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What is DFT?

B =neural process account of thinking and acting...
@ that may actually bring about thoughts and action
M that explains the laws of thinking and acting

B while respecting neural principles



Central hypothesis of DFT:
embodiment

B thinking and acting are brought about by the
embodied and situated brain that is shaped
by evolution and development



Central hypothesis of DFT:
embodiment

M thinking and acting are brought about by the
embodied and situated brain that is shaped
by evolution and development

B => neural processes with continuous state,
continuous time, potential coupling to the
sensory and motor surfaces, and stability



Autonomy

B the neural principles of DFT ~ connectionism

® but: conceptually, most current neural
network accounts are input driven

& while thought and action are driven by the
inner state of the mind/brain = autonomous
neural processing

B => DFT must address how inner states arise,
persist, and evolve in time



Integration

B (embodied) cognition entails many different
processes probed in a large variety of
paradigms

B DFT is aimed to provide a single theoretical
language to understand all these processes
and how they interrelate



Dynamic Field Theory (DFT)

B | Space: inner states are localized activation
patterns in low-dimensional features spaces

M 2 Time: autonomy derives from neural
dynamics, attractors and dynamic instabilities

B 3 Coupling: cognition emerges from dynamic
coupling across low-dimensional features
spaces

B 4 |ntegration: in DFT architectures



| Space

B activation in neural populations carries
functional meaning

B activation: u(x, r) where x spans low-
dimensional spaces

[Schoner TopiCS 2019]
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Hypothesis: mental states are activation
patterns localized in low-dimensional
feature spaces
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...beyond input driven activation

tu(x,t) = —u(x,t) + h + s(x, 1)
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connectivity within + | wx — x)o(u(x’,1))dx
populations Interaction
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A w<0 over inhibitory interaction
larger spatial distance

B excitatory: w>0 for
neighbors in space

dimension



=> |ocalized activation peaks are
stable states = attractors

tu(x,t) = —u(x,t) + h + s(x, 1)

B strong recurrent / e
connectivity within + | wx — x)o(u(x’,1))dx
populations Interaction

\ -

" activation field

m local excitation

A w<0 over inhibitory interaction
larger spatial distance

B excitatory: w>0 for
neighbors in space

dimension



How do peaks arise and disappear?

B detection: a peak arises

B reverse detection: a peak disappears



B detection instability of sub-threshold state => peak
B peak persists below detection instability => bistable

B reverse detection instability of peak => sub-threshold

bistable:
same input
two stable
states

Legend Legend

= h+s(z) =———u(z) =—g(u(z)) = hts(z) =———u(z) =—g(u(z))




Autonomy from attractors and
their instabilities

B detection instability

B reverse detection instability

M sustained activation

M selection

M selection instability

B boost driven detection/selection

B match events and sequences



How does a peak NOT disappear?

M sustained activation

® emerges when
reverse detection

instability is not
reached as input is
removed

® ~foundation of —
working memory — s —ula) — glala)




Which peaks arises!?

M selection: one peak arises over input at one
location rather than input at other locations



B selection

M selection
instability
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Which peaks arises!?

M selection: one peak arises over input at one
location rather than input at other locations

B this at any level: gaze, attention, action,
thoughts.... => at any moment in time, new
mental states compete for activation as
thought and behavior evolve in time...

B => selection is foundational for
understanding the neural process of decision
making



Limit case: detection and
selection without a cue

B the opposite limit of input-driven
selection... have a set of pre-activated
locations and receive a pure “go’”-signal to
decide

B ~ “guessing the corner” in a soccer goalie
metaphor



B detection and selection induced by homogeneous
boost

B => peak forms that amplifies small inhomogeneities
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B detection and selection induced by homogeneous
boost

B => categories emerge from continuous spaces
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How do events arise?

B peaks arising and disappearing at discrete
moments in time (events) in response to
time continuous changes

B ~ foundational for autonomous neural
processing



B task: match intention
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detection ®
A

B => cvent inhibit predict
\ 4
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generation I / \ I



Autonomy from attractors and
their instabilities

B detection instability

B reverse detection instability

M sustained activation

M selection

M selection instability

B boost driven detection/selection

B match events and sequences



Empirical evidence

M Seeking empirical evidence for DFT by
looking for experimental signatures for core
DFT principles:

B metric effects
B space-time effects..

M [as contrasted to using DFT to fit data]



Example: visual working memory

Sample Array Delay Interval Test Array
= [] Same
or
- . Different?

