This ref lects the task require-
ments, where changes in the features’ locations and 
their conjunctions should be ignored.

Detecting changes by forming peaks for novel 
features is the key role of the contrast fields, but it 
is not their only function in the architecture. Each 
contrast field also projects to the corresponding 
feature or spatial attention field in an excitatory 
fashion, thereby guiding attention to novel stimuli. 
This additional input to the attention fields is not 
very strong, but it can bias the attentional selection 
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FIGURE 8.5: Detection of a single-feature change. A new array of visual stimuli is presented with one feature changed 
(the red bar is replaced by an orange bar). The mismatch of memorized and perceived features in the color dimension 
leads to formation of an activation peak in the color contrast field. The peak forms immediately after the new stimulus 
array is presented without requiring attentional selection of the item first (parallel detection of feature changes). In the 
orientation dimension, the present values in the stimulus array still match the memorized orientations, and excitatory 
and inhibitory inputs cancel each other out in the contrast field. Abbreviations as in Figure 8.2.
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toward one item: If several visual items vie for atten-
tion, a small additional input to one of the feature 
attention fields is often sufficient to decide over the 
outcome, given the reciprocal coupling of all atten-
tion fields to each other via the retinal fields.

There is evidence for such an autonomous 
allocation of attention and parallel feature change 
detection in the psychophysical literature. Hyun 
and colleagues (2009) measured the onset of atten-
tional selection during a single-feature change 
detection task using event-related potentials 
(ERPs). They found a fast change in spatial allo-
cation of attention to the side where the feature 
change had occurred. The onset of this change 
was independent of the number of items in the dis-
play, indicating a parallel process. There was also 
another component in the ERP waveform that was 
indicative of a second, iterative process. We will 
describe such processes for other tasks later in the 
chapter. It is possible that humans tend to employ 
iterative or sequential processing after a change has 
been detected, even in situations where they are not 
necessarily needed.

The attentive reader may have noticed that 
there is a potential conf lict here in the allocation in 
attention. In Chapter 5, we discussed in detail the 
biased competition effect for VWM (Hollingworth, 
Matsukura, & Luck, 2013):  Stimuli that match a 
memorized color are more likely to be selected as 
targets for timed saccadic eye movements, even 
when stimulus colors are irrelevant in the saccade 
tasks. This indicates an autonomous allocation 
of attention to stimuli that match memorized fea-
tures. The coupling in Chapter  5 between atten-
tion fields and WM fields used in the model of this 
effect is also present here in the scene representa-
tion model. In contrast, the allocation of attention 
to novel items just described indicates a bias in the 
opposite direction. It is likewise incorporated in the 
model, through projections from the contrast fields 
to the attention fields.

How can these opposite effects be reconciled? 
While the model cannot give a definite answer, the 
implementation presented here suggests a possible 
route to account for both seemingly contradic-
tory experimental results. First, there is difference 
in the time course between the two effects:  The 
bias toward memorized features is a result of the 
sustained WM peaks. Their effect on the atten-
tion field is present even when there are no visual 
stimuli, and they start to inf luence the attentional 
selection immediately after a new stimulus array 
is presented. A  dominant bias toward memorized 

features can therefore be expected in tasks where a 
fast selection decision directly after stimulus onset 
is encouraged, as is the case in the timed saccade 
task of the biased competition experiments.

The situation is different for the bias toward 
novel features, which only emerges after peaks have 
formed in the contrast fields. This happens quickly 
after a stimulus with a novel feature value is pre-
sented, but still not instantly. Often, by this time, 
the competition for attention between stimuli has 
already resulted in a decision for one item. However, 
if this fast attentional selection is suppressed—for 
instance, by globally lowering the activation level 
of the spatial attention field—the inf luence of the 
contrast field has time to emerge. This may be 
appropriate in the change detection task of Hyun 
and colleagues, where it is likely more efficient for 
subjects to first take in the whole stimulus array 
rather than to quickly focus their attention on a 
single item. In the model, the impact of the contrast 
fields on attentional selection is stronger than that 
of the WM fields, so it can dominate the selection 
process once the contrast field peaks have formed. 
This would explain the autonomous allocation of 
attention to items with novel features.

Modulating the global activation values of dif-
ferent fields in the architecture offers a mechanism 
to significantly alter the behavior of the model and 
adjust it to different task requirements. The lower-
ing of the activation in the spatial attention field just 
mentioned basically turns off the sequential atten-
tional processing of items and brings the model into 
a purely parallel processing mode. In this mode we 
can even perform a parallel memorization of pure 
feature values (but not feature conjunctions!), by 
increasing the resting levels of the feature WM 
fields. We might also eliminate change detection 
and the inf luence of feature novelty on attention 
by tuning down the contrast fields. This adjust-
ment may further help to explain why no novelty 
preference was observed in the biased competition 
experiments.

Experimental evidence for such task-dependent 
adjustments of attentional mechanisms has been 
found for the IOR effect (also implemented in 
our model). This effect can be observed when 
subjects are required to make a saccade to a loca-
tion they have recently inspected, for example, 
during a visual search task. Saccade latencies are 
then on average longer than for saccades to novel 
locations (Posner & Cohen, 1984). However, sub-
sequent experiments (Dodd, Van der Stigchel, & 
Hollingworth, 2009)  have found that, depending 
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on the task requirements, the IOR effect can be 
replaced by facilitation of return. Inhibition tends 
to occur in tasks where re-fixating an item is disad-
vantageous (as in visual search); facilitation occurs 
when re-fixations may be helpful for the task (e.g., 
during memorization of a complex scene). While 
these effects are clearly task-dependent, they can-
not really be said to be intentional (the subjects 
have no direct incentive to make faster or slower 
saccades). Instead, they likely ref lect global adjust-
ments in the neural system in response to a concrete 
task, which in turn also alters the response to stim-
uli not part of the task. This matches the possible 
adjustments in the model by changing global acti-
vation levels of specific fields.

C H A NG E  DE T E C T ION 
F OR   SPAC E-F E AT U R E  B I N DI NG
In another variant of the change detection task, 
participants are asked to detect whether the same 
features are still present at the same locations 
(Johnson, Hollingworth, & Luck, 2008). Here, 
the items in the sample array and in the test array 
always occupy the same locations. Moreover, the 
same feature values are present in both displays, 
but the conjunctions of features and locations 
may change. In a typical “change” trial, two items’ 
feature values in one feature dimension (e.g., 
color) are swapped between the sample and test 
arrays. According to the feature integration theory 
(Treisman & Gelade, 1980), detecting changes in 
space-feature bindings requires focused attention 
on the changed objects. Performance in such tasks 
is lower than in comparable tasks in which simple 
feature changes have to be detected (Wheeler & 
Treisman, 2002), indicating that additional pro-
cesses are required here.

The DF model can solve this task as well, in a 
form consistent with the feature integration theory 
and using the same parameters as those used in the 
previous task. The encoding of the sample array in 
the WM fields is performed exactly as before, yield-
ing the result shown in Figure 8.4. Thus, we will 
focus on the series of events that takes place when 
the test array is presented, shown in Figure 8.6. If 
no new feature values are detected (which would 
generate a novelty peak in the contrast layer and 
attract attention as described earlier), the system 
will begin by attending to one randomly selected 
item in the visual scene, here the one on the left. 
This takes place through competition in the spatial 
and feature attention fields, and their coupling to 
each other via the retinal fields.

