
6 Dynamical Systems Approaches
to Cognition
Gregor Schöner

6.1 Introduction

Think of a child playing in the playground, climbing up on ladders,
jumping, running, catching other kids. Or think of the child painting a picture,
dipping the brush into a paint pot, making a sequence of brush strokes to sketch
a house. These behaviors certainly are not driven by reflexes, are not fixed
action patterns elicited by key stimuli, nor are they strictly dictated by stimulus–
response relationships. They exhibit hallmarks of cognition such as selection
decisions, sequence generation, and working memory. What makes these daily
life activities intriguing is, perhaps, how seamlessly the flow of activities moves
forward. No artificial system has ever achieved even remotely comparable
behavior. While computer programs may play chess at grand master level, their
ability to generate smooth flows of actions in natural environments remains
extremely limited.
Emphasizing how cognition links to sensory-motor activity is part of the

embodiment perspective on cognition (Shapiro, 2019). Cognition that is
directed at objects in the world may interact with motor activation (for
example, Chrysikou, Casasanto, & Thompson-Schill, 2017). But motor acti-
vation is not mandatory for cognition and may be negligible for mental acts
that are not directed at physical objects (M. Wilson, 2002). It is certainly
possible to think without overt or even covert motor activation.
A more refined view of embodiment is, instead, that cognition inherits

properties from the sensory-motor processes from which it emerged evolu-
tionarily and developmentally. Lifting spatial relations and movement repre-
sentations through metaphor from the sensory-motor domain to abstract
thought is an example (Lakoff & Johnson, 1999). The use of spatial repre-
sentations in creativity (Fauconnier & Turner, 2002) and the idea that
concepts are embedded in feature spaces (Gärdenfors, 2000) are other
examples.
The dynamical systems perspective on cognition is linked to the embodiment

perspective for good reasons (Beer, 2000; Port & van Gelder, 1995). Dynamical
systems are characterized by state variables, whose values at any given moment
in time predict their future values (Perko, 2001). The laws of motion of physics
take the form of dynamical systems, with the initial conditions of the physical
state variables determining the future evolution of those state variables. The
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dynamical systems perspective on cognition refers, however, not to just any
dynamical system, but to those with particular properties, most prominently,
those with attractor states, that is, invariant solutions to which the system
converges from any initial condition nearby (Van Gelder, 1998). Such attractor
states are critical to control, that is, to steering a physical system to a desired
state (Ashby, 1956). In control, sensors pick up deviations from the desired state
and the controller drives change of the state variables in a direction that reduces
such deviations. Control works in closed loop, in which the controller’s action
leads to changes in sensory signals, which in turn lead to changes in the
controller’s action. Embodied cognition typically takes place as organisms act
in closed loop with their environment. To direct an action at an object, for
intance, you first shift gaze to the object’s location. As a result of this action, the
visual stimulus changes. As you handle an object, its visual appearance changes.
To avoid run-away behavior, closing sensory-motor loops through the environ-
ment requires dynamic stability.

The dynamical systems perspective on cognition postulates that cognitive
processes share properties with the sensory-motor domain, most centrally,
stability properties that enable cognitive processes to link to the sensory-motor
surfaces, continuously or intermittently. Dynamical systems ideas go beyond
the notion of control, however. Cognition is characterized by the multiplicity of
possible states, the complexity inherent in combining many different states into
new entities, and the capacity to generate new sequences of states never before
encountered. One idea is to attribute that complexity to the self-organizing
capacity of nonlinear dynamical systems (Schöner, 2014; Schöner & Kelso,
1988; Thelen & Smith, 1994), in which new states emerge from dynamic
instabilities, multiple stable states may coexist, and graded change during
learning and development may give rise to qualitative change of behavior
or competence.

Dynamical systems ideas also go beyond embodiment in that the closing of
the loop that requires stability properties may take place within the nervous
system. Recurrent neural networks (see Chapter 2 in this handbook) are
dynamical systems: When the inputs to some neurons depend on the outputs
of those neurons, activation must be looked at in time: the previous outputs
determine the current inputs, leading to an iterative form of computation. Even
though some models use discrete time, these iterative update rules for neural
activation really are dynamical systems. Their properties are critical for
sequence generation (Elman, 1990), for working (Compte, Brunel, Goldman-
Rakic, & Wang, 2000; Durstewitz, Seamans, & Sejnowski, 2000) and episodic
memory (Rolls, Stringer, & Trappenberg, 2002), and for the generation of
actions (see Chapter 35 in this handbook). Couched in terms of the dynamics
of neural populations, dynamical systems ideas are effectively a refinement of
the more general connectionist ideas.

A related source of dynamical systems ideas comes from neurophysics, the
dynamics of neural membranes and synapses (Gerstner, Kistler, Naud, &
Paninski, 2014). These electro-chemical processes introduce continuous state
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dependence even to individual neurons and thus also to feed-forward, not
just to recurrent neural networks. Stephen Grossberg’s pioneering work
(Grossberg, 1970) established how simplified models of the dynamics of
neurons provide the core mechanisms of perception, movement generation,
and cognition, building a neural-dynamic theory of essentially everything
that can be reached by the methods of experimental psychology (Grossberg,
2021). The neurally grounded dynamical systems ideas reviewed below could
be viewed as a variant of that framework in which a small set of principles is
used to organize this vast territory. The mathematics underlying much of
this work has been elaborated in a large literature which this chapter only
reviews selectively (Ermentrout, 1998; Coombes, beim Graben, Potthast, &
Wright, 2014).
One particular dynamical systems approach, the neurally grounded Dynamic

Field Theory (DFT, see Schöner, Spencer, & DFT Research Group, 2016 for a
book-length tutorial), is presented as a case study in some mathematical detail
below. Its relation to other dynamical systems approaches, to other neurally
grounded approaches, and to cognitive modeling in general, is discussed in the
final section of this chapter.

6.2 The Foundation of Neural Dynamics

To examine how cognition may emerge from sensory-motor processes,
consider first the sensory and motor periphery. Sensory surfaces like the retina,
the cochlea, the skin, or the proprioceptive system, respond to physical stimuli
that originate from the world. Hypothetically, patterns of stimulation could be
as high-dimensional as the number of sensor cells. In reality, stimuli driving
individual sensor cells are not independent of each other when stimulation
comes from the world. Such stimuli are much lower-dimensional, reflecting
the continuity of surfaces in vision and touch, or the properties of sound sources
in auditory perception (Gibson, 1966). Low-dimensional descriptions of stimuli
may entail the two spatial dimensions of the visual and auditory arrays, visual
feature dimensions such as local orientation, texture, or color, auditory feature
dimensions such as pitch, haptic feature dimensions like the direction of local
stress vectors, or proprioceptive feature dimensions like joint angles and their
rate of change. The motor surface could analogously be construed as the
ensemble of muscles and their mechanical linkages that span the space of
possible motor states. Again, the covariation of muscle activation observed as
synergies makes that the space of possible motor patterns is lower in dimension
(Latash, 2008).
The firing rate of sensory neurons varies monotonically with the physical

intensity of stimulation (e.g., luminance, loudness, or the displacement of a skin
element). When the firing rate of motor neurons varies, the level of force
generation in muscles co-varies. Figure 6.1 illustrates how these two links to
the sensory-motor periphery bracket neural dynamic architectures.
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6.2.1 Activation

Neural dynamic models abstract from some of the physiological details of
neural activity. Real neurons in the brain carry a negative electric potential
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Figure 6.1 A schematic view of a neural dynamic architecture (center box)
that is linked to sensory (top box) and motor systems (bottom box). Sensors
transform physical intensity (e.g. luminosity impinging on the eye from the
visual scene) into neural activation (here denoted by u). Forward neural
networks extract feature dimensions that provide input to the neural dynamic
architecture. Perceptual fields span such feature dimensions (here orientation
and visual space) by virtue of that input connectivity. Coupled neural fields of
varying dimensionality form the neural dynamic architecture. At the interface
to the motor system, the pattern of connectivity sets fields up to span movement
parameters. The neural dynamics of motor systems (often realized in the
periphery by reflex loops) feeds into muscles that transform neural activation
into force, driving the body’s movement. Behavior unfolds in closed loop, in
which actions impact on the visual scene.
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inside their cellular membrane. Input from the synapses on a neuron’s dendritic
tree may induce increases (for excitatory synapses) or decreases (for inhibitory
synapses) of the electric potential, which travel to the neuron’s soma. If the
electric potential near the soma exceeds a threshold, a spike or action potential
is generated in which the electrical potential briefly becomes positive. Action
potentials travel down the axon and activate synaptic connections on the output
side, inducing post-synaptic potential changes on the dendritic trees of down-
stream neurons. In neural dynamics, the electrical potential is replaced by an
activation state, u, that has abstract units. The mechanisms of spiking and
synaptic transmission are simplified by modeling the output of a neuron as a
sigmoid threshold function, σ uð Þ (illustrated in Figure 6.3), which provides
input to any down-stream neuron. This simplification is shared with most
connectionist models and provides a good approximation for the activity in
populations of neurons.

