DFT Tutorial

ICANN 2025

Raul Grieben, Minseok Kang and Stephan Sehring

Raul.Grieben@ini.rub.de

dynamicfieldtheory.org

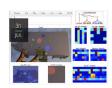
- Tutorial documents (end of the week)
- DFT resources
 - Publications
 - Videos
 - Software
 - Book
 - News

DYNAMIC FIELD THEORY

NEWS LEARNING DFT ✓ EVENTS RESEARCH GROUP ✓ MY APPLICATIONS A ☑ 🗗

UPCOMING EVENT

LATEST NEWS



All you ever wanted to ask about DFT

Prof. Dr. Gregor Schöner / July 31, 2025

At the 2025 CogSci conference we ran a tutorial workshop on DFT under the theme "All you ever wanted to ask about DFT". This was less focussed on a technical introduction and hands-on code level exercises, and more concerned with a conceptual introduction (led by Gregor Schöner), an embedding in..

Read More...

BY Prof. Dr. Gregor Schöner

The Theory of Embodied Cognition group at Ps BY Minseok Kang, M.Sc.

Gregor Schöner's keynote lecture at CogSci 2 Y Prof. Dr. Gregor Schöner

A neural dynamic intentional agent September 4, 2024 September 4, 2024

BY Prof. Dr. Gregor Schöner

Prof. Dr. Gregor Schöner giving a keynote ta BY Minseok Kang, M.Sc.

A neural process account of visual analogica BY Minseok Kang, M.Sc.

LATEST PUBLICATIONS

Active exploration and working memory synaptic plasticity shapes goal-directed behavior in curiosity-driven learning Cognitive Systems Research, 91, 101339

Toward a neural theory of goal-directed reaching movements In Levin, M F, Petrarca, M,, Piscitelli, D,, & Summa, S, (Eds.), Progress in Motor Control: From Neuroscience to Patient Outcomes (pp. 71-102) Academic Press

Neural Dynamic Principles for an Intentional Embodied Agent Cognitive Science, 48(9)

ROBOVERINE: A human-inspired neural robotic process model of active visual search and scene grammar in naturalistic environments

In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) IEEE

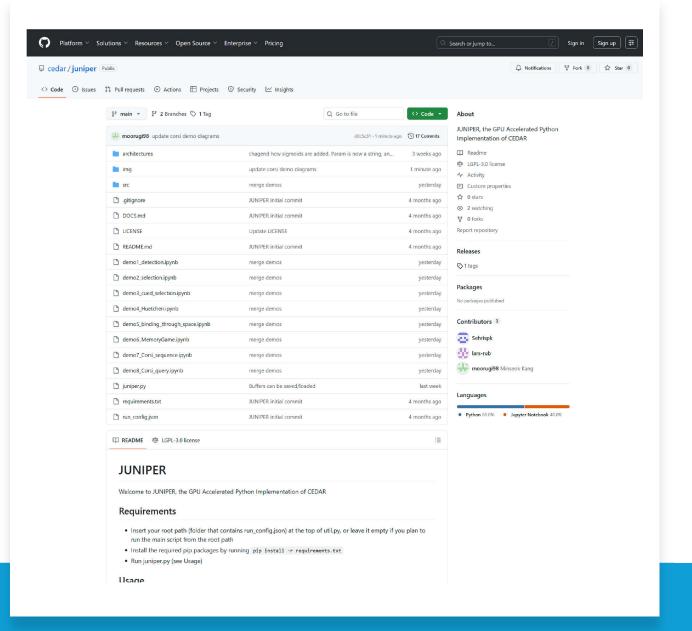
A Neural Process Model of Structure Mapping Accounts for Children's Development of Analogical Mapping by Change in Inhibitory Control

In L. K. Samuelson, Frank, S. L., Toneva, M., Mackey, A., & Hazeltine, E. (Eds.), Proceedings of the 46th Annual Conference of the Cognitive Science Society

WHAT IS DET?

github.com/cedar/juniper

- GPU accelerated version of CEDAR
 - GitHub contains notebooks with demos used here
- Requirements:
 - jax[cuda12]
 - matplotlib