[Johnson, Spencer, Luck, Schoner: Psychological Science 2008]



DFT model of change detection
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Metric effect

B close metric separation: the F — -
WM peaks are weakened ~ —
by mutual inhibition : P

B => |ess inhibition projected ..\ﬁ/_\ﬁﬁ/

to change detection layer Self-Sustained
Peaks in VWM

[Johnson, Spencer, Luck, Schoner: Psychological Science 2008]



Metric effect

M close metric separation: the Far Separation

A color input

WM peaks are weakened N at test
by leljtuaI inhibition M\J%‘Tﬂ”}“}'
\.»/st‘r‘ong

5 inhibition
M => |ess inhibition projected -
. § Close Separation
to change detection layer 5 color inpu
at tes
/ LLW
B => |ower threshold for T‘\" Vs
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change detection inhibition

Feature Dimension

[Johnson, Spencer, Luck, Schoner: Psychological Science 2008]



Experimental confirmation

2 50 - Color Orientation
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B => predict more mSequential !
sensitive change | 107 !
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[Johnson, Spencer, Luck, Schoner: Psychological Science 2008]



Such evidence from many
different fields

® broad variety
B of psychological processes

B of experimental measures



B reaction time classical selection decisions [Erlhagen,
Schoner Psych Rev 2002]

M perseveration selection decisions (development)
[Thelen, Schoner, Scheier, Smith BBS 2001 ]

M spatial and visual working memory (development)
[Spencer, Schutte, Simmering, Johnson JEP, Child development and others]

M cognitive control (development) [Buss, Spencer Monographs
SRCD]

M habituation and visual memory (development) [Thelen,
GS Psych Rev 2006; Perone, Spencer, Cog Sci 201 3]



M visual search [Grieben et al. Att Perc & Psychophysics
2020, CogSci mult]

M cognitive neuroscience of visual working [Buss, et al.,
Psych Rev 202 1]

M situational word learning [Bath, Spencer, Samuelson,
Psych Rev 2021]

M ideomotor theory [Vogel-Blaschka, Kunde, Herbort,
Scherbaum Psych Rev 2024]



M perceptually grounding relations [Richter, Lins, Schéner Cog
Sci 20217

M perceptually grounding nested phrases [Sabinasz,
Schoner TopiCS 2023; Sabinasz, Richter, Schoner Cog Neurodyn 2023;
Sehring et al. CogSci2024]

B mental mapping [Kounatidou, Richter, Schéner, CogSci2018]

® truth value and polarity [Kati, Sabinasz, Schoner, Gaup
CogSci2024]

o anaIOgicaI mappl ng [Hesse, Sabinasz, Schéner, CogSci 2022; Kang, Sabinasz,

Schoner, CogSci 2024]
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B the DFT primer

M resources at:

B dynamicfieldtheory.org . . :
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Gregor Schoner, John P. Spencer, and the DFT Kesearch Group
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Both strength and challenge

B DFT linking to many different fields of
research/sub-disciplines

M at different levels of description
B behavioral: RT, errors, response metrics, movement
B neural: population of single units

B neural: cognitive neuroscience

B demonstration of generative capacity on
autonomous agents/robots



Signatures vs. fitting

B DFT can be and has been used to provide
quantitative fit of data

B As a process model, it is much more
constrained in doing so than more reduced
models

M e.g. diffusion vs. DFT account of decision
making

B DFT is NOT aimed to provide data
compression



Dynamic Field Theory (DFT)

B | Space: inner states are localized activation
patterns in low-dimensional features spaces

M 2 Time: autonomy derives from neural
dynamics, attractors and dynamic instabilities

B 3 Coupling: cognition emerges from dynamic
coupling across low-dimensional features
spaces

B 4 |ntegration: in DFT architectures



3 Coupling

® binding, unbinding

® mental maps

M cued selection

® binding through space

B coordinate transforms



Joint representations

visual scene
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[Schneegans et al.,Ch 5 of DFT Primer, 201 6]



dimension 2

A

Contraction coupling

dimension |
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[Sabinasz, Richter, Schoner, Cog. Neurodyn. 2023]
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B bind separate features
into objects in mental
maps

® by expansion mapping

mental maps

visual scene
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[Schneegans et al.,Ch 5 of DFT Primer, 201 6]



dimension 2

Expansion coupling

dimension |
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[Sabinasz, Richter, Schoner, Cog. Neurodyn. 2023]




Binding problem

visual scene

360
B => bind one o B
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[Schneegans et al.,Ch 5 of DFT Primer, 201 6]



Cued selection

visual scene

360

270

180

B combines expansion
and contraction

color (hue value)
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[Schneegans et al.,Ch 5 of DFT Primer, 201 6]