Next, the feature and spatial attention fields 
project ridges into the scene attention fields along 
the separate pathways. The retinal spatial atten-
tion field induces a peak in the allocentric spatial 
attention field, which then projects a vertical ridge 
into the scene attention fields. Similarly, the fea-
ture attention fields project horizontal ridges into 
the scene attention fields for the corresponding 
feature values. In the model, the spatial pathway is 
overall somewhat dominant over the feature path-
ways. The peaks in the spatial attention fields will 
form a little faster and be slightly stronger, and they 
provide stronger input to the scene attention fields. 
This is useful in general to achieve a robust binding 
of the other feature dimensions via space, and it is 
necessary in particular for the current task.

We use the currently attended spatial location 
to select a specific WM item in the scene attention 
field. This is achieved as follows. After a scene has 
been memorized, there are localized, subthreshold 
hills of activation in the scene attention field (see 
Figure 8.4). These are the result of a projection 
from the scene WM fields, and each of them ref lects 
the combination of spatial position and feature 
value of one memorized item. The vertical input 
ridge that now arrives from the allocentric spatial 
attention field is sufficient to lift one of them to the 
output threshold and form a peak. (Remember that 
in this task, the items in the sample and test arrays 
occupy the same locations, so the ridge input will 
always coincide with one of the memory peaks). 
Consequently, in Figure 8.6, the left item selected 
in the retinal scene is now also selected in the scene 
attention fields. Once a peak has formed in each of 
these fields, it suppresses the remainder of the field 
through global inhibition. The weaker ridge inputs 
from the feature attention fields therefore have lit-
tle inf luence on the selection process in the scene 
attention fields.

This coupled spatial selection process now 
allows direct comparison of one selected item in 
the current scene with the item at the same loca-
tion in working memory. The feature values of the 
current visual item have been selected in the fea-
ture attention fields. The feature values of the cor-
responding memorized item can be read out from 
the scene attention fields. The actual comparison 
again takes place in the contrast fields for the indi-
vidual features. We have already described how 
the contrast fields perform change detection by 
comparing a retinal and a WM input; this will not 
produce any peaks in the current scenario, as there 
are no entirely novel feature values in the test array. 

 



 Integrating “What” and “Where” 213

However, each contrast field receives an additional 
pair of inputs: An excitatory input is received from 
the corresponding feature attention field, and an 
inhibitory one is received from the scene attention 
field. These are the basis for change detection in the 
current task.

The comparison process and its result can be 
seen in Figure 8.6. Here, the two outer items in the 
test array have swapped their colors compared to 
the sample array. The leftmost item in the current 
array has been selected by the attentional process 
for the comparison. As seen in the figure, for the 
orientation dimension the same value is selected in 
the feature attention field and the scene attention 
field. The two corresponding inputs cancel each 
other out in the orientation contrast field, so no 
peak forms here. In the color dimension, however, 

there is a mismatch: In the scene attention field, the 
color of the selected memory item is red, while in 
the feature attention field there is a peak for blue. 
Consequently, a peak can form at the hue value for 
blue in the color contrast field, and a depression is 
visible at the hue value for red. The system has thus 
detected the difference in the color dimension.

Note that to actually decide whether two arrays 
of objects are the same or different, the system must 
sequentially attend to each item in the test array 
one at a time and compare it to the corresponding 
memory item. These sequential transitions in covert 
attention are driven by the same mechanism as dur-
ing the memorization of a scene: When sufficiently 
strong peaks have formed in the scene attention 
fields, their associated peak detector nodes become 
active. By this time, the contrast fields will already 

ret

0°

45°

90°

135°

180°

0°

60°

180°

300°

360°

120°

240°

−10° −5° 0° 5° 10°−5° 0° 5° 10°−10° −5° 0° 5° 10°

Spatial location (allocentric) Spatial location (retinocentric)

C
ol

or
 (h

u
e 

va
lu

e)
 

O
ri

en
ta

ti
on

Visual scene

ret

W
M

 (f
tr

)

co
n

 (f
tr

)

at
n

 (f
tr

)atn (scene)WM (scene)

con (spt)

atn (spt/al)

atn (spt/ret)

IOR

WM (spt)
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tion. Abbreviations as in Figure 8.2.
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have formed a peak if there was any feature mis-
match, so we may assume that comparison for the 
attended item is complete. The peak detector nodes 
activate the COS node, which boosts the IOR field, 
and the IOR field suppresses the spatial selection of 
the current item and prevents it from being selected 
again. When a feature mismatch is found in any one 
item, the two scenes are different and the compari-
son process can be terminated (this is not yet imple-
mented in the model). When all items have been 
processed without any change being found, we may 
conclude that the two stimulus arrays are the same.

C H A NG E  DE T E C T ION 
F OR   F E AT U R E  C ON J U NC T IONS
The third type of change detection addressed here 
deals with feature conjunctions. This can be seen as 
the laboratory version of a task we face in everyday 
life: Are two sets of objects the same, irrespective of 
their location? Imagine, for instance, that you have a 
few writing tools you typically use for work, like a blue 
fountain pen, a red ballpoint pen, and a green pencil. 
Now if someone shows you a set of writing imple-
ments lying on a desk and asks whether they are yours, 
you must compare these items with what you remem-
ber. Is there a fountain pen that is blue and has the 
right size and shape? Is there a red ballpoint pen and a 
green pencil? Critically, the locations of the items are 
not informative. It is quite possible the objects have 
been moved since you last saw them. But the conjunc-
tions of the different features—form, color, size, and 
so on—must remain the same. Real-world objects 
don’t swap their colors, for instance.

In the laboratory version of this task, partici-
pants are again shown two arrays of simple novel 
objects—a sample array and a test array. Critically, 
the items in the two arrays may now be spatially 
scrambled, either switching places or occupying 
novel locations (Wheeler & Treisman, 2002). The 
task is to determine whether the feature conjunc-
tions in the test array match the feature conjunc-
tions in the sample array, irrespective of location. 
Note that although this laboratory task is analo-
gous to the real-world example, there is a key 
difference—the laboratory task uses completely 
novel feature combinations. Thus, participants 
cannot rely on a longer-term memory of the blue 
pen. Rather, they must quickly build a WM repre-
sentation for the novel feature conjunctions on the 
f ly and detect changes in these conjunctions a few 
seconds later. It is quite remarkable that people can 
do this, given the neural computational constraints 
discussed previously.

When one thinks about how this task might 
be solved by participants, it is less clear-cut 
than the previous variants of the change detec-
tion task. Even given the constraints set by our 
architecture—separate spatial and feature path-
ways, binding through space for feature conjunc-
tions in working memory—there are several 
different cognitive strategies that might be used 
to approach this problem. For instance, one might 
compare each item in the scene with every WM 
item. If a match is found for each of them, then 
test and sample array can be said to be the same. 
Obviously, this approach would take a lot of time. 
Alternatively, one might extract the features of 
an attended item and directly check whether they 
occur at the same location in working memory. 
This test is not trivial, however, and would require 
additional elements in the model architecture.

The strategy we will pursue here to solve this 
task is the following:  We sequentially pick one 
item in the scene and then select a candidate item 
for comparison from working memory, based 
on a feature match. Then we compare these two 
selected items for differences in their feature val-
ues. The assumption is that if there is a matching 
item in the WM representation, that item will win 
in the feature-based selection, and the subsequent 
comparison will yield no differences. If there is no 
perfectly matching item in working memory, then 
some imperfect match will be selected as a candi-
date (e.g., matching only in one feature dimension), 
and the subsequent comparison will reveal the 
mismatch. This process can be implemented in the 
model without adding any new elements.