Schedule

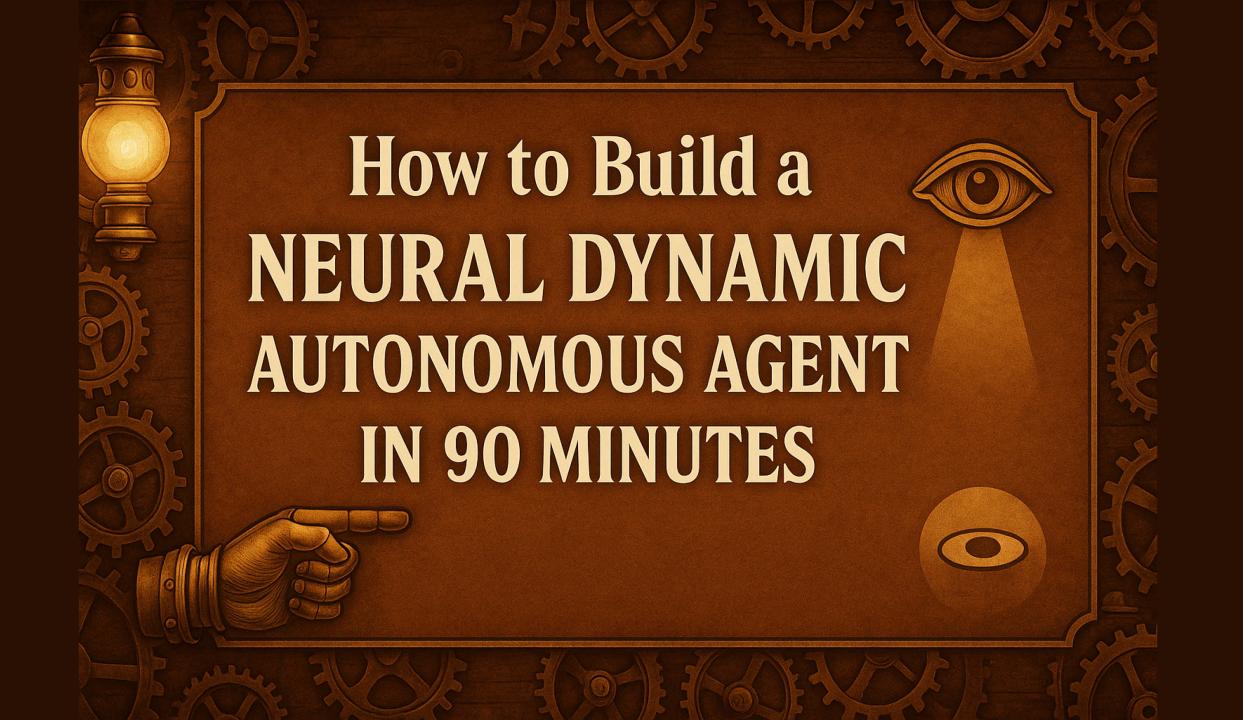
Building a Neural Dynamic Agent (90 min)

Break and Networking (30 min)

Hybrid Models with DFT (15 min)

Latest DFT Applications (25 min)

Open Discussion and Q&A (20 min)



This is Marvin:

"Oh God I'm so depressed"

And his new friend Billy:

"I want to play a game"

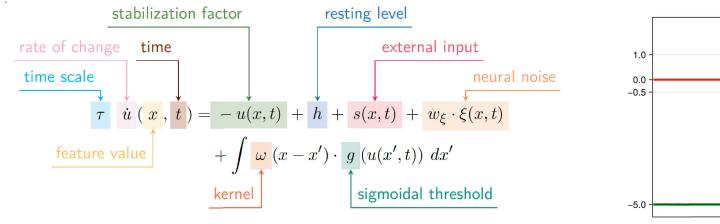
Dynamic Field Theory (DFT)

- Dynamic Field Theory is a mathematical framework that aims to explain how
 - time-continuous evolution of neural population activation leads to cognition
 - discrete events emerge from instabilities in the underlying dynamics

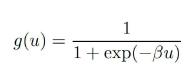
Foundations

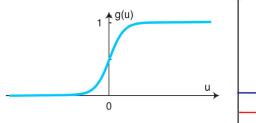
- Cognition is best understood at the level of neural populations
- Sensory information is transient
 - cognition needs stable representations
 - this stability must arise from recurrent connectivity within the neural population
- Neural representations needed for cognition are low-dimensional
 - they are easier to stabilize
 - enable invariance
- Instabilities in the dynamics enable sequential transitions between stable states
 - needed for cognition
- Complex cognitive functions emerge from interconnected networks of neural dynamics

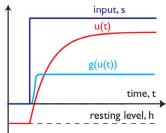
Dynamic neural field (DNF)



-h + s(x) -u(x) -g(u(x))



