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Theoretical commitment

DFT is part of the grounded/embodied 
perspective on cognition… 

“thinking and acting are brought about by 
the embodied and situated brain that is 
shaped by evolution and development”

this perspective this has important 
consequences for (neural) theory of 
cognition



cognitive processes share properties with 
sensory-motor processes => 

processes evolve continuously in time 

processes have continuous state 

processes may be coupled to sensory or 
motor systems 

processes may be in closed/recurrent loops

=> meaningful states have stability properties

Consequences for theory



Stability ~ dynamical systems
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feedforward nervous system

+ closed loop through 
environment

=> behavioral dynamics
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direction

turning rate
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recover orientation to 
source in response to  
disturbances of physical 
state 

recover orientation to 
source as environment 
changes or sensory 
information varies 

Attractor: Stability! 
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Sensori-motor decisions

two sources => selection … 
based on the initial heading

in dynamical systems terms: 
bistability: two attractors 

each attractor stabilizes the 
selection decision

intensity

heading
direction

turning rate
of vehicle

source1 source2

source2source1

heading
direction



selection at the level of 
inner = neural state 

neural attractors… 
stabilize the selection 
decision

based on recurrent neural 
dynamics 

agent
sensors

motor
systems

behavior

Cognitive decisions

neural state



what does that mean? 

a complete description of cognition on the 
basis of neural networks? 

thinking and action … are not reproducible => 
extensive description is not useful

DFT as a neural theory of cognition



account for laws/constraints/regularities… 

links between such laws = explanation 

neural account: links neural laws/principles to 
behavioral laws 

neural process account: the link is causal, may 
actually generate behavior, e.g. on a robot 

Neural theory of cognition 



Which neural laws/principles?

those of connectionism 

activation = state of neural networks 

sigmoidal threshold functions

functional significance of activation derives from connectivity 

two additional principles 



DFT principle 1: Time/Autonomy

conceptually, most current connectionist  accounts 
are input driven: they react/responsibly to input

thought and action are driven by the inner state of 
the mind/brain 

for inner states to do that, they must be  stable: 
neural attractors 

attractors arise and disappear in dynamic instabilities 
=> autonomous sequences of inner states

stability and instabilities come from neural dynamics 
with strong recurrent interaction



DFT principle 2: Space 

neural attractors are embedded in low-
dimensional continuous spaces ~ neural 
fields

when these share dimensions => flexible 
binding 

basis for productivity, compositionality, 
systematicity => grounded higher cognition 



Space

activation in neural 
populations carries 
functional meaning

activation:  
where  spans 
low-dimensional 
spaces

u(x, t)
x

[Schöner TopiCS 2019]
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Spaces come from forward connectivity

sensory signal, s(x)

dimension, y
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Time/Autonomy
Neural dynamics 

inherited from the 
membrane dynamics 
of neurons 

this is input-driven

τ ≈ 10 msec

τ ·u(x, t) = − u(x, t) + h + s(x, t)
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…beyond input driven activation

strong recurrent 
connectivity within 
populations = interaction

excitatory for neighbors 
in space

inhibitory for activation at 
a spatial distance

dimension

inhibitory interaction

input

activation field

local excitation

+∫ w(x − x′￼)σ(u(x′￼, t))dx′￼

τ ·u(x, t) = − u(x, t) + h + s(x, t)



…beyond input driven activation

strong recurrent 
connectivity within 
populations = interaction

excitatory for neighbors 
in space

inhibitory for activation at 
a spatial distance

+∫ w(x − x′￼)σ(u(x′￼, t))dx′￼

τ ·u(x, t) = − u(x, t) + h + s(x, t)

dimension
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state

input

=> peak attractors 



bistable => gap between peak and sub-threshold 
activation pattern 

detection instability: peak arises 

dimension

activation peak
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state
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peaks disappear in the reverse detection instability
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selection at detection



selection at detection: induced by boost

=> amplifies small differences



=> categories emerge from continuous spaces



sustained activation ~ working memory



Autonomous acting/processing 
emerges from the instabilities

a mini-architecture: intention and its Condition 
of Satisfaction (Cos)

intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

predict outcome

[Sandamirskaya, Schöner: Neural Networks 2010]
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Coupling spaces + instabilities
=> higher cognition

binding through shared dimensions



unbind = extract 
features by contraction 
coupling 

Read-out from high-dimensional field
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[Schneegans et al.,Ch 5 of DFT Primer, 2016]