To carry out this strategy in the model—and, 
in fact, any of the possible strategies described 
here—we need to decouple the spatial selection in 
the retinal and allocentric frames. This ref lects the 
task instruction to ignore the items’ locations and 
will allow us to select items at different locations in 
the current scene representation and WM represen-
tation. It is achieved in the model by inactivating 
the projections between the retinal and allocentric 
spatial fields. In a more complete architecture, this 
might be achieved by de-boosting the activation 
level of a transformation field that provides the cou-
pling between the two reference frames. To com-
pensate for the resulting loss of inputs for some of 
the fields, we globally increase the resting level of 
the allocentric spatial attention field and the scene 
attention fields. These adjustments—which would 
be relatively easy to achieve in a biological neural 
system—are the only changes made to solve the 
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feature conjunction task. All other connections and 
parameters in the model remain the same as in the 
two previous tasks.

The comparison process in this scenario for 
a “same” trial is illustrated in Figures 8.7 and 8.8. 
In these figures, the positions of the two outer 
items have been exchanged between sample and 
test array, but the feature conjunctions have been 
retained. As in the previous scenario, the system 
has to attend to each item in the current scene 
sequentially. This is again achieved by competition 
in the coupled one-dimensional attention fields, 
which leads to selection of the rightmost visual 
item in Figure 8.7. With the spatial pathway inacti-
vated, only the feature attention fields provide ridge 
inputs to the scene attention fields. When these 
ridges overlap with localized inputs from the scene 
WM fields, they induce (relatively weak) activa-
tion peaks. Note that this happens in the two scene 

attention fields independently. At this early stage 
of the selection process, there is effectively no cou-
pling between the two fields via the spatial dimen-
sion. This coupling only comes about when peaks 
have formed in the scene attention fields and start 
projecting to the allocentric spatial attention field.

For a visual item that has a perfect match in the 
WM representation, the input from all scene atten-
tion fields will converge on one position in the spa-
tial attention field. The result is shown in Figure 
8.8. The peaks in the two scene attention fields have 
formed at the same spatial location (albeit a differ-
ent one than in the retinal fields), and they quickly 
induce a peak in the allocentric spatial attention 
field. This field now projects a vertical ridge input 
back to the scene attention fields and reinforces 
the existing peaks. In this case, no peaks will form 
in the contrast fields and thus no change signal is 
generated: In both feature dimensions, the peak in 
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FIGURE  8.7: Detection of feature conjunction changes (early phase of a “same” trial). The test array presented here 
contains the same items (defined by feature conjunctions) as the sample array, although the locations of the outer items 
have been swapped. The projections between retinal and allocentric spatial representations have been inactivated for 
this task. The rightmost item is selected from the retinal field. Its features are projected by the feature attention fields 
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from WM is selected (based on the feature match). The fact that its location has changed has no effect on the selection. 
Abbreviations as in Figure 8.2.
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the scene attention field matches the peak in the 
feature attention field, such that the excitatory and 
inhibitory inputs to the contrast fields cancel each 
other out. As in the previous scenario, the forma-
tion of strong peaks in the two scene attention fields 
triggers the COS node, which effects the release of 
attention from the current item and transition to 
the next one.

Figures 8.9 and 8.10 show the situation for a “dif-
ferent” trial. Here, the colors of the two outer items 
have been swapped, but the orientations remain the 
same, so that the feature conjunctions are differ-
ent between sample and test array. The rightmost 
item has been selected in the visual scene. This item 
does not have a perfect match in working memory. 
Again, the feature attention fields project ridge 
inputs to the scene attention fields and induce weak 
activation peaks where these ridges overlap with 
localized WM inputs (Figure 8.9). These peaks are 
now at different spatial locations in the two scene 
attention fields, and they project to different points 
in the allocentric spatial attention field. So far, no 

peaks form in the contrast fields, as the peaks in the 
feature attention fields and scene attention fields 
are necessarily aligned.

In the next step, a selection process takes place 
in the allocentric spatial attention field:  Under 
the inf luence of lateral interactions in the field, 
an activation peak forms at the location of one 
of the inputs, while the other one is suppressed 
(Figure 8.10). The selection is random here, though 
one could also adjust the system such that one fea-
ture dimension is slightly dominant and determines 
the outcome. The peak in the spatial attention field 
then again projects back to the scene attention 
fields. In one of these fields, it will overlap with the 
existing peak and reinforce it. In the other scene 
attention field, however, it will not match. Instead, 
it will overlap with another localized input from the 
scene WM field. The peak in this scene attention 
field consequently switches to a new location (com-
pare the scene attention field for color in Figures 8.9 
and 8.10). The scene attention fields thereby make 
the transition from just ref lecting the individual 
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FIGURE 8.8: Detection of feature conjunction changes (late phase of a “same” trial). Activation in the scene attention 
fields has induced a peak in the allocentric spatial attention field. This peak in turn strengthens the spatially aligned 
selection in the scene attention fields. Since the selected feature values in the scene attention fields match those in the 
feature attention fields, no peaks can emerge in the contrast fields. Abbreviations as in Figure 8.2.
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features of the attended item in the visual scene to 
ref lecting the features of a single, consistent item 
from working memory, bound together via space. 
The selected item from working memory matches 
the features of the attended visual item as much as 
possible (since it was selected on the basis of these 
features), but if no perfect match is found, an imper-
fect one is chosen.

This mismatch between the attended visual 
item and the selected WM item can now be 
detected in the contrast fields: In Figure 8.10, the 
initial peak in the scene attention field for color has 
been replaced, thus the excitatory and inhibitory 
inputs to the color contrast field no longer match. 
A peak can form, indicating that a change in feature 
conjunctions has been detected between sample 
and test array. As in the previous task, this pro-
cess has to be applied sequentially for the items in 
the scene until a change is found or all items have 

been processed. The shift of attention from one 
item to the next occurs autonomously as in the 
previous task.

The mechanism we employ in this task high-
lights the central role that the spatial dimension 
plays in our model. Even though object locations 
are to be ignored in this task, space still is criti-
cal in binding the feature dimensions together. 
Experimental evidence supports this special role 
of space in WM representations. Pertzov and 
Husain (2014) employed a change detection task 
with sequential presentation of the sample items. 
Memory performance, particularly with respect 
to retaining the correct feature conjunctions, was 
impaired when sample items occupied the same 
location on the screen. If the items all shared some 
surface feature, such as color, no analogous decrease 
in performance was observed. This indicates that 
object location is used in keeping the memorized 

0°

45°

90°

135°

180°

0°

60°

180°

300°

360°

120°

240°

−10° −5° 0° 5° 10°−5° 0° 5° 10°−10° −5° 0° 5° 10°

Spatial location (allocentric) Spatial location (retinocentric)

C
ol

or
 (h

u
e 

va
lu

e)
 

O
ri

en
ta

ti
on

Visual scene

ret

W
M

 (f
tr

)

co
n

 (f
tr

)

at
n

 (f
tr

)atn (scene)WM (scene)

con (spt)

atn (spt/al)

atn (spt/ret)

IOR

WM (spt)

FIGURE 8.9: Detection of feature conjunction changes (early phase of a “different” trial). In the test array presented 
here, only the colors have been swapped between the outer items, thereby changing the feature conjunctions in the array. 
The attentional mechanism has again selected the rightmost item from the retinal fields. As before, the feature attention 
fields project ridge inputs into the scene attention field, in this case inducing peaks that are not spatially aligned. So far, 
no change is detected, since the weak peaks in the scene attention fields match the peaks in the feature attention fields. 
Abbreviations as in Figure 8.2.
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surface features of each individual object bound 
together and separate from the features of other 
objects. These findings are analogous to similar 
results for the level of visual perception (Nissen, 
1985) referred to in Chapter 5.