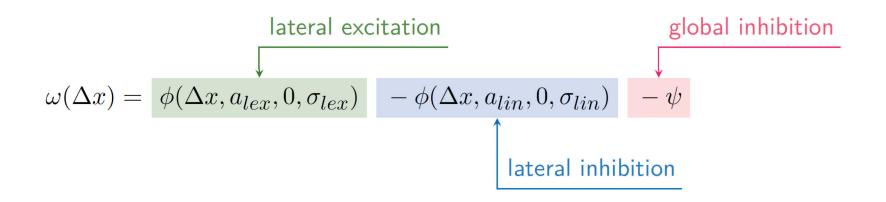




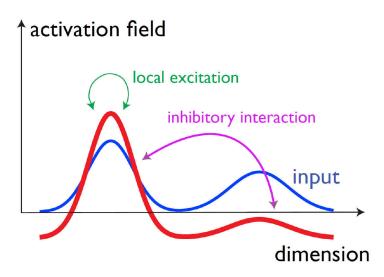
Underlying Neural Principles:

- Standard connectionist assumptions:
 - Continuous activation
 - Nonlinear transfer functions
 - Synaptic connectivity
- Plus:
 - Recurrent dynamics create stability
 - Continuous feature spaces allow attention and binding
 - Continuous time allows autonomy
- Dynamical systems theory is central
 - Stable states = attractors
 - Behavioral robustness emerges from attractor stability

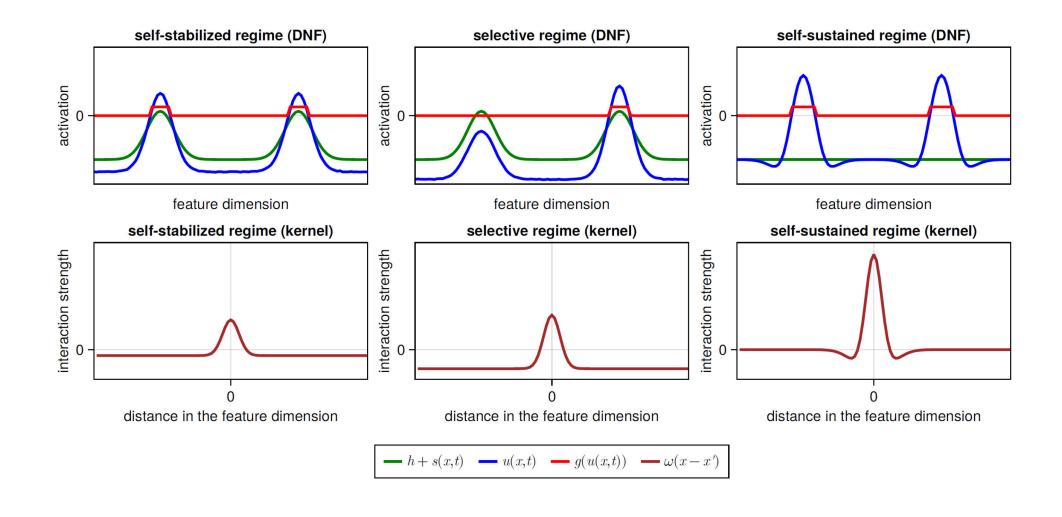
Neural interaction kernel

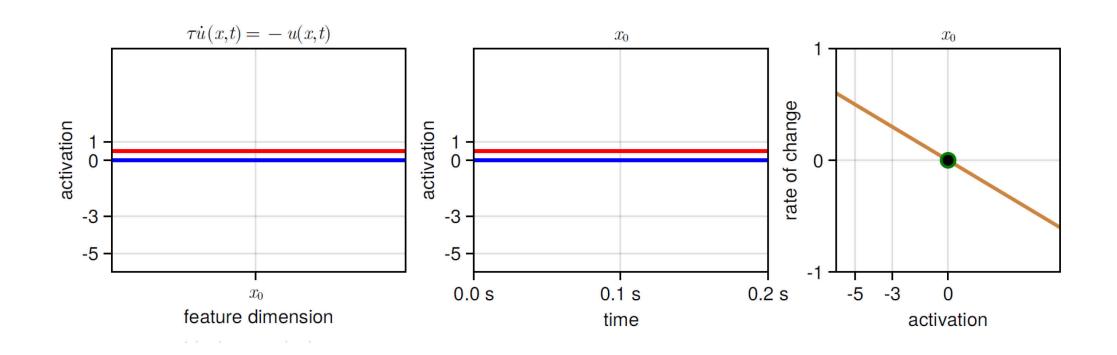


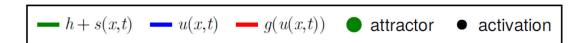
$$\phi(\Delta x, a, \mu, \sigma) = a \cdot \exp\left(-\frac{(\Delta x - \mu)^2}{2\sigma^2}\right)$$