6.2.2 Activation Fields

Neurons in the brain receive input that ultimately comes from the sensory
surfaces (Figure 6.1) and reflects patterns of stimulation from the world. The
pattern of forward connectivity extracts feature information about such stimuli
and creates cortical and subcortical maps, in which neural firing is characterized
by tuning curves and receptive field (see Chapter 3 of Schöner, Spencer, & DFT
Research Group, 2016 for tutorials on the core neurophysiological concepts).
Modeling activity in such neural maps as neural fields amounts to neglecting the
discrete sampling of the sensory surface and feature spaces by individual
neurons. Because there are no known behavioral signatures of that discrete
sampling, this is a useful approximation that helps keep track of the continuity
of the underlying sensory and motor spaces. (There are also more specific
neuro-anatomical arguments for that approximation based on the relative
homogeneity of cortical layers and the strongly overlapping dendritic trees of
neighboring neurons, see H. R. Wilson & Cowan, 1972 and Coombes et al.,
2014.) This leads to the notion of neural activation fields, u xð Þ, that are
“defined” over spatial or feature dimensions, x (illustrated in Figure 6.2).
They can be defined that way only because the forward connectivity from the
sensory surface generates inputs to the fields that reflect the spatial and feature
dimensions of possible stimuli.
Activation fields can be analogously defined for motor representations.

Neurons in the motor areas of the cortex and of subcortical structures have
tuning curves that characterize how the firing rates of neurons vary when a
voluntary movement is varied. For instance, neurons in the motor and
premotor cortex have broad tuning curves to the hand’s movement direction
in space (Schwartz, Kettner, & Georgopoulos, 1988). Similar tuning to move-
ment parameters such as movement extent, or the direction of required force,
can be observed. For any specific motor act, activation is localized along such
motor dimensions. (This is true even though neighboring neurons do not always
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have similar tuning curves in the motor domain. What matters is neighborhood
in connectivity, not neighborhood on the cortical surface.)

In Dynamic Field Theory (DFT), localized peaks of activation are the units
of representation. In the sensory domain, a localized peak of activation reflects
the presence of an object on the sensory surface that can be described by a value
along each of a set of feature dimensions. In the motor domain, a localized peak
of activation reflects the preparation of a particular motor act. Fields further
removed from the sensory and motor surfaces may come to represent more
abstract mental states.

The level of activation of a peak may reflect sensory or motor variables. For
instance, neural activation levels in visual feature fields may reflect local con-
trast (Grabska-Barwińska, Distler, Hoffmann, & Jancke, 2009). Neural acti-
vation levels in the primary motor cortex may reflect the speed of the hand’s
movement in space (Moran & Schwartz, 1999). As discussed below, however,
the activation levels of peaks are largely determined by neural interaction
within fields, and are only in a secondary way modulated by feed-forward
neural connectivity.

6.2.3 Field Dynamics

Activation fields are formalized mathematically as functions, u x, tð Þ of the field
dimension, x, and of time, t. (For now, consider one dimension only so that x is
a scalar.) The evolution in time of activation fields is modeled in DFT by
integro-differential equations of this general form:

τ _u x, tð Þ ¼ $u x, tð Þ þ resting levelþ external input x, tð Þ
þ interaction x, x0, σ u x0, tð Þð Þ for all x0 across the field½ ':

(6.1)

The general form of this equation is inherited from models of the dynamics of
neural membrane potentials (see Trappenberg, 2010 or Gerstner et al., 2014 for
textbook treatment). Activation relaxes in exponential form to the equilibrium
state, u ¼ resting level þ input , on the time scale of about 10 msec (so,
τ ¼ 10 ms).

dimension
activation

Figure 6.2 Activation fields span metric spaces whose dimensions are
determined by the connectivity to and from each field. Activation patterns
(thick line) represent particular values along the dimensions through peaks,
stabilized by local excitatory and global inhibitory interaction. Peaks are
induced, but not uniquely specified, by input (thin line), reflecting the capacity
of fields to make decisions.
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Inputs to a field that arise through forward connectivity from a sensory
surface set up a field to represent a sensory feature dimension. In DFT
architectures, input may also arise from the output of other activation fields.
Neural interaction is input that arises from the output of the same field, a form
of recurrent connectivty: the evolution of activation at a location, x, of the
field depends on the output of activation at all other locations, x0, of the field.
A core postulate of DFT is that neural interaction is organized to make
localized activation peaks attractors of the neural dynamics. Local excitatory
interaction stabilizes peaks against decay. Inhibitory interaction over larger
distances stabilizes peaks against diffusive spread. Signatures of such a spatial
pattern of neural interaction have been observed within populations of cor-
tical neurons in a variety of cortical areas (Georgopoulos, Taira, & Lukashin,
1993; Jancke et al., 1999).
This pattern of connectivity within a field is mathematically modeled by an

interaction kernel, w x$ x0ð Þ, illustrated in Figure 6.3. In that description,
neural interaction is homogeneous, that is, it has the same form and strength
anywhere in the field. That enables neural activation fields to stabilize peaks
anywhere along the dimension they represent. In DFT, neural interaction is
postulated to be sufficiently strong to dominate the neural dynamics, so that
activation may persist purely supported by interaction, without the need for
input from outside the field. Strong interaction enables many of the core
cognitive functions of DFT architectures, including detection and selection
decisions, working memory, and sequence generation. Such strong, homoge-
neous neural interaction within populations of neurons characterizes DFT
models as special cases of generic connectionist models (see also Section 6.6.3).
A concrete mathematical formulation of the field dynamics often used in

DFT is:

σ(u)

u

x-x'

w(x-x')

Figure 6.3 (A) Sigmoidal threshold functions such as the one illustrated here,
σ uð Þ ¼ 1= 1þ exp $βuð Þð Þ, characterize the capacity of neural activation, u, to
affect down-stream neural dynamics. Only sufficiently activated field locations
contribute to output. (B) Homogeneous kernels, w x$ x0ð Þ, depend only on the
distance, x$ x0, between field locations. The neural interaction kernel
illustrated is positive over small distances (local excitation) and negative over
larger distances (global inhibition). Inhibitory interaction may fall off with
distance (not shown).
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τ _u x, tð Þ ¼ $u x, tð Þ þ hþ s x, tð Þ þ
ð
dx0w x$ x0ð Þ σ u x0,tð Þð Þ (6.2)

where the resting level is designated by h < 0, and external input is designated
by s x, tð Þ. In this form, the neural dynamics of activation fields can be math-
ematically analyzed (Amari, 1977), characterizing the qualitative dynamics, that
is, the attractor states and their instabilities. A variety of other mathematical
formalizations are available (see Coombes et al., 2014 for a modern review,
Gerstner et al., 2014 for textbook treatment), whose qualitative dynamics is
overall consistent with that of Equation 6.2.