Joint representations



Contraction coupling
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[Sabinasz, Richter, Schöner, Cog. Neurodyn. 2023]



Bind in mental maps

bind separate features 
into objects in mental 
maps 

by expansion mapping

[Schneegans et al.,Ch 5 of DFT Primer, 2016]

Ridge Intersections
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detection 
instability



Expansion coupling 
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[Sabinasz, Richter, Schöner, Cog. Neurodyn. 2023]



Binding problem

[Schneegans et al.,Ch 5 of DFT Primer, 2016]

Feature Conjunctions and Feature Binding
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=> bind one object at 
a time 

(plus coordinate 
frame issue) 

=> attentional 
bottleneck



Cued selection

combines expansion 
and contraction 
coupling 

[Schneegans et al.,Ch 5 of DFT Primer, 2016]

Visual Search
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selection at 
detection



Binding through space

multiple separate space-
feature fields all share the 
spatial dimension 

Visual search and working memory: theory and experiment 15
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Fig. 6 The feature extraction pathway in illustrated in the blown up portion on the left and bottom. The pathway is

positioned within the complete neural dynamic architecture. See text for an explanation.

From the scene space/feature maps input is generated into a single central salience map, represented

by the scene spatial salience field. That input is obtained by integrating along each feature dimension

within each space-feature field (conspicuity) and summing across the three conspicuity representations.

3.2 Attentional selection

Visual cognition always entails attentional selection decisions. Figure 7 highlights the sub-system of the

neural dynamic architecture that generates such selection decisions.

Central is the scene spatial selection field that represents the localization of spatial attention. It re-

ceives multi-peak input from the salience field and singles out the most salient location by being in the

dynamic regime of selection, in which a single supra-threshold peak may be stable at any moment in

time. The selection decision is biased toward previously unattended positions by additional input from

the inhibition of return memory trace, which reflects the recent history of activation of the scene spatial

selection field. The self-sustained spatial working memory field reinforces that e↵ect, but its representa-

[Grieben et al. Attention, Perception & Psychophysics 2020]



Binding through space

expansion/contraction 
coupling along the spatial 
dimension enables binding/
unbind 

[Grieben et al. Attention, Perception & Psychophysics 2020]

Atten Percept Psychophys

Fig. 8 The fields involved in the exploration and memorization sub-task are highlighted within the complete neural dynamic architecture

while in visual working memory and beyond item location
is represented independently of gaze. The coordinate
transform that achieves this invariance is prohibitively
costly if performed directly on the bound visual objects
(Schneegans et al., 2016). Instead, the transformation is
only performed for the spatial dimension of the fields, and
the feature information is added back in as modeled here.
For this paper, however, we omit coordinate transforms by
assuming that all representations share the original retinal
frame (i.e., that of the fixed camera), which is equivalent to
assuming the absence of eye or head movements.

The memory space/feature maps provide three-
dimensional input to an analogous set of three memory
space/feature selection fields (G). In these fields, one item
from the input is selected and brought above threshold,
again based on overlap with column input from the scene
spatial selection field. The result is an isolated representa-
tion of the memory item at the attended location. Projections
from both this representation and the scene space/feature
selection fields converge onto a neural feature matching
mechanism (H , see “Match and mismatch detection”),
which detects whether the attended item’s features have
been successfully committed to scene working memory.
When this detection occurs, the task node is deactivated
through an inhibitory connection (red line in Fig. 8). This
concludes one step in the exploration sequence. By default,
that is, unless another task becomes active (see below),
the task node is then reactivated, thus initiating another

cycle of attentional selection and commitment to working
memory.

Task 2: Retaining feature cues

Figure 9 highlights the sub-network that is responsible for
retaining a feature cue for visual search. It is activated by
the “retain” task node, which may itself be activated from
different sources depending on the cognitive task at hand. In
the current context, the task node is activated by the onset
detector (D3 in Fig. 9) when it detects a change in the visual
scene.