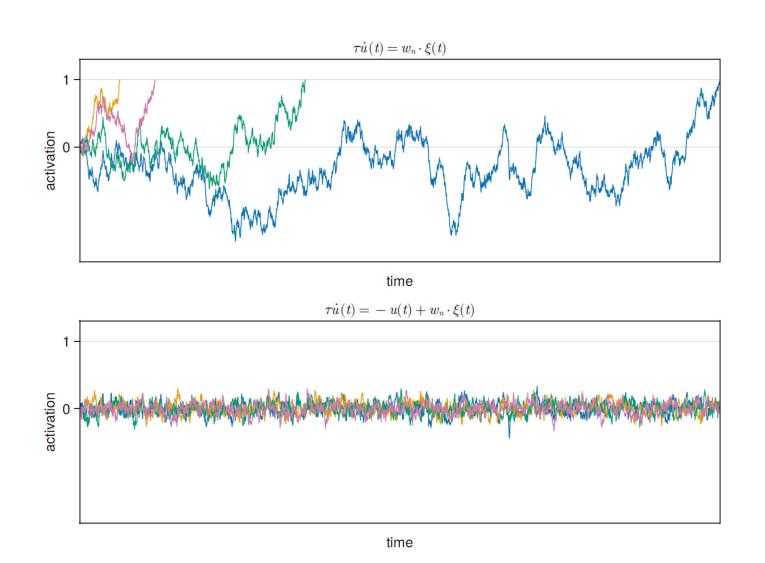


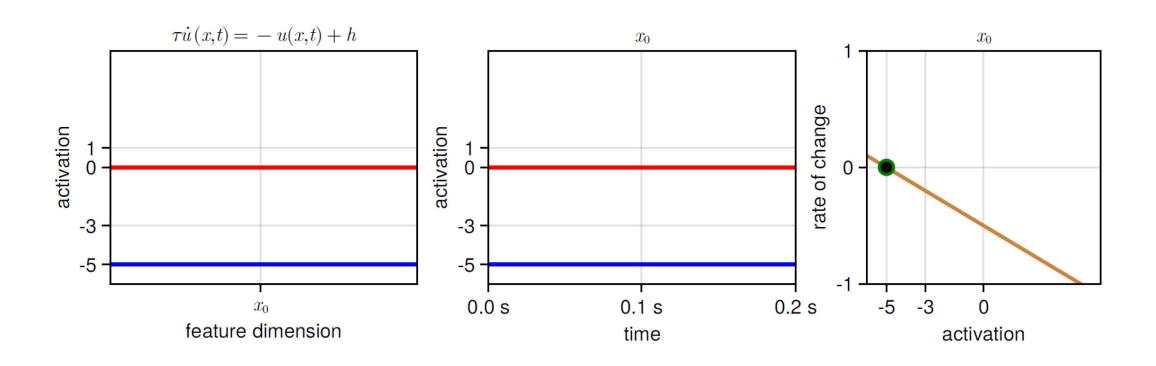
Neural dynamic regimes

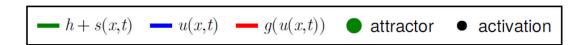


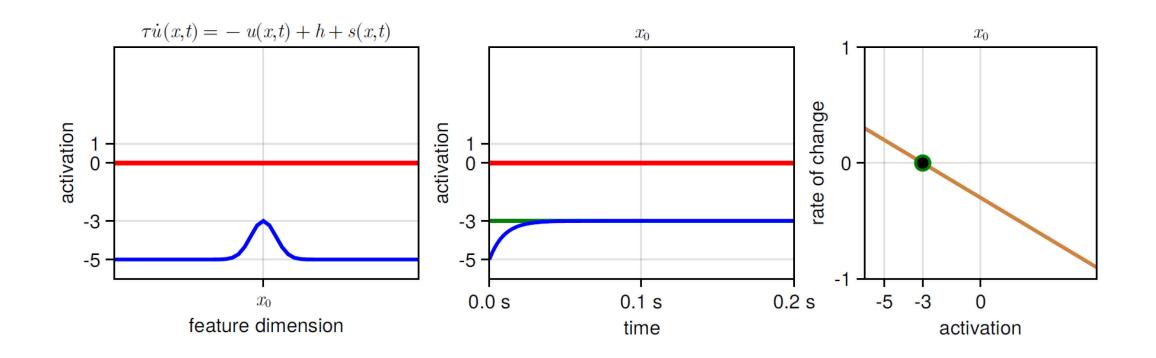


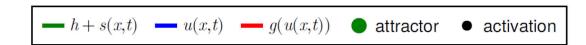