DE SIG N I NG  L A RG E  DY NA M IC 
F I E L D  A RC H I T E C T U R E S
The DF architecture for scene representation and 
change detection presented in this chapter is one 
the largest, most intricate models covered in this 
book. It is also, at the time of this writing, quite 
fresh and still in the process of being tested and 
refined. For these reasons, we will describe the pro-
cess of designing and implementing this architec-
ture, and the steps that have lead us to the model in 
its current form.

As already pointed out by frequent references 
to previous chapters, this architecture was not 

designed from a blank slate, but formed as a com-
bination of several previous models—the models 
presented in Chapters  5, 6, and 7.  Among these 
predecessors we must also count the robotic scene 
representation architecture presented in Chapter 9. 
This was, at least in its basic form, already com-
pleted before we started work on the change 
detection model.

The design of a DF model can be structured 
into three phases(for additional discussion, see 
Chapter 15): the conceptual planning (what should 
the model entail, what effects should it produce or 
explain, and how should these come about?); the 
design of the architecture (what fields are needed, 
what is their role in the architecture, and how are 
they connected?); and, finally, the tuning of param-
eters to achieve the desired model behavior. Ideally, 
one would progress through the phases in that 
order. In practice, however, it may be necessary to 
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FIGURE  8.10: Detection of feature conjunction changes (late phase of a “different” trial). A  peak has formed in the 
allocentric spatial attention field, selecting one of the competing inputs from the two scene attention fields. This peak 
projects back to the scene attention fields, strengthening the peak for the orientation dimension but replacing the peak in 
the color dimension with a new peak. This implements selection of a single consistent WM item based on an (imperfect) 
feature match. After this has happened, the color contrast field detects the mismatch in the color dimension by forming 
a peak. Abbreviations as in Figure 8.2.
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return to an earlier phase when an insurmountable 
problem is encountered at a later phase.

For the scene representation model, the con-
ceptual planning phase was strongly guided by the 
existing models. We knew that we wanted to use 
the biased competition/illusory conjunction archi-
tecture as the “front end” of the model, and that the 
existing mechanism for detecting feature changes 
should be integrated with it. The goal was then to 
combine, expand, and, where necessary, adjust 
these components to create a more general change 
detection model capable of emulating a larger num-
ber of experimental tasks.

A key design decision for this model was the 
structure of the WM representation. This repre-
sentation has to fulfill several requirements. It must 
be able to store, in some form, values of surface 
features, associations of features to locations, and 
conjunctions between features (since humans can 
retain all of these, as is evident from a large number 
of experiments). This might be achieved in differ-
ent ways, for instance, by a single high-dimensional 
field over all feature and spatial dimensions, or by 
a fixed number of slots for individual memorized 
items, each with a single one-dimensional field over 
each spatial and feature dimension. We opted for 
the stack of space-feature fields, which can be con-
sidered a middle ground between these other two 
options. Several reasons led us to this decision. The 
stack of space-feature fields mirrors the analogous 
structure at the retinal level, which in turn is based 
on well-investigated feature maps in visual cortex. 
A  stack of separate fields requires significantly 
fewer resources than a single, high-dimensional 
field over all feature dimensions (as discussed in 
Chapter  5), and at the same time implements the 
special role for location in scene memory that is 
supported by experimental evidence. Finally, it can 
implement a capacity limit as observed for VWM as 
a naturally emerging feature (through mutual sup-
pression of peaks), without requiring an inf lexible 
and seemingly artificial definition of WM slots for 
a fixed number of items.

More generally, one central design decision 
in the conceptual planning phase is the choice of 
dimensions over which DFs should be defined. This 
determines what can be represented in the model 
and therefore limits what effects can be covered by 
it. One must also decide whether these dimensions 
should be covered by actual continuous fields or can 
be sampled by a few discrete values. In those dimen-
sions that are only sampled by a set of discrete val-
ues, no metric effects can be generated in the model. 

This approach was chosen for the color dimension 
in the spatial language model (Chapter 7). In that 
case, feature similarity along the color dimen-
sion was not relevant in the covered tasks, and the 
reduction of the color dimension to three discrete 
values significantly reduced the computational 
demands for the simulations. In the scene repre-
sentation model, we opted for a one-dimensional 
spatial representation (instead of two-dimensional 
one) for similar reasons. Conceptually, the model is 
intended to work in the same way with two spatial 
dimensions, as demonstrated in the robotic imple-
mentation in the next chapter.

Once it is clear what the model should entail 
and what representations are required, the next step 
is to design the concrete architecture. One has to 
consider what fields are needed (and what dimen-
sions every individual field should cover), what the 
role of each field is in the architecture, and how 
they must be connected to implement these roles. 
In specifying the fields and their function, one can 
focus on a simple classification, based on the bifur-
cations treated in Chapter  2:  Should activation 
peaks in the field be self-sustained or depend on 
external input? And should the field support mul-
tiple peaks or enforce the selection of a single peak 
through competition? These two questions are 
typically sufficient to specify the general behavior 
of each field in this design stage. When conf lict-
ing requirements exist for a representation—for 
instance, it should have multi-item working mem-
ory in one situation, but perform a selection deci-
sion in another one—this indicates that at least two 
separate fields are required (or one has to rethink 
the requirements). Even if there is no explicit con-
f lict, it can be advisable to separate a representation 
into multiple fields if it has to fulfill a large number 
of requirements. This can greatly facilitate the tun-
ing of parameters in the end.

In specifying the fields, one has to think about 
the sequence of events that should take place in 
the architecture:  When should peaks form in 
each field, when and where should selection deci-
sions take place, and when may peaks disappear 
again? To illustrate this, reconsider a somewhat 
simpler architecture—that of the biased com-
petition model from Chapter  5. We started that 
model from the assumption that visual stimuli are 
initially represented in a feature map over space 
(the two-dimensional visual sensory field). We 
then used task requirements and empirical results 
to guide us in what additional components were 
needed and how they should behave. For instance, 
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in the biased competition task, we had to consider 
the color memory cue, which is only presented 
at the beginning of each trial but affects behavior 
later. This clearly tells us that there must be some 
sustained effect of the memory cue, so we added 
a color memory field that allowed self-sustained 
activation peaks. The response in the task is a 
saccadic eye movement, requiring a selection of 
a spatial location when multiple stimuli are pre-
sented. Thus, we added a spatial field with competi-
tive interactions. We then connected the fields so 
that color and spatial representations can interact 
via the two-dimensional field, and that led to the 
basic structure for the model architecture (though 
two more fields were added to refine the model 
behavior).

For the scene representation model, specifi-
cation of the fields and the desired sequence of 
bifurcations was more complex. We started with 
the understanding that we would need both a par-
allel processing of feature values (for the detection 
of novel features, as in the single-feature change 
detection model) and a selective, sequential mem-
orization and comparison of individual items (to 
account for the complexity of feature binding, as 
discussed earlier). The first sketches of the model 
had largely independent paths for parallel and 
selective processing in each feature dimension. 
We felt that this was unsatisfactory, since it meant 
that the different tasks would in effect be solved by 
different, nearly separate systems. A  stronger uni-
fication was achieved by merging initially separate 
contrast fields. This resulted in the double role of 
the contrast fields in the current architecture to 
detect feature changes for multiple items in par-
allel and conjunction changes for selected items 
sequentially.