6.2.4 The Detection Instability and Its Reverse

The qualitative dynamics of neural fields comprise two categories of attractor
solutions (Figure 6.4). Input-driven attractors are subthreshold patterns of
activation shaped by input to which neuronal interaction contributes little.
Neural interaction contributes massively to self-stabilized peaks, lifting acti-
vation above the input-driven level and suppressing activation outside the peak.
That these are qualitatively different attractors can be seen from the fact that
they coexist bistably under some conditions and are separated by a dynamical
instability, the detection instability (see Bicho, Mallet, & Schöner, 2000 for an
analysis; see Figure 6.4 for an explanation).

dimension

activation

activation

dimension

dimension

activation

Figure 6.4 Detection decisions in dynamic fields. (A) For weak input (thin
solid line: input plus resting level), only the subthreshold input-driven state
(thick dashed line) is stable. (B) For stronger input, both the subthreshold
input-driven state (thick dashed line) and the self-stabilized peak (thick solid
line) are stable. In this bistable regime, which attractor activation converges to
depends on the activation pattern present when the inputs first arise (initial
condition). (C) For strong input, only the self-stabilized peak is stable. In the
detection instability, the subthreshold input-driven state becomes unstable
(transition from (B) to (C)). In the reverse detection instability, the self-
stabilized peak becomes unstable (transition from (B) to (C)).
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The detection instability is observed, for instance, when the amplitude of a
single localized input is slowly increased. Below a critical level, the subthreshold
input-driven solution, u xð Þ ( hþ S xð Þ < 0, is stable (for slowly varying S x, tð Þ
which can be approximated as S xð Þ). At appropriate settings of the parameters
of the interaction kernel (Amari, 1977), a self-stabilized peak of activation
centered on the localized input coexists as a stable stationary state. When the
amplitude of localized input reaches a critical level, the subthreshold solution
becomes unstable and disappears. This is caused by activation passing through
the threshold of the sigmoidal function, so that neural interaction sets in,
driving the growth of the peak beyond the level specified by input.
At the detection instability, peaks are created. As peaks are the units of

representation, this amounts to a decision that sufficient input is detected to
create an instance of representation. If input increases continuously in time, the
detection instability occurs at a particular, discrete moment in time when input
reaches a critical level. The detection instability is thus instrumental in creating
discrete events from time-continuous neural processing, a feature critical to
understanding how sequences of neural processing steps arise in neural dynam-
ics (Section 6.4).
Once a peak has been created, it is stable. If input falls below the critical level,

the self-stabilized peak persists within a bistable range of input amplitudes. If
localized input shifts along the field dimension, the peak tracks that input
(Amari, 1977). So while self-stabilized peaks are separated from input-driven
activation by the detection decision, they continue to be responsive to input.
Self-stabilized peaks become unstable in the reverse detection instability when

activation falls below the critical level at which interaction is engaged. This
may happen because input falls below a lower critical level, or because inhibitory
input pushes activation levels down. At the reverse detection instability, activation
is no longer supported by local excitatory interaction and begins to decay,
converging to the subthreshold input-driven activation state. So the reverse
detection instability causes the deletion of a peak, removing a unit of representa-
tion. Again, a time-continuous change may be transformed into an event.

6.2.5 Sustained Activation

There are conditions under which self-stabilized peaks of activation may remain
stable even in the absence of any input beyond the resting level (Amari, 1977).
Such a sustained peak of activation is illustrated in Figure 6.5. This dynamic
regime comes about when excitatory interaction in the field, once engaged, is
sufficiently strong to keep activation at positive levels, bridging the gap from the
negative resting level. This may be because excitatory interaction simply is
strong or because the resting level is closer to zero, so that the gap is easy to
bridge. In fact, an increase of the resting level can shift the neural dynamics
from a regime without to a regime with sustained activation peaks.
Sustained activation is the standard picture for how working memory is

neurally realized (Fuster, 1995). Sustained peaks of activation may thus provide
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a neural mechanism for metric working memory. Localized input may induce a
peak through the detection instability. The activation peak remains stable after
the input is removed. The peak’s location in the field retains the metric infor-
mation about the earlier localized input. This metric information is preserved
only to the extent to which no other localized inputs act on the field. Such
inputs, even when they are small, may induce drift of the peak, both by
attracting to locations with excitatory input and by repelling from locations
with inhibitory inputs. Both effects have been observed behaviorally (Schutte &
Spencer, 2009; Schutte, Spencer, & Schöner, 2003). Such metric distortions of
working memory may be misread as evidence for underlying categorical repre-
sentations (Spencer, Simmering, & Schutte, 2006).

Capacity limits are natural for DFT models of working memory
(J. S. Johnson, Simmering, & Buss, 2014; Simmering, 2016): as the number of
peaks increases, the total amount of inhibitory interaction increases, ultimately
pushing peaks below the reverse detection instability. This emergent nature of
the capacity limit is in contrast to the idea of a fixed number of slots and
consistent with ability to modulate capacity by distributing resources
(J. S. Johnson et al., 2014) and with other indices of a graded capacity of
working memory (Schneegans & Bays, 2016).

6.2.6 Selection

When inhibitory interaction is sufficiently strong, only a single peak may be
stable at any given time. This enables selection decisions as illustrated in
Figure 6.6. In response to an input distribution that has multiple local maxima,
the field generates a single peak positioned over one of those local maxima.
That selection decision may be combined with a detection decision if the field is
in a subthreshold pattern of activation when input first arises. The location that
first reaches threshold wins the neural competition created by inhibitory inter-
action. Because the peak that emerges is a full self-stabilized peak whose shape
and total activation does not reflect how close the selection decision was, this
enacts a “winner takes all” mechanism. In some connectionist neural networks,
such a normalization step is implemented by a separate mechanism (such as an
algorithm reading out the location of the maximum, “argmax”). The decision

dimension
activation

Figure 6.5 In a sustained peak of activation (thick line), a peak of positive
activation persists in the absence of any localized input. Note that activation
outside the peak is suppressed below the resting level (marked by the thin
horizontal line) by inhibitory interaction. The positive activation level within
the peak, induced by some earlier stimulation, is stabilized by local
excitatory interaction.
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may be biased by earlier activation patterns, so that the selected location is not
necessarily the location of maximal input. In fact, selection decisions are stable:
When input at the selected location becomes weaker or input at another loca-
tion becomes stronger, the selected peak persists. The limit to that stability
occurs in the selection instability: When input at a new location becomes
sufficiently strong, it lifts activation at that location above the threshold in spite
of inhibitory interaction, inducing a new peak that then suppresses the earlier
peak. (Technically, the field may be bi- or multistable and one of those attract-
ors loses stability.)
A subtle, but important property of dynamic fields arises when selection

occurs in response to broadly distributed input or to a homogeneous boost to
the entire field. In the boost-driven detection instability, a field creates a single
peak whose location represents a selection decision. Selection is sensitive to
small inhomogeneities in the field from input or from a memory trace (Section
6.5): The peak arises at one of the locations with slightly higher initial activation
level. In a sense, the boost-driven detection instability amplifies small differ-
ences into a full self-stabilized peak at one location, while other locations with
very similar initial activation levels are suppressed.
Neural noise and noise originating in sensory inputs are important in DFT

due to their role at such instabilities. Noise may create a momentary selection
advantage for one location which is then amplified into a macroscopic

dimension
activation

activation

dimension

activation

dimension

Figure 6.6 Selection decisions in dynamic fields. (A) When input on the left is
sufficiently much stronger than input on the right, only the left-most peak
remains stable. (B) In response to bimodal input (thin solid line), a dynamic
activation field may be bistable, supporting a stable peak centered over either
local maximum (thick solid and dashed lines). (C) When input on the right is
sufficiently much stronger than input on the left, only the right-most peak
remains stable.
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decision. Only at instabilities does noise play such a role. While far from an
instability, peaks are much too stable to be spontaneously suppressed or
switched. Nondeterministic aspects of behavior are accounted for in DFT by
the amplification of noise around instabilities. The generic mathematical
formalization of neural noise in DFT is Gaussian white noise, added to the
rate of change of activation (Equation 6.2). (Technically, this makes the
neural dynamic model a stochastic differential equation. Because the Ito and
Stratonovich calculus do not differ for additive noise, there is no need to
specify either framework, see pages 35–37 in Oksendal, 2013.) Typically, noise
is assumed independent at each field location (spatial correlations can be
modeled by a noise kernel).