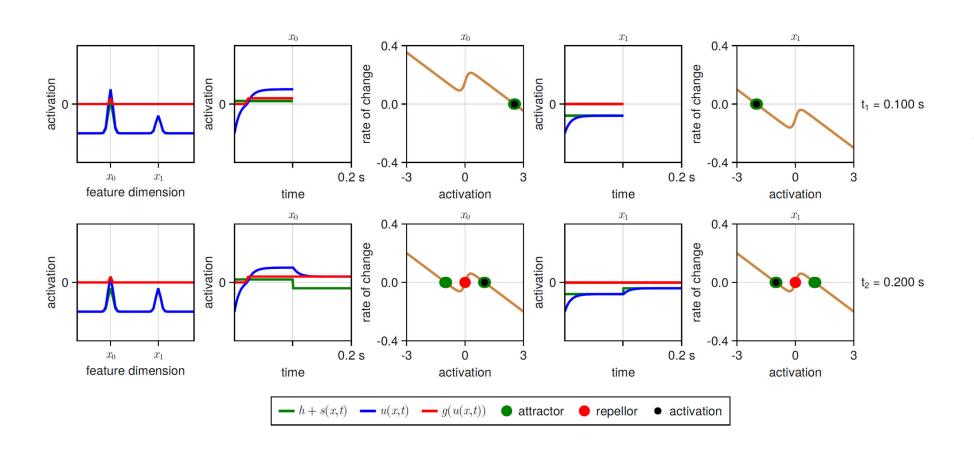


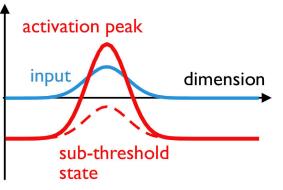






Sub- and suprathreshold attractor states



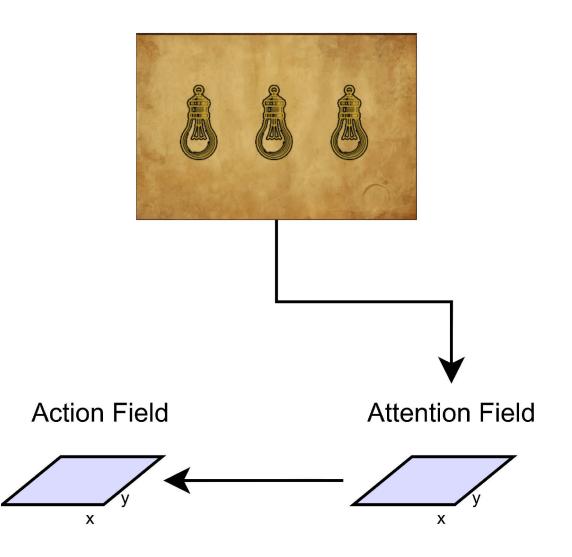


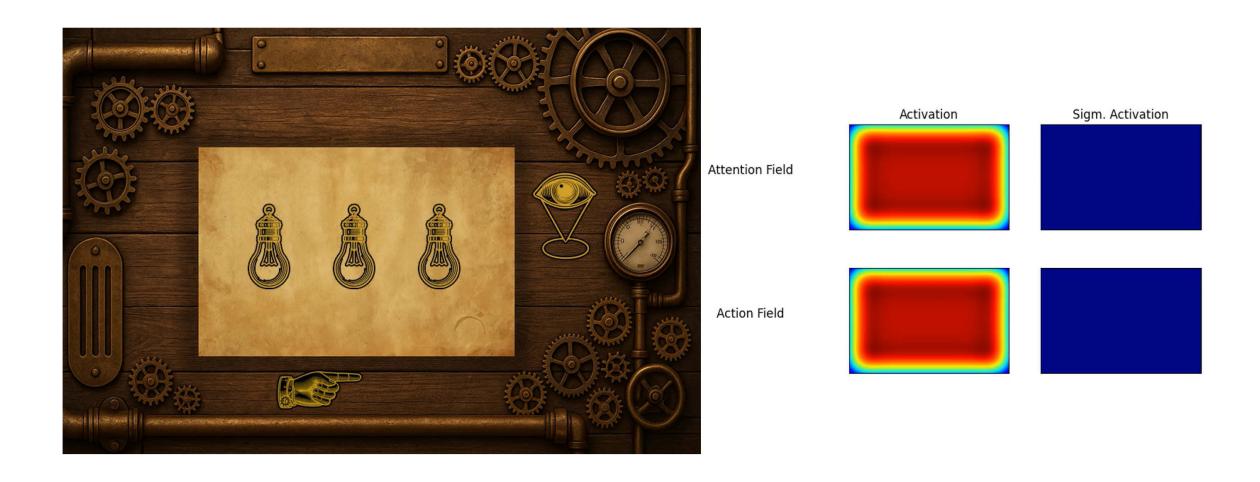
Detection and reverse detection