In designing this large architecture, a complete 
plan of the sequence of bifurcations (detection, 
selection, and memory decisions) for all tasks was 
made before work on the implementation even 
began. This allowed us to check whether the archi-
tecture could work at least in principle and solve 
the tasks we had selected. For instance, the scene 
attention field is expected to form a peak in all tasks 
when it receives a localized input from the scene 
WM fields and additionally one or two ridge inputs. 
This setup is consistent. In contrast, if a field has to 
form a peak from a certain input in one situation, 
but must not form a peak for the same or a stronger 
input in another situation, this presents a conf lict 
that might require an adjustment in the archi-
tecture. We would note that the rather detailed 

plan developed at this stage was not fully realized 
in the final model. For instance, the original plan 
envisaged that during the memorization phase, a 
peak would form first in the scene attention field, 
and this in turn would drive peak formation in the 
scene WM field. We changed this sequence during 
parameter tuning when we found that it tended to 
require excessive mutual excitation between scene 
WM and scene attention fields (although we are 
still exploring this variant of the model and its 
ties to behaviors such as executive function; see 
Chapter 13).

For the third phase, specification of the model 
parameters, we implemented the architecture in 
the COSIVINA framework. The parameters were 
tuned by hand, a process facilitated by the inter-
active simulators that make it possible to adjust 
parameters and immediately see the effects of the 
change. In choosing the parameters, we were again 
guided by the classification of fields according 
to peak stability (input-driven or self-sustained) 
and mode of interactions (multipeak or competi-
tive). One can find basic parameters for each of 
these modes from simpler single-field simulations 
and use these as starting values in the larger archi-
tecture. The planned sequence of bifurcations 
informs us about the required connection strengths 
between fields: If we want field A to induce a peak 
in field B, then the input strength must be sufficient 
to raise the activation in field B above the output 
threshold. We can do some arithmetic if multiple 
inputs are combined to form a peak: The input from 
scene WM field to scene attention field alone must 
remain below the output threshold, and the same is 
true for the ridge inputs from the one-dimensional 
attention fields. Localized input and ridge input 
together, however, should pierce the output thresh-
old to form peaks.

When connecting fields through mutual con-
nections, it is often necessary to adjust the lateral 
interaction strengths to compensate for the addi-
tional inputs. This is especially true if two fields 
mutually excite each other. In that case, it can 
easily happen that activation grows excessively in 
both fields as soon as they have formed peaks. To 
compensate, one can increase the lateral inhibition 
and thereby limit the growth of activation. Because 
of such effects, the tuning of a model becomes 
generally more complex with more interconnec-
tions, since a change in one field will then affect 
the behavior of many other fields. That said, these 
interconnections can also be the source of f lexibil-
ity as the model is placed in different task contexts.
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A particular issue in the scene representa-
tion model was the autonomous organization of 
the sequential processing of items. This involved 
relatively long sequences of bifurcations that are 
not driven by any change in the external input but 
only by the internal dynamics of the model. This 
adds an additional layer of complexity. During 
tuning of the model parameters, we first operated 
the model in a non-autonomous mode:  The cor-
rect order of bifurcations was created by sequen-
tially boosting fields that were intended to form a 
peak and de-boosting them once a peak was to be 
extinguished (this is reproduced in the exercises). 
This considerably relaxes the requirements for the 
individual fields, since the precise amount of input 
each field receives is much less critical in this mode 
of operation. A field will always form a peak if it is 
boosted sufficiently, and it is easy to limit the input 
such that a field will never form a peak without an 
additional boost. The obvious drawback is that in 
this mode of operation, the system does not per-
form any work without constant control inputs 
from a user.

To obtain autonomous behavior, we had to 
achieve the same sequence of bifurcations with-
out the boosts. We further tuned the connec-
tion strengths between the fields such that inputs 
would be strong enough to induce peaks only in the 
desired situations, not in others. The peak detector 
nodes, COS node, and IOR field were added at this 
stage (previously, the sequence of items was also 
induced manually by setting small biasing inputs 
for different locations). What made tuning more 
complex in this mode of operation was the behavior 
of the model in the transition phases. For instance, 
during the change detection task for feature loca-
tions, the contrast fields not only have to show the 
correct behavior once an item has been selected in 
both the retinal and the WM representation, they 
also have to show the right behavior while the selec-
tion is still taking place and, in particular, not form 
a peak prematurely when an item has been selected 
in the retinal representation but not yet in the WM 
representation. This requires a sufficient buffer 
between peak-inducing and non-peak-inducing 
inputs, such that the right order of bifurcations is 
retained even when there is some variability in the 
states of the fields.

There is an alternative approach to creating 
complex sequences of bifurcations in DF architec-
tures: Rather than removing the boost inputs (or at 
least most of them) and finely tuning the connec-
tion strengths, one may also retain the boosts and 

add an additional layer to the architecture which 
autonomously generates the needed sequence of 
control inputs. In order to achieve a robust autono-
mous performance, this new control layer has to 
not only generate the sequence of boost inputs but 
also check that they have the desired effect before 
proceeding to the next sequence step. This kind of 
mechanism will be presented in Chapter  14. We 
believe that this form of top-down control is appro-
priate for arbitrary or learned sequences, whereas 
autonomy from internal interactions is more 
appropriate for the relatively low-level operations 
in the scene representation architecture. Tasks 
like memorizing a scene or detecting changes are 
performed constantly in everyday life and are not 
the result of explicit training. It is possible, how-
ever, that a mode of operation with more dominant 
top-down control may be employed in certain situ-
ations for the scene representation mechanisms as 
well. This may, for instance, be a way to improve 
performance when there is ample time to complete 
a task.

C ONC LUSIONS  A N D  OU T L O OK
The goal of this chapter was to build an integrated 
neural system that could construct a VWM for 
novel objects in a scene such that the system could 
remember which object was where and detect 
changes in those objects after short delays. We 
accomplished this goal, presenting the first inte-
grated theory of VWM for objects in an allocentric 
frame of reference. This DF model was inspired 
by neurophysiological studies of non-human pri-
mates and neuroimaging studies of human adults. 
Moreover, we demonstrated that the theory can 
capture behavioral findings from different variants 
of the canonical task used to probe VWM—the 
change detection task. To date, no other formal 
theory has captured data from all of these variants 
within a single neural system.

Importantly, the theory we developed built 
on innovations described in Chapters  5–7. This 
shows that DFT can scale up from simpler sys-
tems to a larger-scale, integrated neural archi-
tecture. This is an important proof of concept. 
Our sense is that models are often treated in 
isolation. This is unfortunate, because it can 
lead to a proliferation of disconnected accounts, 
when the promise of formal theories is integra-
tion across phenomena. Here we have not only 
brought together three variants of the change 
detection task but have also embedded this 
account in a neural system that captures the 
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details of biased competition effects in saccade 
orienting (Chapter  5), illusory conjunctions 
(Chapter 5), spatial recall and position discrimi-
nation (Chapter  6), reference-frame alignment 
and the characteristics of gain-modulated neu-
rons (Chapter 7), and—at least in principle—the 
ingredients for spatial language (Chapter  7). In 
this final case, work remains to clarify precisely 
how the spatial language model from Lipinski, 
Schneegans, Sandamirskaya, Spencer, and 
Schöner (2012) can be realized in the integrated 
DF model presented here. At face value, our sense 
is that peaks in the scene attention fields operate 
much like the target field in the spatial language 
model, bringing the target into the foreground, 
while peaks in the scene WM fields operate like 
an object-based frame of reference.