6.2.7 Neural Dynamic Nodes

So far, all illustrations have been from one-dimensional fields, but the same
solutions and instabilities are obtained in two-, three-, or four-dimensional
fields (on limits to that later). What about zero-dimensional fields? Those could
be thought of as small populations of neurons, mathematically described by a
single activation variable, u tð Þ, subject to a neural dynamics of this general form

τ _u tð Þ ¼ $u tð Þ þ hþ s tð Þ þ wexcσ u tð Þð Þ, (6.3)

where wexc is the strength of self-excitation (really the net result of excitatory
interaction within the small population). These dynamics have stable
states analogous to those of neural dynamic fields: a subthreshold activation
state (u0 ( hþ S < 0, the “off” state) and a suprathreshold activation state
(u1 ( hþ sþ wexc > 0, the “on” state).

What the activation of such a neural dynamic node means is determined by
the pattern of connectivity of its input and output. Concept nodes, for instance,
may be linked to a variety of feature fields, so that particular ranges of feature
values may activate such a node, and conversely, a node may provide input to
those feature fields, supporting the form of cuing discussed next.

6.3 Neural Dynamic Architectures

6.3.1 Binding

When neural dynamic fields simultaneously represent dimensions that have
different meanings, new functions emerge from the dynamic instabilities.
Figure 6.7 shows a joint neural representation of visual space (only its horizon-
tal dimension for ease of illustration) and of a visual feature, orientation. Such a
joint representation could come about due to feed-forward connectivity from
the visual array that extracts visual position and local orientation (e.g. making
use of Gabor filters). Figure 6.7 also illustrates two fields that represent each
dimension separately and are coupled reciprocally to the joint representation.

Dynamical Systems Approaches to Cognition 221

1::79�  .6��680 ������� 
�	���	���������
�����91/.�65��5/�� �����8�.0/��5��/89�: �8/99

https://doi.org/10.1017/9781108755610.009


A peak in the joint field binds the location of a visual object to its orientation.
Summing activation along either dimension and projecting onto the separate
fields induces peaks there, effectively extracting the individual feature values
from the bound representation. Conversely, individual feature values repre-
sented by peaks in the separate fields can be bound together by projecting two
ridges into the joint field, one along orientation, the other along space. Under
appropriate conditions, the joint field reaches the detection threshold only at the
intersection of the two ridges, generating a peak there that binds the two feature
values together. Note that such binding requires that only one object is repre-
sented at a time. If a separate field had peaks at more than one feature value, the
projections would intersect at more than one location, inducing “illusory con-
junctions” of feature values that belong to different visual objects.
The core mechanism of visual search combines these two directions of

coupling. Localized input into the joint field from the visual array is boosted
by a ridge of input from a peak in the orientation field that represents the
search cue (Figure 6.7). This induces a peak in the joint field only at those
locations that overlap with the ridge (a form of biased competition
(Desimone, 1998)). A visual object is thus selected, whose orientation matches
the search cue represented by the peak in the orientation field. Based on this
core mechanism, a comprehensive DFT model of visual search (Grieben et al.,
2020) addresses conjunctive search and the autonomous sequential selection
of candidate objects.

activation
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nt
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Figure 6.7 Core principle of a neural dynamic architecture for visual search.
A visual scene (A) consisting of a vertical and a horizontal object provides
input to a two-dimensional field (B) over space (horizontal spatial dimension)
and orientation (local orientation feature dimension). That input (light gray
blobs) is localized along both dimensions. A one-dimensional field defined over
the orientation feature dimension (C) has a peak at the vertical orientation
representing a search cue. That peak provides ridge input into the two-
dimensional field, which induces a peak where the ridge overlaps with the blob
input. Projecting suprathreshold activation, summed along the orientation
feature dimension, onto a one-dimensional field over space (D) induces a peak
at the spatial location of the vertical object.
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Binding dimensions by a joint neural field is neurally costly, however, as
every possible combination of feature values across dimensions requires dedi-
cated activation variables. Such binding scales poorly with the number of
dimensions. Using only 100 neurons per feature dimension, the binding of
orientation, color, texture, movement direction, and visual space, for instance,
would take 1012 neurons, as much as in the entire brain (see Eliasmith &
Trujillo, 2014 for a discussion of such scaling issues). The form of conjunctive
feature binding relevant for visual search and many other tasks must be more
flexible and efficient. Feature Integration Theory (Treisman, 1980) provides a
cue. Feature dimensions may each be individually bound to visual space by
joint neural representation, consistent with the fact that neurons tuned to
different feature dimensions all have spatial receptive fields. But there is no
need for all combinations of feature dimensions to be represented by particular
neurons. Instead, a stack of neural fields, each spanning visual space and one or
a small number of other feature dimensions may together represent the ensem-
ble of features. Binding the different feature dimensions of a particular visual
object now occurs through the shared spatial dimension. Bidirectional excita-
tory interaction along the shared spatial dimension (a cylinder-shaped input
pattern to each feature/space field) enables search for conjunctions of features
(Grieben et al., 2020). The same mechanism can be used to explain how change
detection for feature conjunctions may be achieved (Schneegans, Spencer, &
Schöner, 2016).

6.3.2 Coordinate Transforms

Binding different dimensions through joint neural representations enables
active coordinate transforms, which are relevant to many sensory-motor
and cognitive tasks. To direct action at an object, for instance, visual
information in retinal coordinates must be transformed into coordinates
anchored in the body (to which the arm is attached). Such a transform
depends on (is steered by) an estimate of gaze direction (Schneegans, 2016;
Schneegans & Schöner, 2012). The body-centered object location must be
further transformed into a frame centered on the initial position of the hand
to extract movement parameters such as direction and extent (Schöner,
Tekülve, & Zibner, 2019).

The bottom half of Figure 6.8 illustrates an active coordinate transform in a
much more cognitive context, perceptually grounding a spatial relation like
“the vertical bar to the left of the horizontal bar.” In a spatial representation of
the visual array that is centered on the reference object, the “horizontal bar”
(bottom of the figure), it is easy to conceive of a pattern of connectivity that
would define the relational concept “to the left of.” The connectivity would
activate a neural node representing that concept only when activation falls into
an appropriate spatial region to the left of the field’s center (Lipinski,
Schneegans, Sandamirskaya, Spencer, & Schöner, 2012). An active coordinate
transform of the original visual array into a frame centered on the reference
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object would enable generalizing this pattern of connectivity to reference
objects anywhere in the visual array. That transformation would be steered
by the reference object’s location in the original frame of reference.
Neural implementations of active coordinate transforms can be based on a

joint representation of the original space and a space representing the steering
dimension (Pouget & Snyder, 2000). Such representations are observed as gain
fields in area LIP of the parietal cortex (Andersen, Essick, & Siegel, 1985) and

reference

visual scene

spacespace

orientation
vertical

horizontal

target
centered on
reference

target

left right

Figure 6.8 A neural dynamic architecture for the grounding of spatial relations.
The visual scene on top provides input to a two-dimensional field over
orientation and space. Nodes for “vertical” and “horizontal” orientation
(circles on top left, filled for activated node) are reciprocally connected to
matching regions in a one-dimensional orientation field. The orientation-space
field projects onto two spatial fields, “target” and “reference,” by summing
along the orientation dimension. These are reciprocally coupled to the diagonal
two-dimensional transformation field, which is, in turn, reciprocally coupled to
a spatial field that represents the target centered on the reference. Nodes for “to
the left of” and “to the right of” are reciprocally coupled to corresponding
spatial regions of that spatial field.
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elsewhere. In the example, the joint representation binds the visual array
containing potential target objects of the relation to a spatial representation
of the reference object. The projections from the target and reference spaces
into the joint representation takes the form of two ridges. Where these ridges
meet, a peak is induced that binds the spatial locations of target objects to
those of reference objects. Projection from the joint representation onto the
transformed space sums outputs along an appropriate subspace. In this
example, summing along the diagonal yields a spatial representation centered
on the reference object.