— h + s(x,t) — u(x,t) — g(u(x,t)) • attractor • repellor • activation



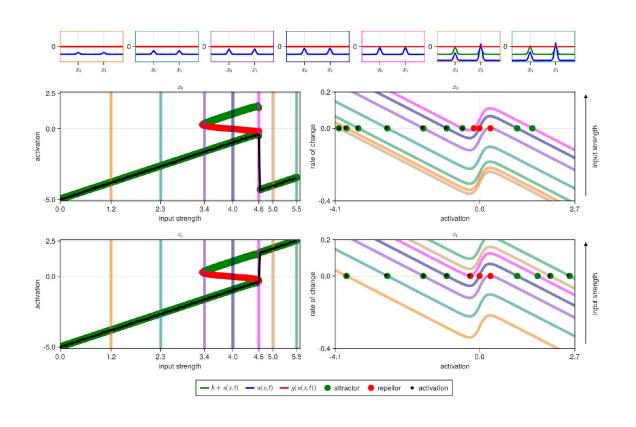
Scene

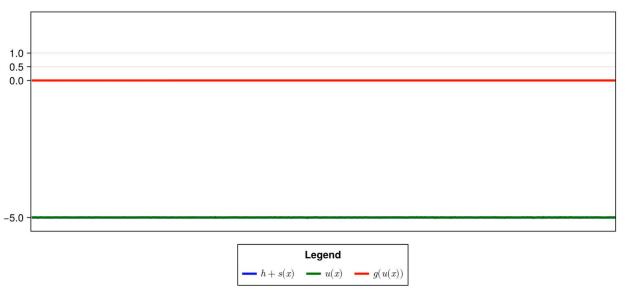




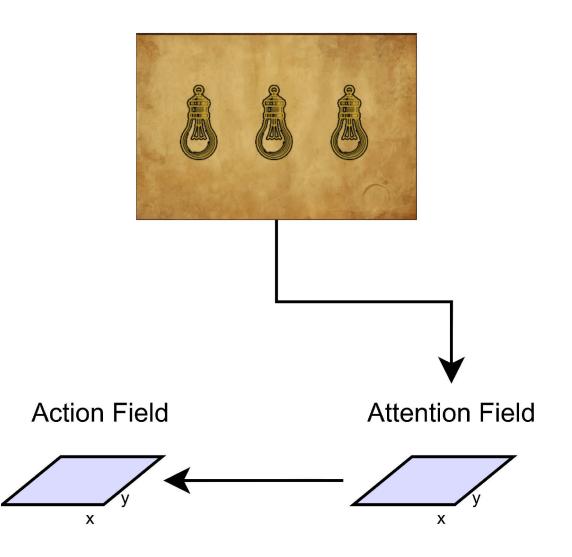
https://github.com/cedar/juniper/blob/main/demo1_detection.ipynb