Analogously to exploration, the retain process consists
of storing currently attended feature values in self-sustained
fields, the search cue fields (I ), which are one-dimensional
since only the feature values of the cue are relevant (not its
position).

To forward feature values from the scene space/feature
selection fields to the search cue fields, the retain node
homogeneously boosts activation in the retain gate fields
(I1), enabling them to build peaks and thus pass on
activation.

The retain sub-task is terminated once the content of
the search-cue fields matches the features of the currently
attended item. Upon deactivation of the retain node, peaks
in the attention field and the gating fields decay, whereas in
the search cue fields the cue’s feature values are retained for
later use.



attend to 
this item

allocentric space

[Schneegans et al.,Ch 8 of DFT Primer, 2016]

retinal space



allocentric space retinal space



Reference Frame Transformation

solution:

expand into combined, higher-dimensional field

then can implement arbitrary (smooth) mappings from this field to
target representation

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 27 / 37

gaze angle retinal space

body space

[Schneegans Ch 7, DFT Primer, 2016]

Coordinate transforms

binding retinal space to 
gaze angle 

gain fields ~Andersen/Pouget

unbinding: body space



[Schneegans Ch 7, DFT Primer, 2016]

Coordinate transforms
Multi-Directional Transformations
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binding retinal space to 
gaze angle 

gain fields ~Andersen/Pouget

unbinding: body space



Binding through ordinal dimension

process account in DFT: 
ordinal dimension from 
sequence generation 

This account of feature binding contrasts with conceptualizations
of working memory that are based on bound object representations.
For instance, the influential object file theory (Kahneman et al.,
1992; Treisman & Zhang, 2006) considers feature maps to be the
basis of sensory representations and assumes that location takes an
important role in forming bound representations through attentional
selection of single objects. But once the features of an item are
combined into an object file, location is no longer required for
maintaining the binding of other visual features (illustrated in
Figure 1c). Similarly, slot models of working memory (Luck &
Vogel, 1997) assume that bound object representations comprising
all features of a visual stimulus are the natural units of working
memory, without any special role for location.
An important limitation of the spatial binding account is that it

cannot readily explain how we can memorize the feature combina-
tions of multiple objects that are presented sequentially at the same
location. While there is evidence that memory performance is
impaired when stimuli are presented sequentially (Allen et al.,
2006; Gorgoraptis et al., 2011), multiple items shown at the same
location can still be memorized separately, and ordinal position can
be used as an effective cue to select one item (e.g., Harrison & Tong,
2009). One previous study reported that feature binding is selec-
tively impaired when sample stimuli are presented sequentially at the
same location rather than at different locations, even if location is not
task relevant (Pertzov & Husain, 2014). However, a recent replica-
tion study found that this effect did not generalize when longer inter-
stimulus intervals or different feature combinations were used and
attributed it to perceptual interference (Schneegans et al., 2021).
Thus, a shared location of multiple sample items does not appear to
create specific disruptions of binding memory.
A possible explanation that reconciles this finding with a spatial

binding account is that stimuli presented sequentially at the same
location are internally remapped to different locations, such that
binding via space becomes feasible again (Abrahamse et al., 2014;
van Dijck et al., 2013). In this account, an ordinal position may also
be associated with each location, possibly in the form of another
feature map over visual space, to allow an item’s ordinal position to
be recalled or used as retrieval cue for other features.

An alternative explanation is that the time at which different
stimuli are perceived, or their temporal order, can take a similar role
as space in binding visual features. Some parallels between the roles
time and space have been observed for feature binding in visual
perception.When participants briefly view an array of colored letters
with a simultaneously presented location cue, report errors for the
color and identity of the cued item are largely independent (which
matches the observation in working memory described above); the
same independent report errors are found when participants view a
rapid stream of colored letters at a single location and a temporal cue
in the form of briefly flashed ring is used (Vul & Rich, 2010). In
visual working memory, it has been observed that participants can
encode color–shape conjunction when the features are presented
either spatially or temporally separated, with only modest reduction
in performance compared to unified sample stimuli, and no reliance
on central attentional resources (Karlsen et al., 2010).