6.3.3 Architectures

The neural dynamics in architectures such as the one illustrated in Figure 6.8
can be characterized in terms of dynamic concepts for the individual fields
like the detection instability and the capacity for selection. This is not trivial,
and only true because of the stability postulate for meaningful activation
states. The dynamic stability of such states implies structural stability under
change of dynamics. When the dynamics (the equation) change in a continu-
ous way, attractors remain stable (Perko, 2001). Coupling among fields can
be viewed as a continuous change of the dynamics by thinking of the
coupling strength as being increased from zero. So in tying function to
attractor states, DFT models avoid the classical problem of analog comput-
ing in which solutions may be completely changed when a new component
is added.

Fields retain their dynamic properties within limits that are reached
exactly when the coupling within neural architectures induces instabilities.
That makes DFT architectures intrinsically flexible. The architecture shown
in Figure 6.8 illustrates this point. To perceptually ground spatial relations
such as “the vertical bar to the left of the horizontal bar,” this architecture
performs visual search first for the reference (“the horizontal bar”), then for
the target object (“the vertical bar”). The top half of Figure 6.8 is simply the
mechanism for visual search from Figure 6.7. The search cue is provided by
concept nodes that may activate either the feature representation of “vertical
bar” or of “horizontal bar” by virtue of their connectivity with the feature
field defined over orientation. The output of visual search in the orientation-
space field projects both to a field representing the spatial location of the
reference object and to a field representing the spatial location of possible
target objects. By boosting the reference spatial field when the reference
object is searched, only that field can reach the detection instability based
on the search output. By boosting the target spatial field when, in the next
step, target objects are searched, only that field can build peaks. This way,
the outcome of the visual search can be directed into either field by boosting
the destination field. In connectionist models, such steering of projection is
achieved by multiplicative “gating” connections to the projections among
neural populations (O’Reilly, 2006).
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6.4 Autonomous Sequence Generation

The visual search for target and reference must be performed sequen-
tially. How may such sequences of processing steps arise in neural dynamic
systems? And how do the transitions among such steps arise at discrete
moments in time from the time-continuous neural dynamics? Figure 6.9 illus-
trates how the detection instability can be harnessed to bring about such
transition events (Sandamirskaya, 2016; Sandamirskaya & Schöner, 2010).
A neural field, labelled here the intention field, represents an ongoing mental
or motor act by a suprathreshold peak of activation. The peak’s location
specifies the intended act, for instance, the feature value of the object that must
be visually searched. That intentional state predicts a sensory or internal
outcome that counts as its condition of satisfaction (a term borrowed from
Searle, 1983). The prediction is realized through neural connectivity, which
may have to be learned, to a neural field that represents the condition of
satisfaction. The intention to visually search the target predicts an internal
outcome, a peak in the joint feature/space field at the cued feature value. The
predictive input alone is not sufficient, however, to push the condition of
satisfaction field through the detection instability. A peak is formed in that field
only when the predicted input arises from a sensory surface (for real motor acts)
or from another neural representation (for mental acts).
The condition of satisfaction field inhibits the intentional field globally by

providing a negative boost. So once it builds a peak, that inhibition pushes the
intentional field through the reverse detection instability, leading to the decay of

intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

prediction

Figure 6.9 The neural dynamic mechanism for sequence generation is based on
a pair of neural fields, the intention and the condition of satisfaction fields,
which may be defined over different dimensions. A peak in the intention field
(thick line on the left) drives the mental or motor act by projecting onto the rest
of the neural dynamic architecture. It also provides input (thin line on the
right) to the condition of satisfaction field that predicts the outcome of a
succesful completion of the intended mental or motor act. When signals from
inside the neural dynamic architecture or from sensory systems provide input
that overlaps with that prediction, the condition of satisfaction field generates a
peak. Through inhibitory projection onto the intention field (top line with a
filled circle at its end), the peak in the condition of satisfaction field may then
suppress the peak in the intention field and subsequently become unstable itself.
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the peak there. This removes the predictive input from the condition of satisfac-
tion field, pushing that field below the reverse detection instability and leading
to the decay of that peak as well. The end result of this cascade of instabilities is
that both intention and condition of satisfaction fields are returned to a sub-
threshold state of activation. The intended act has successfully terminated.

What happens next depends on the neural dynamic architecture. The three
classical conceptions for serial order can all be realized in neural dynamic
architectures (Henson & Burgess, 1997). First, in the gradient conception,
intentional states are competing for activation and the most activated one wins.
This happens in many neural dynamic architectures. An example is the DFT
account of visual search referenced above in which object locations are selected
for attention based on the amplitude of summed inputs (Grieben et al., 2020).
Second, in the chaining conception, an intentional state has a successor that is
becoming activated once the intentional state is terminated. In neural dynamic
terms, such successor relationships may be expressed by specific coupling
structure. For instance, among sets of intentional states, asymmetrical inhibi-
tory coupling may prevent certain states from becoming activated while others
are active. Termination of one intentional state may then release other inten-
tional states from inhibition and allow them to become activated. This is how
the sequential search for target and reference objects is organized in the DFT
architecture of grounding relations (Figure 6.8) (Richter, Lins, & Schöner,
2017, 2021).

Third, the positional conception combines chaining with the idea that a
neural representation of ordinal position in a sequence points to its contents
by neural projection. A neural dynamic architecture realizing positional serial
order (Sandamirskaya & Schöner, 2010) is illustrated in Figure 6.10. A set of
neural dynamic nodes is coupled to enable their sequential activation along an
implied ordinal dimension. Two nodes, an intention and a working memory
node, represent each ordinal position. All intention nodes are coupled inhibi-
torily, so that only one of them can be active at any time. Each intentional
node activates its memory node which remains activated (sustains activation
by self-excitation) after the intention node has been deactivated. Each
memory node provides excitatory input to the intention node of its successor
within the ordinal set. This leads to the successive activation of intentional
nodes along the ordinal dimension each time a condition of satisfaction is
reached (Sandamirskaya, 2016). Content is associated with each ordinal pos-
ition by synaptic connectivity from each intention node to relevant feature
fields (which may be learned, see below). So when an intentional node at a
particular ordinal position becomes activated, it induces peaks in the feature
fields it projects to, which then drive further processes or actions in the
architecture. These peaks also provide input to the condition of satisfaction
field that predicts the outcome of the intention (connectivity which may again
be learned).