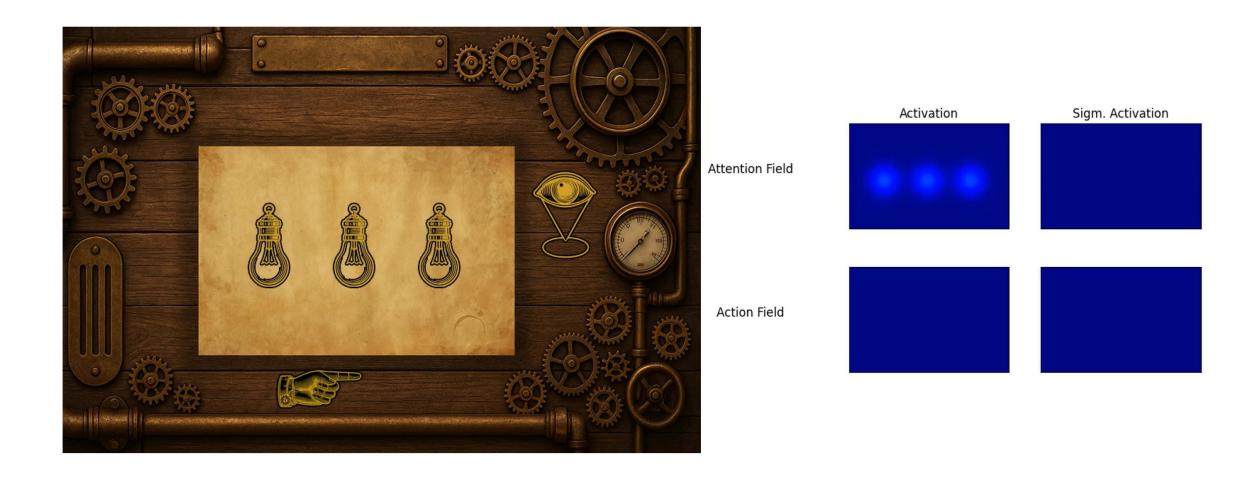
Selection





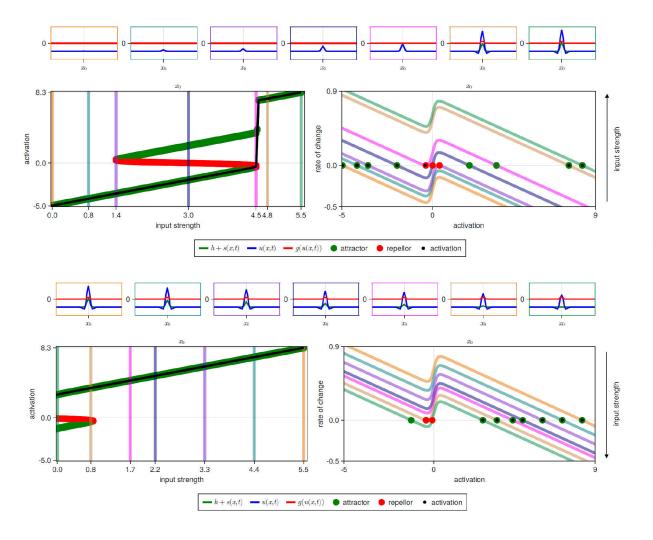
Scene



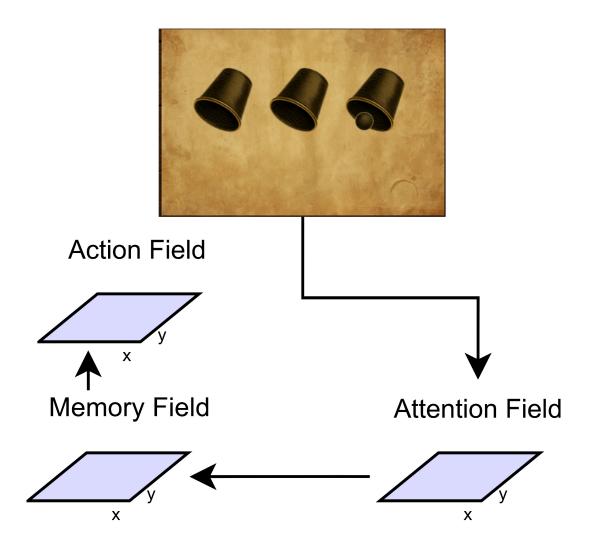


https://github.com/cedar/juniper/blob/main/demo2_selection.ipynb

Memory



Scene

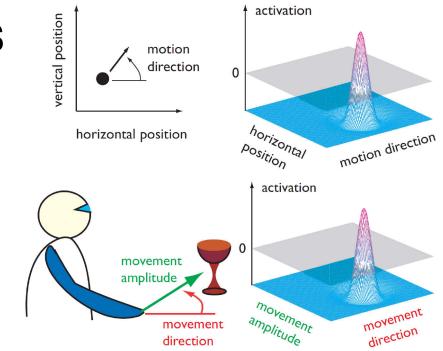


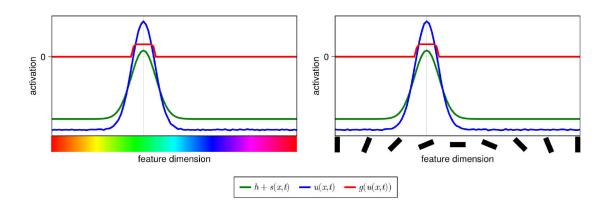
https://github.com/cedar/juniper/blob/main/demo4_Huetchen.ipynb