Memory for the temporal order of stimuli has been studied in
great detail in the domain of verbal working memory (Marshuetz,
2005). Patterns of recall errors identified in this field, such as
gradients in the frequency of transpositions (the equivalent of swap
errors) with temporal distance, have also been shown to generalize
to sequential recall in visuo-spatial memory (Guérard & Tremblay,
2008; see Hurlstone et al., 2014, for a comprehensive review of
this field). Performance is similar in recall of sequences of locations
(Corsi block-tapping task) and matched sequences of simple verbal
memory items, such as digits (Monaco et al., 2013). However,
sequential order does not appear to take the same central role in
retrieval from visuo-spatial memory as it does for verbal memory
(Gmeindl et al., 2011). Nonetheless, recall performance in report-
ing the sequential order of visual stimuli is similar to performance
for reporting the objects’ locations (Delogu et al., 2012), and both
sequential order and location are encoded in working memory
automatically even when not task relevant (Heuer & Rolfs, 2021).

An explicit role of temporal order in binding features in visual
working memory has first been proposed in the context of rapid serial
visual presentation tasks, namely to explain specific misbinding errors
related to the attentional blink effect. Wyble, Bowman and colleagues
proposed a model in which representations of feature conjunctions are

Figure 1
Conceptual Models of Feature Binding

(b) (c) (d)(a)

Note. (a) Example stimulus displays with color-orientation conjunctions, either presented simultaneously at different locations (top) or sequentially at
the same location (bottom). (b) Spatial binding model with separate feature maps over visual space. Different features of an object are bound to each other
only indirectly via their shared location. Each item’s ordinal position or presentation time may also be encoded in an additional feature map. (c) Object-
basedmodel. The visual features of an object are bound directly to each other, and the whole object can be bound to a location (as shown for the red object)
and/or a point in time (blue object). (d) Temporal binding model. Object features, and potentially also object locations, are bound independently to a point
in time or an ordinal position. See the online article for the color version of this figure.

2 SCHNEEGANS, MCMASTER, AND BAYS

experimental evidence from 
VWM: binding through time…

[Schneegans, McMaster, Bays: Psych Rev 2022]

[Sandamirskaya, Schöner, Neural Networks, 2010]
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concepts embedded in a 
shared ordinal dimension

object/object concept target/relationship relationship/relation concept reference/relationship

patient/actionaction/action conceptagent/actionobject/property concept
“red ball”

[Sabinasz, Schöner, TopiCS 2023;
Sabinasz, Richter, Schöner Cog Neurodyn 2023]

Binding through ordinal dimension



Binding through ordinal dimension
 => grounded higher cognition 

“the tree to the right of the tree
that is below the lake and

above the house”

[Sabinasz, Schöner, TopiCS 2023;
Sabinasz, Richter, Schöner Cog Neurodyn 2023]



ridge overlaps with the concept. This activates the current
concept in the object concept readout field (d). An analo-

gous mechanism enables reading out property concepts.

The relationships that contain the selected object as a
target are read out through the target/relationship readout
field (f) which receives input from the target/relationship

Fig. 16 Interface between the
conceptual structure and the
grounding system to ‘‘read out’’
the currently selected object and
relations/actions. Adapted from
Sabinasz and Schöner (2022b)
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[Sabinasz, Richter, Schöner 
Cog Neurodyn 2023]
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ridge overlaps with the concept. This activates the current
concept in the object concept readout field (d). An analo-

gous mechanism enables reading out property concepts.

The relationships that contain the selected object as a
target are read out through the target/relationship readout
field (f) which receives input from the target/relationship

Fig. 16 Interface between the
conceptual structure and the
grounding system to ‘‘read out’’
the currently selected object and
relations/actions. Adapted from
Sabinasz and Schöner (2022b)
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imposed through precondition nodes, which enable the

activation of the next step only when the previous step has
successfully terminated. More details about the individual

processes are laid out in Sabinasz and Schöner (2022b).