In effect, this system will go through the neural processes associated with
each ordinal position in serial order. The processing steps may entail actual
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motor behavior that may take variable amounts of time. For instance, the agent
modeled by Sandamirskaya & Schöner, 2010 was taught a serial order of colors
which it then searched for in a new environment. Finding an appropriately
colored object at any given step would then take variable amounts of time.
During that time, the intention to search for the current color would remain
stable against distractors (e.g. objects with colors that are to be searched at
other steps in the sequence). A similar demonstration for a robot arm is
reviewed in (Tekülve, Fois, Sandamirskaya, & Schöner, 2019). In other cases,
the processing steps may be entirely neural, but their duration may still vary
depending on activation levels and their distance from instabilities. An example
is the building of a mental map by processing spatial relations (Kounatidou,
Richter, & Schöner, 2018), in which the time needed to induce an entry into the
map depends on how many items are already present (due to inhibition from
those). This robustness of sequential processing is critical to scaling such neural
dynamic architectures beyond a limited set of demonstrations. Connectionist
architectures for serial order do not address this problem of stabilization against
variable timing of events. In the classical architectures, time is either discretized
so that one item is activated on each step (Elman, 1990) or is based on transient
activation patterns that generate a regular pattern of serial recall (Botvinick &
Plaut, 2006).

dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

intention

prediction

ordinal memory

ordinal intention

Figure 6.10 A neural dynamic mechanism for serial order in (A) is added to
the intention/condition of satisfaction system of Figure 6.9. Circles denote
neural dynamic nodes, above threshold when filled, below threshold when open.
Gray shading indicates subthreshold activation above resting level. The lower
row depicts ordinal intention nodes whose projection onto regions of the
intentional dimension (irregular arrows) gives contents to each ordinal step.
The upper row is matching memory nodes. Each ordinal intention node
activates its memory node (vertical arrow), which preactivates the successor
ordinal intention node (diagonal arrows). All ordinal intention nodes are
inhibited by the condition of satisfaction field (line with a filled circle at its
end). Inhibitory coupling among ordinal intention nodes is not shown.
Illustrated is an activation state while the system is in the first step of a serial
order task.
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6.4.1 Multi-Layer Fields and More Complex Neural Dynamics

In the brain, neurons make only one type of synapse on their targets, either
excitatory or inhibitory. This principle, sometimes referred to as Dale’s law,
gives the notions of “excitatory” and “inhibitory” neuron their meaning. From
the interplay of excitatory and inhibitory populations, more complex neural
dynamics emerge that may deliver further cognitive and motor function. Only
some basic ideas are reviewed here (see Buonomano & Laje, 2010; Schöner
et al., 2019; Sussillo, Churchland, Kaufman, & Shenoy, 2015; Tripp &
Eliasmith, 2016 for further reading).

The neural dynamics reviewed up to this point violate, in part, Dale’s
principle. For instance, the interaction kernel of Equation 6.2 (Figure 6.3)
postulates that activation at one field location has excitatory connections to
nearby locations and inhibitory connections to locations further removed in the
field. In the brain, the inhibitory influence must be mediated by inhibitory
interneurons that are excited by the activation field and that, conversely, project
inhibitorily onto the activation field, a pairing of excitatory and inhibitory
populations. In fact, the model of Equation 6.2 is an approximation of such a
more realistic two-layer model (Amari, 1977). The approximation is valid when
inhibition is sufficiently fast dynamically, but fails when the time needed to
build up inhibition matters. This is relevant to understanding the time course of
decision making (Wilimzig, Schneider, & Schöner, 2006), for instance, in which
early decisions are influenced more strongly by excitatory input and interaction
that promote averaging among inputs, while late decisions are more strongly
influenced by inhibitory interaction that promotes selection. Excitatory and
inhibitory neural populations also play different roles during learning (see
Section 6.5).

More complex arrangements of layers of excitatory and inhibitory neural
populations lead to new functions. Inspired by the so-called canonical microcir-
cuit of the neocortex (Douglas, Martin, & Whitteridge, 1989), a model with two
excitatory and one inhibitory layer has been proposed that accounts for change
detection in visual working memory tasks (J. Johnson, Spencer, Luck, &
Schöner, 2009; Schneegans et al., 2016). Multilayer structures also account for
match and mis-match detection such as those occurring for each examined item
in visual search (Grieben et al., 2020). Pairs of excitatory–inhibitory popula-
tions may generate time courses, either as active transients or as periodic
oscillations. These may be used to model the generation and coordination of
movement (see, for instance, Knips, Zibner, Reimann, & Schöner, 2017;
Schöner et al., 2019).

6.5 Memory Formation and Learning in Neural Dynamics

Learning is the change of behavior or thought that is driven by experi-
ence. In DFT terms, learning is the change of the neural dynamics of a system
that is driven by the activation patterns themselves and their sensory-motor
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consequences. The simplest forms of such learning from experience are prob-
ably sensitization and habituation (Thompson & Spencer, 1966). Sensitization
is the lowering of the threshold for a motor behavior or percept over its repeated
experience. Habituation is the increase of the threshold across experience. In
DFT, these two simple forms of learning can be modeled by the laying down of
a memory trace of activation fields. Sensitization is modeled by a memory trace
for excitatory fields that locally lifts the resting level making it easier to induce a
peak at locations that had previusly been activated. Habituation is modeled by
a memory trace for inhibitory fields that locally makes it easier to build inhib-
ition and thus more difficult to build peaks in the associated excitatory field.
The mathematical formalization of the memory trace in DFT has taken a

variety of forms which are all largely equivalent. The evolution of the memory
trace, umem x, tð Þ, of an activation field, u x, tð Þ, is described as a dynamical
system on the somewhat slower time scale, τmem:

τmem _umem x, tð Þ ¼ $umem x, tð Þ þ σ u x, tð Þð Þ: (6.4)

The memory trace is thus a local low-pass filter of the activation field. The
equation must be modified to express the understanding that _umem x, tð Þ ¼ 0 if
activation in the field, u x, tð Þ, is nowhere above threshold (see Erlhagen &
Schöner, 2002 for a formalization). That means that there is no spontaneous
decay of the memory trace, which decays only by interference, that is, decays at
locations without activation when at the same time the memory trace builds at
other activated locations. More refined models postulate a slightly faster time
scale for building the memory trace than for the decay of the memory trace (see
Sandamirskaya, 2014, for review). The coupling from the activation field,
u x, tð Þ, into the memory trace may be described by a kernel, spreading acti-
vation to neighboring sites.
The memory trace couples back into the neural dynamics of the field by

providing excitatory input, for example, in this form:

τ _u x, tð Þ¼$u x, tð ÞþhþS x, tð Þþ
ð
dx0w x$x0ð Þσ u x0, tð Þð Þþcmemumem x, tð Þ

(6.5)

with coupling strength, cmem (which can be expanded to include a kernel).
Typically, the strength of input from the memory trace is small compared to
other inputs and to neural interaction, so that the memory trace amounts to a
small local adjustment of the resting level. One may thus think of the memory
trace as preshaping the activation field.
The functional constraints for the dynamics of the memory trace come from

accounts of behavioral experiments. The memory trace of excitatory fields was
used to account for perseverative reaching in infants (Thelen, Schöner, Scheier,
& Smith, 2001) and that work pointed to the absence (or very slow rate) of
spontaneous decay. That work also suggested decay of the memory trace by
interference (Clearfield, Dineva, Smith, Diedrich, & Thelen, 2009; Dineva &
Schöner, 2018). The memory trace of inhibitory fields has been used to account
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for infant habituation (Perone & Spencer, 2013, 2014; Schöner & Thelen, 2006).
Earlier work on choice reaction times has shown how the memory trace may
build estimates of the probability of choices from the frequencies of particular
decisions (Erlhagen & Schöner, 2002), consistent with similar signatures in
infant motor decision making (Dineva & Schöner, 2018).

From a connectionist perspective, the memory trace is an elaboration of the
bias term, an offset to the sum over inputs that each model neuron performs.
The bias term plays a limited role in neural network learning because it is just
one input in addition to many synaptic inputs to the neuron. In DFT, in
contrast, this term plays a much stronger role because the detection instability
may amplify small differences in activation into macroscopic suprathreshold
peaks. The dynamics of the memory trace does not model associative learning
as it strengthens active neural representations irrespective of how they were
activated. Associative learning through Hebbian strengthening of connections
reflects coactivation of pre- and postsynaptic neural populations. Such a mech-
anism can also be used within the framework of DFT. The appropriate math-
ematical formalization makes use of time-continuous learning rules modeled as
a dynamical system (Sandamirskaya, 2014), an approach that goes back at least
to Grossberg, 1970. For examples of using this form of learning in DFT see
Klaes, Schneegans, Schöner, & Gail, 2012; Sandamirskaya & Schöner, 2010;
Sandamirskaya & Storck, 2015; Tekülve & Schöner, 2020.