B [~Treisman]

cue “green”

Binding through space

A

Color (hue value)
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[Schneegans et al.,Ch 5 of DFT Primer, 2016]




Coordinate transforms

® enable representations that are more invariant

than the sensory-motor surfaces

visual scene
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[Schneegans Ch 7, DFT Primer, 201 6]



Example: retinal <=> body/world space

M joint representation of

: steer: gaze angle retinal space
B retinal space & & P

B gaze angle

B = gain fields [~Andersen/Pouget]

bind by
expansion coupling

L

body space

contraction coupling
[Schneegans Ch 7, DFT Primer, 2016]



Retinal <=> body/world space

M bi-directional
coupling
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Spatial remapping X
during saccades e

[Schneegans, Schoner Biological Cybernetics 2012]



4 Integration: DFT architectures

B dynamic modularity: fields retain their dynamic
regime under coupling

B coupling must preserve feature dimensions:
“non-synesthesia principle”

AZ

-.
w4

. 4




DFT architecture of scene memory
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[Schneegans et al.,Ch 8 of DFT Primer, 201 6]



transformed space attend to this item

risual scene
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transformed space attend to this item
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visual scene
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Dynamic Field Theory (DFT)

B | Space: inner states are localized activation
patterns in low-dimensional features spaces

M 2 Time: autonomy derives from neural
dynamics, attractors and dynamic instabilities

B 3 Coupling: cognition emerges from dynamic
coupling across low-dimensional features
spaces

B 4 |ntegration: in DFT architectures



A word on integration

®integration takes the perspective of the
modeler: component models that are
integrated

®in the brain, everything is always integrated/
coupled/connected... the issue is rather:

B decoupling, functional differentiation,
flexibility, task-specific configuration

B DFT does address that ...



Summary: Conceptual
commitments of DFT

B connections determine function [~connectionism]
B |ocalist representations

®in low-dimensional spaces

®interaction dominated dynamics => attractor states
M instabilities generate decisions, sequences: autonomy

B coupling ~ binding as path to higher cognition



... toward higher cognition

® Example: grounding nested imperative phrases

B conceptual structure

“transport blue donut onto green plate
then transport blue donut to blue plate
or pick yellow banana and place right of the green plate

999

4

Graph Representation of Action Plan

~

DR

\

//_> I
AC I
[Transport] [Blue Donut] [on Top of Green Plate]

DR

AT AIR

02

AC AIT AIR
/01\ /03\

[Transport] [Blue Donut] [on Top of Blue Plate]
AC AIT AIR AC AIT AIR
/04\ 7 ? /5\
[Pick] [Yellow Bananal [Place] [Right of Green Platey

[Sehring et al. CogSci 2024]



Neural representation of conceptual
structure

® ordinal index given to
each instance (token)

of an object concept 02
03

Object Concepts

M enables representing o4

I . I . f 05
multiple instances o o

an object concept 07

Green
Yellow
Red
Blue
Donut
Banana
Apple
Mug
Plate
on Top
Left of
Right of
Below
Above

M serves as a binding
dimension

[Sabinasz, Richter, Schoner Cog Neurodyn 2023; Sehring et al. CogSci 2024]



Neural representation of conceptual

structure
Action Concepts
B ordinal index given to A1
each instance of a A2
relation/action concept A3
M enables representing A4
multiple instances of same © £ 9w oo ow P
. . = A, v D &) o
1) o O (O
relation in a nested phrase 83 3 ¥ g
=

[Sabinasz, Richter, Schoner Cog Neurodyn 2023; Sehring et al. CogSci 2024]



Neural representation of
conceptual structure

M bind action concepts to object concepts in given
roles through in a joint representation of

B ordinal object concept index

B ordinal action concept index

B roles
Action Target Action Reference
Al A1
A2 A2
A3 A3
A4 A4

O1

02
O3
04
05
06
o7
O1

02
O3
04
05
06
o7
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Demo Action Plan

o1 02

0 [Transport] [Yellow Banana] [on Top of red Plate]

SN—

>» A2
\AT\AR

| |
o1 03

P G

[Transport] [Yellow Banana] [on Top of blue Plate]

_—

Aa\m\m

I
04

.

[Grab] [Green Mug]

AR

>» A4
\¢\
05

T~

[Place] [Below red Plate]




Summary: Conceptual
commitments of DFT

B connections determine function [~connectionism]
B |ocalist representations

®in low-dimensional spaces

®interaction dominated dynamics => attractor states
M instabilities generate decisions, sequences: autonomy

B coupling ~ binding as path to higher cognition
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