Consideration of the spatial language model 
also points toward another key issue we are poised 
to tackle with the integrated DF model:  We have 
the potential to explain not only how people 
use spatial language to refer to target and refer-
ence objects, but also how people remember the 
details of these object-based scenes. In particular, 
by adding in a memory trace to the scene-level 
fields, we can establish a long-term memory for 
visual scenes in addition to the short-term mem-
ory. Indeed, if we were to store multiple “cop-
ies” of the memory trace pattern—one for each 
“context”—we could f lexibly reinstantiate these 
scene-level patterns in a context-dependent man-
ner. Perhaps this could explain the finding that 
people can detect often subtle changes in the 
details of objects in complex scenes after viewing 
more than 400 total objects—up to 24 hours later 
(Hollingworth, 2005).

This chapter also re-emphasizes a point initially 
raised in Chapter  5—that cognition often occurs 
via a sequence of bifurcations, with the formation of 
one peak (or peaks) causing a cascade of other neural 
events. We will return to this notion in Chapter 14, 
when we introduce behavioral sequence genera-
tion. Next, however, we continue the arc started in 
this chapter. Chapter  9 instantiates an integrated 
visual cognitive architecture in an autonomous 
robot. This fully implements the real-world auton-
omy captured in a cursory way here using the IOR 
field (see exercises). Moreover, Chapter  9 high-
lights new types of functionality that emerge when 
the integrated model is placed in the real world 
within an autonomous agent—functionality that 
extends well beyond the change detection setting 
probed here.

R E F E R E NC E S
Aggelopoulos, N. C., & Rolls, E. T. (2005). Scene per-

ception:  inferior temporal cortex neurons encode 
the positions of different objects in the scene. 
European Journal of Neuroscience, 22, 2903–2916.

Andersen, R.  A. (1995). Encoding of intention and 
spatial location in the posterior parietal cortex. 
Cerebral Cortex, 5, 457–469.

Baker, M., & Olson, C.  R. (2002). Impact of learning 
on representation of parts and wholes in monkey 
inferotemporal cortex. Nature Neuroscience, 5(11), 
1210–1216.

Banks, M. S., & Shannon, E. (1993). Spatial and chro-
matic visual efficiency in human neonates. In C. 
E. Granrud (Ed.), Visual perception and cognition in 
infancy (pp. 1–46). Hillsdale, NJ: Erlbaum.

Bornstein, M.  H., Krinsky, S.  J., & Benasich, A.  A. 
(1986). Fine orientation discrimination and shape 
constancy in young infants. Journal of Experimental 
Child Psychology, 41(1), 49–60.

Bridgeman, B., Gemmer, A., Forsman, T., & Huemer, 
V. (2000). Processing spatial information in the 
sensorimotor branch of the visual system. Vision 
Research, 40, 3539–3552.

Cowan, N. (2001). The magical number 4 in short-term 
memory:  A  reconsideration of mental storage 
capacity. Behavioral and Brain Sciences, 24, 87–185.

Damasio, A. R. (1989). Time-locked multiregional ret-
roactivation: A systems-level proposal for the neu-
ral substrates of recall and recognition. Cognition, 
33, 25–62.

Darling, W. G., & Miller, G. F. (1993). Transformations 
between visual and kinesthetic coordinate sys-
tems in reaches to remembered object locations 
and orientations. Experimental Brain Research, 93, 
534–547.

Deco, G., & Rolls, E. T. (2004). A neurodynamical cor-
tical model of visual attention and invariant object 
recognition. Vision Research, 44(6), 621–642.

Deco, G., Rolls, E.  T., & Horwitz, B. (2004). “What” 
and “where” in visual working memory: A computa-
tional neurodynamical perspective for integrating 
fMRI and single-neuron data. Journal of Cognitive 
Neuroscience, 16, 683–701.

Desimone, R., Albright, T.  D., Gross, C.  G., & Bruce, 
C. (1984). Stimulus-selective properties of infe-
rior temporal neurons in the macaque. Journal of 
Neuroscience, 4, 2051–2062.

Desimone, R., & Gross, C.  G. (1979). Visual areas in 
the temporal cortex of the macaque. Brain Research, 
178, 363–380.

DiCarlo, J. J., & Maunsell, J. H. (2003). Anterior infero-
temporal neurons of monkeys engaged in object 
recognition can be highly sensitive to object retinal 
position. Journal of Neurophysiology, 89, 3264–3278.

Dodd, M.  D., Van der Stigchel, S., & Hollingworth, 
A. (2009). Novelty is not always the best 

 



 Integrating “What” and “Where” 223

policy:  Inhibition of return and facilitation of 
return as a function of visual task. Psychological 
Science, 20(3), 333–339.

Dominey, P.  F., & Arbib, M.  A. (1992). A 
cortico-subcortical model for generation of spa-
tially accurate sequential saccades. Cerebral Cortex, 
2(2), 153–175.

Durstewitz, D., Seamans, J.  K., & Sejnowski, T.  J. 
(2000). Neurocomputational models of working 
memory. Nature Neuroscience, 3, 1184–1191.

Felleman, D. J., & Van Essen, D. C. (1991). Distributed 
hierarchical processing in the primate cerebral cor-
tex. Cerebral Cortex, 1, 1–47.

Finkel, L. H. (2000). Neuroengineering models of brain 
disease. Annual Review of Biomedical Engineering, 
02, 577–606.

Fix, J., Rougier, N., & Alexandre, F. (2011). A dynamic 
neural field approach to the covert and overt deploy-
ment of spatial attention. Cognitive Computation, 
3(1), 279–293.

Fujita, I., Tanaka, K., Ito, M., & Cheng, K. (1992). 
Columns for visual features of objects in monkey 
inferotemporal cortex. Nature, 360, 343–346.

Gross, C.  G., Rocha-Miranda, C.  E., & Bender, D.  B. 
(1972). Visual properties of neurons in infero-
temporal cortex. Journal of Neurophysiology, 35, 
96–111.

Hollingworth, A. (2005). The relationship between 
online visual representation of a scene and 
long-term scene memory. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 31(3), 
396–411.

Hollingworth, A. (2006). Scene and position speci-
ficity in visual memory for objects. Journal of 
Experimental Psychology:  Learning, Memory & 
Cognition, 32, 58–69.

Hollingworth, A. (2007). Object-position binding 
in visual memory for natural scenes and object 
arrays. Journal of Experimental Psychology:  Human 
Perception and Performance, 33, 31–47.

Hollingworth, A., Matsukura, M., & Luck, S. J. (2013). 
Visual working memory modulates rapid eye move-
ments to simple onset targets. Psychological Science, 
24(5), 790–796.

Horowitz, T. S., & Wolfe, J. M. (1998). Visual search has 
no memory. Nature, 394(6693), 575–577.

Huttenlocher, J., Hedges, L., & Duncan, S. (1991). 
Categories and particulars:  Prototype effects in 
estimating spatial location. Psychological Review, 
98, 352–376.

Huttenlocher, J., Hedges, L.  V., & Vevea, J.  L. (2000). 
Why do categories affect stimulus judgment? 
Journal of Experimental Psychology:  General, 129, 
220–241.

Hyun, J. S., Woodman, G. F., Vogel, E. K., Hollingworth, 
A., & Luck, S. J. (2009). The comparison of visual 
working memory representations with perceptual 

inputs. Journal of Experimental Psychology: Human 
Perception and Performance, 35(4), 1140.

Irwin, D. E., & Andrews, R. V. (1996). Integration and 
accumulation of information across saccadic eye 
movements. In T. Inui & J. L.  McClelland (Eds.), 
Attention and performance XVI (pp. 125–155). 
Cambridge, MA: MIT Press.

Itti, L., & Koch, C. (2000). A saliency-based search 
mechanism for overt and covert shifts of visual 
attention. Vision Research, 40, 1489–1506.