Figure 20 shows a time course of activation through
snapshots at discrete moments in time as the architecture

grounds the sentence ‘‘the blue ball approaches the big tree,

which is to the left of the lake and to the right of the house’’
in the scene shown in Fig. 18. Prior to the simulation, the

conceptual structure fields have already been filled, leading
to the activation pattern depicted in Fig. 15. Refer back to

Fig. 13 for looking up the object indices and relationship

indices assigned in this example phrase.
Grounding of object 3 (the lake). At time t2, the object

production field has selected object 3, reflecting a decision

to search for that object (the lake). The readout mechanism
has resulted in a peak on the LAKE concept in the object

concept readout field. By time t3, via the search mecha-

nism, the target field has formed a peak on the spatial
location of the lake in the target field. That peak reflects

that a candidate for object index 3 is present at that loca-
tion. It causes the CoS node of the select target candidate

Fig. 18 Grounding the phrase
‘‘the big tree which is to the left
of the lake and to the right of the
house’’ requires three grounding
processes, where the possibility
to ground the third (c) depends
on having grounded the first
(a) and the second (b) before,
and having remembered their
locations in a working memory

Fig. 19 The model architecture for sentence verification. Adapted from Sabinasz and Schöner (2022b)

Cognitive Neurodynamics

123

Perceptual grounding a conceptual structure



mental mapspatial attention

[Sabinasz, Richter, 
Schöner Cog 

Neurodyn 2023]



Binding through ordinal dimension 
=> embodied higher cognition
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Figure 2: Exemplary action plan represented as a directed
graph of syntax trees (A) and the corresponding representa-
tion in the conceptual structure (B). The contents of an active
action phrase are projected to the rest of the architecture (D)
through the interfacing concept production nodes (C).

the target object and O2 as the reference object. Together, the
bound representation corresponds to the phrase [Transport]
[Blue Donut] [on Top of Green Plate] in Fig. 2A. In this
example [Blue Donut] is the target while [on Top of Green
Plate] is the reference.

Sequential dependencies are represented in the dependency
relation field. This field implements a directive binding, in
which each row represents the successor action of the cor-
responding action index. The 0-row indicates the start and
column-0 the end of an action plan. In the example of Fig. 2
the dependency relations encode that action A1 or A3 may be
performed initially, while A2 has to immediately follow A1
and A4 follows A3.

An action plan is given as a sub-threshold activation pat-
tern in the conceptual structure. Neurons above threshold
pass excitatory activation along their shared index dimension,
while projecting strong inhibitory activation to neural nodes
coding for other indices. This puts the conceptual structure
into a selective regime in which action phrases form attrac-
tor states that inhibit competing action phrases from coming
above threshold. The dependency relation field passes activa-
tion along the action index dimensions, pushing actions that
should be performed next above-threshold, giving them a se-
lective advantage. Selection decisions in the object concept
field are further biased by sub-threshold input from bottom-
up activation coming from other sub-networks.

The contents of an active action phrase are projected to
the rest of the architecture (Fig. 2D) through the interfacing
concept production nodes (Fig. 2C).

Attractor states are destabilized, when the grounding ar-
chitecture signals successful execution of an action or the

perception of a searched object. The success signal of a per-
formed action inhibits its corresponding column index and
boosts its row index in the dependency relation field (Ac-
tion CoS nodes in Fig. 2C). After each action, the depen-
dency graph steps through its encoded dependencies, thus
only boosting action phrases which are currently available ac-
cording to the action plan. A match signal coming from the
perception sub-network destabilizes the corresponding object
representation, which facilitates the selection and subsequent
search for a new object.

Perception and Attention The search for an object align-
ing with a conceptual description is crucial to successfully
guide interactions with the environment. To facilitate this
procedure, we integrated a neural process model of scene
representation and categorical visual search within natural
scenes (Grieben & Schöner, 2022). This model was expanded
to fulfill the demands of a robotic setting (Fig. 3 Percep-
tion & Attention). In particular, we incorporated the capabil-
ity to generate saccades in a three-dimensional environment.
Each saccade rotates the camera to bring an object into the
attentional foreground. This requires a coordinate transform,
from a retinotopic coordinate system into an allocentric one.
Bottom-up input from depth image and heading direction are
used to algorithmically transform retinotopic representations
into a table-centered coordinate frame.1 Saccade selections
are based on a priority map, that receives bottom-up input
from a saliency map and is modulated by top-down guid-
ance from memory and conceptual feature cues. The model
projects the attended position, the detected color, shape and
height feature values as output to other sub-networks.
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Figure 3: Overview of the neural field model. The architec-
ture was simulated in cedar (Lomp et al., 2016).