6.6 Relation to Other Approaches

6.6.1 Relation of Dynamic Field Theory to Other Dynamical
Systems Approaches

Neural dynamics as formalized in DFT was reviewed in this chapter as a
concrete, mathematically specific case study of dynamical systems thinking in
cognition. In DFT, meaningful thoughts and actions are generated by attractor
states of neural populations whose stability enables linking cognitive processes
to sensory-motor systems. Stability is generated by spatially organized neural
interactions that erect localist neural representations. Multiple local neural
activation patterns can be flexibly bound by such neural interaction within
neural dynamic architectures. The time- and state-continuous neural dynamics
gives rise to events at discrete moments in time through dynamic instabilities,
that can be harnessed to generate sequences of mental or motor acts.

How is DFT positioned relative to other strands of dynamical systems
thinking in cognition? The introduction to this chapter provided the embedding
of dynamical systems ideas in embodiment. A body equipped with sensors,
effectors, linked by a nervous system, and situated in an appropriately struc-
tured environment may give rise to meaningful and complex behavior
(Braitenberg, 1984). Because behavior is ultimately critical to evolutionary
success, one may think of physically embodied cognition as a form of “minimal
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cognition,” from which all other forms of cognition may have emerged (Beer,
2000). DFT is consistent with this line of thinking (Schöner, Faubel, Dineva, &
Bicho, 2016). DFT makes a distinction, however, between “behavioral”
dynamics, in which the physical state of an agent or organism is critical, and
“neural” dynamics, to which the physical state may, but need not, contribute.
Through neural dynamics, DFT makes use of the notion of representation
of thought as simply inner neural dynamic states that shape the evolution of
further thought and action (Spencer & Schöner, 2003). (In the philosophy of
mind, debates about the sense in which dynamical systems views are compatible
with the notion of representation are based on a more nuanced view of repre-
sentation reviewed, for instance, in Ramsey, 2007.)
More radically, neural dynamic thinking as formalized in DFT is based on

the hypothesis that embodiment, the evolutionary and developmental link of
cognition to behavior, and the properties of cognitive processes that derive from
that link, pervade all forms of cognition. The research program is to understand
how abstraction from sensory-motor states and invariance against change of the
sensory-motor rendering of experience are effortfully achieved by neural pro-
cesses (for example, by coordinate transforms). This is in contrast to the
research program of other approaches to cognition that postulate abstract,
invariant representations from the beginning.
Emergence is a related notion used to characterize how specific competences

arise once an embodied agent is situated in an appropriate environment. Over
development, the demands on the environment may be relaxed as competences
arise in ever broader and less specific contexts (Thelen & Smith, 1994). No single
component process may be sufficient nor necessary to bring about a competence
so that behavioral and developmental transitions may occur in multiple different
ways, not following a unique causal path. On the one hand, DFT embraces this
notion and provides concrete mechanistic accounts for how emergence in this
sense may happen (Schöner, 2014). Near instabilities, for instance, a variety of
small contributions to a neural or behavioral dynamics may push the system
through a bifurcation and bring about change, which may then be consolidated
by learning from experience. The inducing factors need not be causal for the
competence in any broader sense. On the other hand, the notion of emergence is
sometimes invoked to suggest that cause and effect cannot be identified. As a
mechanistic theory, DFT is not aligned with such a view.
Two potential tensions between DFT and other approaches are worth exam-

ining. The alignment of DFT with the general role of models of cognition as
informed by mathematical psychology is first addressed. The relationship of
DFT to other neurally mechanistic approaches to cognition is discussed second.

6.6.2 Does Dynamic Field Theory Deliver Models or Neural
Process Accounts?

Conceptually, dynamical systems accounts formalized in DFT are presented
as neural process models of cognition. In many cases, including some of the
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best-known DFT models, the interface to sensory and motor systems is
limited to a simple mapping of states of the model to events in the world.
For instance, in the DFT account of perseverative reaching (Dineva &
Schöner, 2018; Thelen et al., 2001), an intended movement was modeled by
a peak in a neural field defined over movement direction. That peak’s position
at given moments in time was mapped onto the observed movement of the
infant’s reach toward a matching location. Inputs to the field were modeled by
Gaussian functions centered on movement directions specified by putative
sources of sensory information. How sense data provide these inputs and
how a peak of activation actually drives the hand’s movement was not part
of the model (although an implementation of the model on a robot vehicle
demonstrated that the link to sensory-motor systems can be established, in
principle (Schöner, Faubel, et al., 2016)).

Mappings between model and experiment of this form are common in
mathematical psychology and connectionist modeling. For DFT models,
accounts for psychophysical data based on such mappings are strong when
the captured experimental signature is linked to the model’s deeper conceptual
structure rather than being merely a reflection of judiciously chosen parameter
values. The dependence of performance on the metrics of a task was structural
in this sense in a number of models as it is directly linked to the interaction
kernel. Examples are metric effects in reaction times (Erlhagen & Schöner,
2002), in change detection (J. Johnson et al., 2009), or in visual habituation
(Schöner & Thelen, 2006). The dependence of performance on time is also
often structural in this sense. Examples are the time courses of decision
making (Wilimzig et al., 2006), of perceptual preference (Perone & Spencer,
2013), or of motor biases (Schutte & Spencer, 2009; Schutte et al., 2003).
Because DFT models are strongly constrained by the imposed principles of
stability, homogeneity (reducing the number of parameters strongly over
connectionist models), achieving quantitative fit is not trivial (see Buss &
Spencer, 2014; Samuelson, Smith, Perry, & Spencer, 2011 for two insightful
case studies and Chapter 15 of Schöner, Spencer, & DFT Research Group,
2016 for a discussion).

Dynamic Field Theory models may be linked more directly to sensory and
motor processes. A recent model of visual search (Grieben et al., 2020), for
instance, takes visual input from a camera based on feed-forward feature
extraction that is consistent with known neural projections. A neural dynamic
model for the perceptual grounding of relations is similarly driven by real
camera input (Richter et al., 2017, 2021). Both the sensory and the motor
interface was physical and real in neural architectures for reaching movements
(Bicho, Louro, & Erlhagen, 2010; Knips et al., 2017; Strauss, Woodgate, Sami,
& Heinke, 2015). Such models come close to a neural process account in that
they can “act out” the modeled behavior and thus prove that the interfaces to
sensory-motor systems do not hide unsolved problems (such as when the input
to a model neuron is assumed to reflect the detection, segmentation, a shape
estimation of a visual object, a rather nontrivial task). Closest to true neural
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process models come neuromorphic implementations of DFT architectures on
robots with neuromorphic sensors (Kreiser, Aathmani, Quio, Indiveri, &
Sandamirskaya, 2018; Milde et al., 2017).
Mapping neural dynamic models onto neural data is another way to con-

strain the interface between model and experiment. The distribution of popula-
tion activation is a formalized method to estimate the activation state of neural
fields from multiple single unit recordings (Erlhagen, Bastian, Jancke, Riehle, &
Schöner, 1999). The method uses the tuning curves of individual neurons to
establish their contributions to a field defined over the probed sensory or motor
dimension. This is how a neural dynamic model of population activity in the
primary visual cortex (Jancke et al., 1999) provided evidence for the neural
interaction kernel (see Section 6.2). A neural dynamic model of population
activity in the motor and premotor cortex (Bastian, Riehle, Erlhagen, &
Schöner, 1998; Bastian, Schöner, & Riehle, 2003) provided evidence for the
integration of prior information. Through a neural dynamic model of saccadic
selection mapped onto neural activity in the superior colliculus, Trappenberg
and colleagues have been able to link different components of that model to
different subpopulations of neurons (Marino, Trappenberg, Dorris, & Munoz,
2012; Trappenberg, Dorris, Munoz, & Klein, 2001). Voltage-sensitive dye
imaging provides neural data sets ideally suited to constrain DFT models this
way (Markounikau, Igel, Grinvald, & Jancke, 2010).