Jackendoff, R. (1996). The architecture of the 
linguistic-spatial interface. In P. Bloom, et al. (Eds.), 
Language and space. Cambridge, MA: MIT Press.

Johnson, J.  S., Hollingworth, A., & Luck, S.  J. (2008). 
The role of attention in binding features in visual 
short-term memory. Journal of Experimental 
Psychology:  Human Perception and Performance, 
34, 41–55.

Johnson, J.  S., Spencer, J.  P., & Schöner, G. (2009). 
A layered neural architecture for the consolida-
tion, maintenance, and updating of representa-
tions in visual working memory. Brain Research, 
1299, 17–32.

Kahneman, D., Treisman, A., & Gibbs, B.  J. (1992). 
The reviewing of object files: Object-specific inte-
gration of information. Cognitive Psychology, 24, 
175–219.

Komatsu, H., & Ideura, Y. (1993). Relationship between 
color, shape, and pattern selectivities in the inferior 
cortex of the monkey. Journal of Neurophysiology, 
70, 677–694.

Kravitz, D. J., Vinson, L. D., & Baker, C. I. (2008). How 
position dependent is visual object recognition?. 
Trends in Cognitive Sciences, 12(3), 114–122.

Lee, T. S., Mumford, D., Romero, R., & Lamme, V. A. 
(1998). The role of primary visual cortex in higher 
level vision. Vision Research, 38, 2429–2454.

Lipinski, J., Schneegans, S., Sandamirskaya, Y., Spencer, 
J.  P., & Schöner, G. (2012). A neurobehavioral 
model of f lexible spatial language behaviors. Journal 
of Experimental Psychology:  Learning, Memory & 
Cognition, 38(6), 1490–1511.

Livingstone, M.  S., & Hubel, D.  H. (1988). 
Segregation of form, color, movement, and depth: 
Anatomy, physiology, and perception. Science, 
240, 740–749.

Llinás, R., & Paré, D. (1996). The brain as a closed 
system modulated by the senses. In R. Llinás & P. 
S.  Churchland (Eds.), The mind-brain continuum. 
Cambridge, MA: MIT Press.

Luck, S.  J., Girelli, M., McDermott, M.  T., & Ford, 
M.  A. (1997). Bridging the gap between monkey 
neurophysiology and human perception: An ambi-
guity resolution theory of visual selective attention. 
Cognitive Psychology, 33, 64–87.

Luck, S.  J., & Vecera, S.  P. (2002). Attention. In S. 
Yantis (Ed.), Stevens’ handbook of experimental 



224 I N T EGR AT I NG  PERCEP T ION-ACT ION  W IT H  COGN IT ION

psychology:  Sensation and perception (Vol. 1, pp. 
235–286). New York: Wiley.

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual 
working memory for features and conjunctions. 
Nature, 390, 279–281.

McNamara, T. P., Halpin, J. A., & Hardy, J. K. (1992). 
Spatial and temporal contributions to the struc-
ture of spatial memory. Journal of Experimental 
Psychology:  Learning, Memory, & Cognition, 18, 
555–564.

Mitchell, D.  J., & Cusack, R. (2008). Flexible, 
capacity-limited activity of posterior parietal cortex 
in perceptual as well as visual short-term memory 
tasks. Cerebral Cortex, 18(8), 1788–1798.

Moore, C.  M., Mordkoff, J.  T., & Enns, J.  T. (2007). 
The path of least persistence:  Evidence of 
object-mediated visual updating. Vision Research, 
47, 1624–1630.

Mozer, M.  C., & Sitton, M. (1998). Computational 
modeling of spatial attention. In H. 
Pashler, H. (Ed.), Attention (pp. 341–393). 
New York: Psychology Press.

Nissen, M. J. (1985). Accessing features and objects: Is 
location special? In M. I. Posner & O. S. M. Marin 
(Eds.), Attention and performance Xl (pp. 205–219). 
Hillsdale, NJ: Erlbaum.

Olshausen, B. A., Anderson, C. H., & Van Essen, D. C. 
(1993). A neurobiological model of visual attention 
and invariant pattern recognition based on dynamic 
routing of information. Journal of Neuroscience, 13, 
400–419.

Op De Beeck, H., & Vogels, R. (2000). Spatial sensitiv-
ity of macaque inferior temporal neurons. Journal of 
Comparative Neurology, 426, 505–518.

Pashler, H. (1988) Familiarity and visual change detec-
tion. Perception & Psychophysics, 44(4), 369–378.

Pertzov, Y., & Husain, M. (2014) The privileged role 
of location in visual working memory. Attention, 
Perception, & Psychophysics, 76(7), 1914–1924.

Pessoa, L. Gutierrez, E., Bandettini, P. A., & Ungerleider, 
L.  G. (2002). Neural correlates of visual working 
memory:  fMRI amplitude predicts task perfor-
mance. Neuron, 35(5), 975–987.

Pessoa, L., & Ungerlieder, L.  G. (2004). Neural cor-
relates of change detection and change blindness 
in a working memory task. Cerebral Cortex, 14, 
511–520.

Pick, H. L., Montello, D. R., & Somerville, S. C. (1988). 
Landmarks and the coordination and integration of 
spatial information. British Journal of Developmental 
Psychology, 6, 372–375.

Posner, M. I., & Cohen, Y. (1984). Components of visual 
orienting. Attention and performance X: Control of 
language processes, 32, 531–556.

Rao, S. C., Rainer, G., & Miller, E. K. (1997) Integration 
of what and where in the primate prefrontal cortex. 
Science, 276, 821–824.

Rensink, R. A. (2000) The dynamic representation of 
scenes. Visual Cognition, 7, 17.

Rensink, R. A. (2002) Change detection. Annual Review 
of Psychology, 53, 245–277.

Rensink, R.  A., O’Regan, J.  K., & Clark, J.  J. (1997). 
To see or not to see: The need for attention to per-
ceive changes in scenes. Psychological Science, 8(5), 
368–373.

Salinas, E. (2003). Background synaptic activity as 
a switch between dynamical states in a network. 
Neural Computation, 15(7), 1439–1475.

Simons, D. J., & Levin, D. T. (1998). Failure to detect 
changes to people during a real-world interaction. 
Psychonomic Bulletin & Review, 5, 644–649.

Soechting, J. F., & Flanders, M. (1989) Errors in point-
ing are due to approximations in sensorimotor 
transformations. Journal of Neurophysiology, 62(2), 
595–608.

Spencer, J.  P., & Hund, A.  M. (2002) Prototypes and 
particulars:  Geometric and experience-dependent 
spatial categories. Journal of Experimental 
Psychology: General, 131, 16–37.

Sperling, G. (1960). The information available in brief 
visual presentations. Psychological Monographs 74, 
(Whole No. 498).

Tanaka, K. (1996). Inferotemporal cortex and object 
vision. Annual Review of Neuroscience, 19, 109–139.

Tanaka, K. (2000). Mechanisms of visual object rec-
ognition studied in monkeys. Spatial Vision, 13, 
147–163.

Teller, D.  Y., & Bornstein, M.  H. (1987). Infant color 
vision and color perception. Handbook of Infant 
Perception, 1, 185–236.

Todd, J.  J., Fougnie, D., & Marois, R. (2005). 
Visual short-term memory load suppresses 
temporo-parietal junction activity and induces 
inattentional blindness. Psychological Science, 
16(12), 965–972.

Todd, J. J., & Marois, R. (2004). Capacity limit of visual 
short-term memory in human posterior parietal 
cortex. Nature, 428, 751–754.