1A neural coordinate transformation would require representa-
tions encoding additional environmental features such as landmarks
and boundaries (Bicanski & Burgess, 2020), which we don’t include
in this model.

“transport blue donut onto green plate
then transport blue donut to blue plate

or pick yellow banana 
and place to the right of the green plate” 

[Sehring et al. CogSci 2024]



Figure 2: Exemplary action plan represented as a directed
graph of syntax trees (A) and the corresponding representa-
tion in the conceptual structure (B). The contents of an active
action phrase are projected to the rest of the architecture (D)
through the interfacing concept production nodes (C).

the target object and O2 as the reference object. Together, the
bound representation corresponds to the phrase [Transport]
[Blue Donut] [on Top of Green Plate] in Fig. 2A. In this
example [Blue Donut] is the target while [on Top of Green
Plate] is the reference.

Sequential dependencies are represented in the dependency
relation field. This field implements a directive binding, in
which each row represents the successor action of the cor-
responding action index. The 0-row indicates the start and
column-0 the end of an action plan. In the example of Fig. 2
the dependency relations encode that action A1 or A3 may be
performed initially, while A2 has to immediately follow A1
and A4 follows A3.

An action plan is given as a sub-threshold activation pat-
tern in the conceptual structure. Neurons above threshold
pass excitatory activation along their shared index dimension,
while projecting strong inhibitory activation to neural nodes
coding for other indices. This puts the conceptual structure
into a selective regime in which action phrases form attrac-
tor states that inhibit competing action phrases from coming
above threshold. The dependency relation field passes activa-
tion along the action index dimensions, pushing actions that
should be performed next above-threshold, giving them a se-
lective advantage. Selection decisions in the object concept
field are further biased by sub-threshold input from bottom-
up activation coming from other sub-networks.

The contents of an active action phrase are projected to
the rest of the architecture (Fig. 2D) through the interfacing
concept production nodes (Fig. 2C).

Attractor states are destabilized, when the grounding ar-
chitecture signals successful execution of an action or the

perception of a searched object. The success signal of a per-
formed action inhibits its corresponding column index and
boosts its row index in the dependency relation field (Ac-
tion CoS nodes in Fig. 2C). After each action, the depen-
dency graph steps through its encoded dependencies, thus
only boosting action phrases which are currently available ac-
cording to the action plan. A match signal coming from the
perception sub-network destabilizes the corresponding object
representation, which facilitates the selection and subsequent
search for a new object.

Perception and Attention The search for an object align-
ing with a conceptual description is crucial to successfully
guide interactions with the environment. To facilitate this
procedure, we integrated a neural process model of scene
representation and categorical visual search within natural
scenes (Grieben & Schöner, 2022). This model was expanded
to fulfill the demands of a robotic setting (Fig. 3 Percep-
tion & Attention). In particular, we incorporated the capabil-
ity to generate saccades in a three-dimensional environment.
Each saccade rotates the camera to bring an object into the
attentional foreground. This requires a coordinate transform,
from a retinotopic coordinate system into an allocentric one.
Bottom-up input from depth image and heading direction are
used to algorithmically transform retinotopic representations
into a table-centered coordinate frame.1 Saccade selections
are based on a priority map, that receives bottom-up input
from a saliency map and is modulated by top-down guid-
ance from memory and conceptual feature cues. The model
projects the attended position, the detected color, shape and
height feature values as output to other sub-networks.
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Figure 3: Overview of the neural field model. The architec-
ture was simulated in cedar (Lomp et al., 2016).

1A neural coordinate transformation would require representa-
tions encoding additional environmental features such as landmarks
and boundaries (Bicanski & Burgess, 2020), which we don’t include
in this model.
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Questions

Why dynamics?  Why attractors?

Are not all neural processing transient?

Why neural populations?

Why continuous spaces?

In which sense are neural fields low-
dimensional?

Why are neural representations in DFT 
localist?



Questions

Is DFT part of computational neuroscience?

Why is DFT not a computational theory? 

Are DFT architectures = cognitive 
architectures? 

Is DFT in conflict with VSA? 

Is DFT in conflict with NEF? 