6.6.3 Relation of Dynamic Field Theory to Other Neurally Grounded
Theories of Cognition

Mathematically speaking, the neural dynamic models of DFT are special cases
of general neural network models, characterized by dominant, recurrent con-
nectivity that is organized homogeneously over low-dimensional spaces. The
conceptual commitment to attractors as the functionally significant activation
states is shared by a line of neural models of spatial orientation that are more
strongly neurally mechanistic (reviewed in Knierim & Zhang, 2012). The
emphasis on instabilities as the basis for detection and selection decisions, for
how the capacity of working memory is limited, and how sequences are gener-
ated, is a defining feature of DFT.
The neural fields of DFT can represent continuously many different stable

states as localized peaks thanks to their invariant pattern of interaction con-
nectivity. With this localist form of representation, DFT foregoes the higher
representational capacity and the associative function of distributed representa-
tion (Bowers, 2017). Attractor states in distributed representations arise in
Hopfield networks whose neural dynamics have the same form as used in
DFT, but whose interaction connectivity is not constrained to low-dimensional
kernels (Hopfield & Tank, 1986). That interactive connectivity specifies particu-
lar vectors of neural activation as attractors. Hopfield networks may thus
represent as attractors specific learned (or memorized) states rather than a range
of states that may arise as a stable state for the first time. Hopfield networks also
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do not enable targeted instabilities that may drive autonomous cognitive oper-
ations of the type reviewed in Section 6.4. The commitment of DFT to localist
representations derives from that hypothesized limitation of distributed
representations.

Most feed-forward neural networks, including the currently very succesful
deep neural networks, exploit the power of distributed representations, but use
some form of localist representation at read-out, for instance, in the form of a
winner-takes-all mechanism. One vision could be that neural dynamics of the
DFT type happens at and beyond the classification decisions made in the final
layers of feedforward networks. Most cognition does not depend on the con-
tinued presence of high-dimensional sensory stimulation. So it is thinkable that
autonomous cognitive processing may take place primarily once the high-
dimensional sensory information has been left behind. In fact, a possible view
is that the generation of sequences of neural attractor states in DFT provides a,
perhaps limited, form of symbolic processing that remains consistent with
neural principles and with the need to link to sensory and motor systems (for
a first step in this direction, see Sabinasz, Richter, Lins, Richter, & Schöner,
2020). In that view, the frameworks of logic-based cognitive processing and
information processing would provide descriptions of what the neural processes
unfolding in DFT architectures achieve. Probabilistic approaches to cognition
could be similarly viewed as descriptions of the integrative function that the
strong interaction within neural fields provides. At this time, this vision remains
largely speculative.

An alternative to this vision is the framework of vector symbolic architectures
(VSA) (Smolensky, 1990). VSAs exploit the property of random, high-
dimensional neural activation vectors to be approximately orthogonal to each
other. This makes it possible to combine vectors in various ways without losing
access to the original component vectors (Gayler, 2003). VSAs thus enable a
form of information processing using distributed neural representations. The
difficulty of creating and sustaining such neural activation vectors in physiolo-
gically plausible neural networks has been viewed as a problem. The neural
engineering framework (Eliasmith, 2005) represents such vectors by small
populations of integrate and fire spiking neurons (Stewart, Tang, & Eliasmith,
2011), suggesting that VSAs could be implemented in the brain (Eliasmith et al.,
2012). To continue to represent the high-dimensional vectors as they are passed
from population to population in a neural architecture, the connectivity has to
be chosen in a specific way that is informed by the original encoding function.
That may raise doubts as to the neural viability of this framework.

6.7 Conclusion

In conclusion, dynamical systems thinking has evolved from its origins
in the sensory-motor domain toward capturing increasingly abstract and invari-
ant forms of cognition while retaining the princple of sensory-motor grounding
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of cognitive processes. Stable states of neural activation, realized by neural
populations localized in low-dimensional neural fields are the units of represen-
tation. Their dynamic instabilities lead to the emergence events at discrete
moments in time from continuous-time dynamics. These enable sequences of
neural processing steps and flexible binding of multiple localist representations
within neural dynamic architectures. Research challenges remain to establish
(or refute) the capacity of neural dynamic thinking to account for the
extraordinary flexibility and productivity of higher cognition.
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1::79�  .6��680 ������� 
�	���	���������
�����91/.�65��5/�� �����8�.0/��5��/89�: �8/99

https://doi.org/10.1017/9781108755610.009


Spencer, J. P., & Schöner, G. (2003). Bridging the representational gap in the dynamic
systems approach to development. Developmental Science, 6, 392–412.

Spencer, J. P., Simmering, V. R., & Schutte, A. R. (2006). Toward a formal theory of
flexible spatial behavior: geometric category biases generalize across pointing
and verbal response types. Journal of Experimental Psychology: Human
Perception and Performance, 32(2), 473–490.

Stewart, T. C., Tang, Y., & Eliasmith, C. (2011). A biologically realistic cleanup
memory: autoassociation in spiking neurons. Cognitive Systems Research,
12(2), 84–92.

Strauss, S., Woodgate, P. J., Sami, S. A., & Heinke, D. (2015). Choice reaching with a
LEGO arm robot (CoRLEGO): the motor system guides visual attention to
movement-relevant information. Neural Networks, 72, 3–12.

Sussillo, D., Churchland, M. M., Kaufman, M. T., & Shenoy, K. V. (2015). A neural
network that finds a naturalistic solution for the production of muscle activity.
Nature Neuroscience, 18(7), 1025–1033.

Tekülve, J., Fois, A., Sandamirskaya, Y., & Schöner, G. (2019). Autonomous sequence
generation for a neural dynamic robot: scene perception, serial order, and
object-oriented movement. Frontiers in Neurorobotics, 13, 208014669.

Tekülve, J., & Schöner, G. (2020). A neural dynamic network drives an intentional agent
that autonomously learns beliefs in continuous time. IEEE Transactions on
Cognitive and Developmental Systems, 99, 1–12.

Thelen, E., Schöner, G., Scheier, C., & Smith, L. (2001). The dynamics of embodiment:
a field theory of infant perseverative reaching. Brain and Behavioral Sciences,
24, 1–33.

Thelen, E., & Smith, L. B. (1994). A Dynamic Systems Approach to the Development of
Cognition and Action. Cambridge, MA: MIT Press.

Thompson, R. F., & Spencer, W. A. (1966). Habituation: a model phenomenon for the
study of neuronal substrates of behavior. Psychological Review, 73(1), 16–43.

Trappenberg, T. P. (2010). Fundamentals of Computational Neuroscience (2nd ed.).
Oxford: Oxford University Press.

Trappenberg, T. P., Dorris, M. C., Munoz, D. P., & Klein, R. M. (2001). A model of
saccade initiation based on the competitive integration of exogenous and
endogenous signals in the superior colliculus. Journal of Cognitive
Neuroscience, 13(2), 256–271.

Treisman, A. M. (1980). A feature-integration theory of attention. Cognitive Psychology,
12, 97–136.

Tripp, B., & Eliasmith, C. (2016). Function approximation in inhibitory networks.
Neural Networks, 77, 95–106.

Van Gelder, T. (1998). The dynamical hypothesis in cognitive science. Brain and
Behavioral Sciences, 21, 615–665.

Wilimzig, C., Schneider, S., & Schöner, G. (2006). The time course of saccadic decision
making: dynamic field theory. Neural Networks, 19(8), 1059–1074.

Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized
populations of model neurons. Biophysical Journal, 12, 1–24.

Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review,
9(4), 625–636.

Dynamical Systems Approaches to Cognition 241

1::79�  .6��680 ������� 
�	���	���������
�����91/.�65��5/�� �����8�.0/��5��/89�: �8/99

https://doi.org/10.1017/9781108755610.009