Todd, J. J., & Marois, R. (2005). Posterior parietal cor-
tex activity predicts individual differences in visual 
short-term memory capacity. Cognitive, Affective, & 
Behavioral Neuroscience, 5(2), 144–155.

Tootell, R. B., Hadjikhani, N., Hall, E. K., Marrett, S., 
Vanduffel, W., Vaughan, J. T., & Dale, A. M. (1998). 
The retinotopy of visual spatial attention. Neuron, 
21, 1409–1422.

Treisman, A. (1996). The binding problem. Current 
Opinion in Neurobiology, 6, 171–178.

Treisman, A. (1999). Solutions to the binding prob-
lem:  Progress through controversy and conver-
gence. Neuron, 24(1), 105–110.

Treisman, A.  M., & Gelade, G. (1980) A 
feature-integration theory of attention. Cognitive 
Psychology, 12, 97–136.



 Integrating “What” and “Where” 225

Treisman, A., & Zhang, W. (2006). Location and bind-
ing in visual working memory. Memory & Cognition, 
34(8), 1704–1719.

Ungerleider, L. G., & Mishkin, M. (1982). Two cortical 
visual systems. In D. J. Ingle, M. A. Goodale, & R. 
J. Mansfield (Eds.), Analysis of visual behavior (pp. 
549–586). Cambridge, MA: MIT Press.

Van der Veld, F., & de Kamps, M. (2001). From know-
ing what to knowing where: Modleing object-based 
attention with feedback disinhibition of activation. 
Journal of Cognitive Neuroscience, 13, 479–491.

Vogel, E.  K., & Luck, S.  J. (1997). ERP evidence for a 
general-purpose visual discrimination mechanism. 
Society for Neuroscience Abstracts, 23, 1589.

Vogel, E.  K., Woodman, G.  F., & Luck, S.  J. (2001). 
Storage of features, conjunctions, and objects in 
visual working memory. Journal of Experimental 
Psychology: Human Perception and Performance, 27, 
92–114.

Vogel, E.  K., Woodman, G.  F., & Luck, S.  J. (2006). 
The time course of consolidation in visual working 
memory. Journal of Experimental Psychology: Human 
Perception and Performance, 32, 1436–1451.

von der Malsburg, C. (1996). The binding problem of 
neural networks. In R. Llinás & P. S.  Churchland 
(Eds.), The mind-brain continuum (pp. 131–146). 
Cambridge, MA: MIT Press.

Wheeler, M., & Treisman, A.  M. (2002), Binding in 
short-term visual memory. Journal of Experimental 
Psychology: General, 131, 48–64.54.

Wolfe, J. M. (1998). Visual search. In H. Pashler (Ed.), 
Attention (pp. 13–73). London: University College 
London Press.

E X E RC I SE S  OF   C H A P T E R   8
Start the simulator for this exercise by running the 
file launcherSceneRepresentation. The 
graphical user interface (GUI) shows the fields of 
the scene representation architecture in the same 
layout as that used in the figures throughout this 
chapter. In the control area at the bottom of the GUI 
window you will find sliders to boost or de-boost 
all fields, buttons to activate or deactivate input 
patterns, and sliders to give an extra input to one 
location in the retinal spatial attention field. These 
latter sliders can be used to bias the system toward 
the attentional selection of a specific stimulus.

Exercise 1: Sequential Memorization 
of Items in a Scene

a) Run the simulator and activate stimulus 
pattern A. Observe the sequence of peak 
formations as the WM representation is 
built up. Use the Pause button to slow 

down the simulation when necessary, and 
use Reset to view the process repeatedly.

b) Now use the sliders to de-boost all fields 
to −5 (leave the three spatial input sliders 
as1 to as3  in the lower right at zero!). 
This will prevent formation of peaks in 
most of the fields (except for the contrast 
fields, but you can ignore them for now). 
Reset the simulation (click the Reset 
button) and activate one of the stimulus 
patterns again. Now manually create the 
sequence of peaks for the memorization of 
one item (as observed before), by setting 
the boost values of individual fields back 
to zero in the correct order. (Note: Click 
on the slider bars to the left or right of 
the slider to change the boost value by 
steps of 1.)

c) It is explained in the text that the formation 
of peaks in the scene attention fields is 
used as signal that the memorization of an 
item is complete and that attention should 
be shifted to the next item (via the peak 
detector nodes, COS node, and IOR field). 
Why does the system not use peak detectors 
in the scene WM field directly to detect 
when an item has been memorized?

Exercise 2: Parallel Detection 
of Feature Changes

a) Reset the simulation again and activate 
stimulus pattern A. Now observe the 
activation pattern in the contrast fields 
while the WM representation is built up. 
What do the peaks in these fields indicate 
during the memorization phase?

b) Form only a partial representation of the 
stimulus array in WM by turning off the 
stimulus pattern once one or two items are 
memorized. Now turn the same stimulus 
pattern on again. What can you observe in 
the contrast fields?

c) After the whole pattern is memorized again, 
modify the stimulus pattern by changing 
the feature value of one stimulus. Turn the 
stimulus off first, then open the parameter 
panel. Select the element “i1 for vis_f1” 
(scroll down almost to the end of the 
drop-down list), and change the parameter 
positionY to 30. Now turn the stimulus 
pattern on again, and observe how the 
change is detected through a peak in the 
feature contrast field. (You should then 
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turn the changed stimulus pattern off again 
before the WM representation is updated 
so you can use that for the subsequent 
exercises).

Exercise 3: Change Detection 
for Space-Feature Bindings

a) After pattern A has been memorized, 
deactivate it, wait a moment for the IOR 
peaks to decay, then activate pattern B or 
C. Observe how the model performs the 
sequential change detection for feature 
locations by forming peaks in the feature 
contrast fields when the location of a 
visual feature has changed. Note where 
the difference lies between “same” and 
“different” items.

b) Turn off the stimulus pattern and wait 
for the peaks in the IOR field to decay. 
De-boost all attention and contrast fields 
to −5 using the sliders (leave the WM 
fields untouched, otherwise the WM 
representation will be lost). Now reactivate 
the stimulus pattern and set the boost 
value of the fields back to zero in the right 
order to create the feature location change 
detection for one item. (You may use the 
spatial input sliders aS1 to aS 3 to bias the 
attentional selection to a certain item. 
A small input like 0.2 is typically sufficient 
to achieve that.)

c) Why is it important for this task that the 
spatial input to the scene attention field 
is stronger or arrives earlier than the 
feature input?

Exercise 4: Change detection 
for feature conjunctions

a) To perform this task, first have the model 
memorize pattern A (this should still be 
present from the previous exercises), then 
deactivate the spatial coupling between the 
retinal and allocentric reference frame (click 
the corresponding button in the bottom 
center of the GUI to switch between active 
and inactive coupling). By deactivating the 
spatial coupling, the system is no longer 
sensitive for changes in feature location 
and instead detects changes in feature 
conjunctions independent of location. Now 
activate either pattern B (“same” for this 
task) or pattern C (“different”). Observe 
the sequence of events in the model, and 
note the differences between “same” and 
“different” items.

b) Once more, reproduce the sequence of 
events for the comparison of one item 
manually by de-boosting all attention and 
contrast fields, then boosting them again in 
the right order.

c) You may notice that the formation of peaks 
in the scene attention field happens in two 
phases in this task: first relatively weak 
peaks form, then stronger ones after the 
allocentric spatial attention field projects 
additional input into the field. What 
happens when you give the scene attention 
field an additional positive boost when it 
first forms peaks, so that strong peaks form 
immediately? Why does the detection of 
feature conjunction changes not work under 
these conditions?

 

 