Continuous Feature Spaces

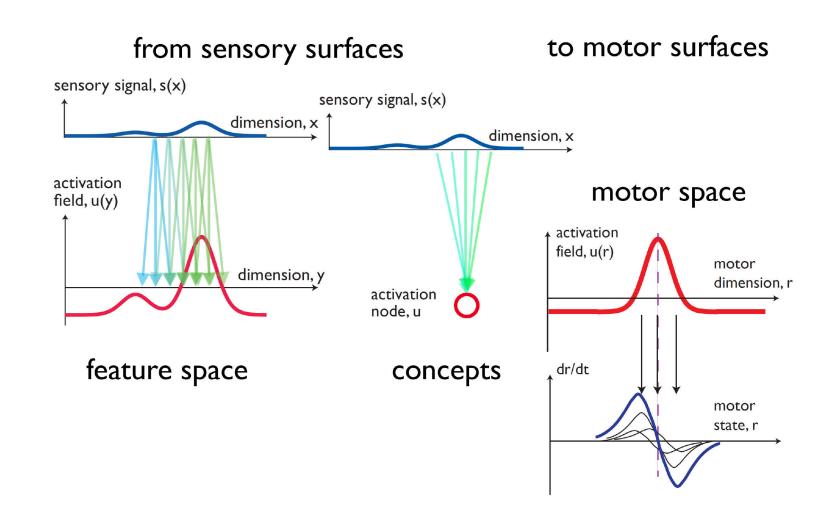
- Fields are defined over lowdimensional continuous spaces
- Facilitates:
 - Attention
 - Decision making
 - Binding
 - Generalization
 - Grounding
 - Compositional representation

• ...





Feature space

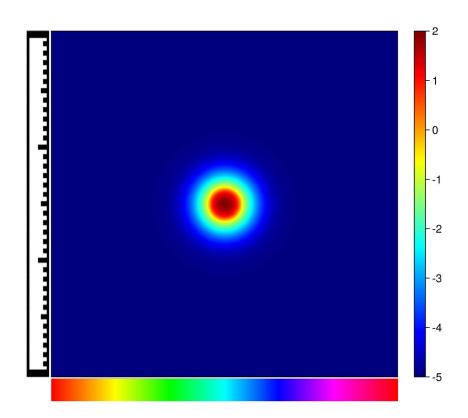


Dimensionality

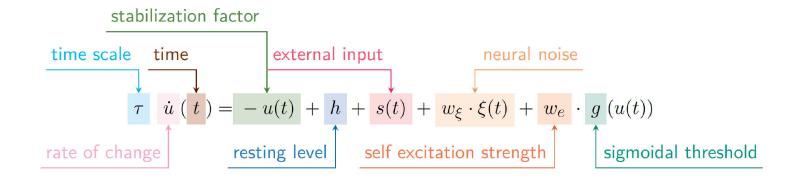
$$\tau \dot{u}(\chi, t) = -u(\chi, t) + h + s(\chi, t) + w_{\xi} \cdot \xi(\chi, t)$$
$$+ \int \cdots \int \omega(\chi - \chi') \cdot g(u(\chi', t)) \ dx'_1 \dots dx'_n$$

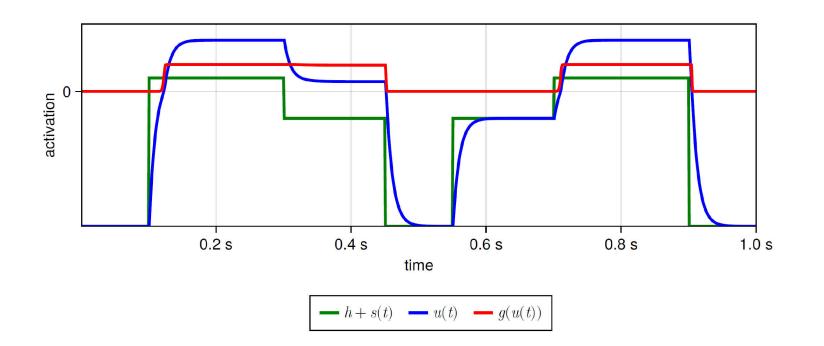
$$\omega(\Delta\chi) = \phi(\Delta\chi, a_{lex}, \vec{0}, \vec{\sigma_{lex}}) - \phi(\Delta\chi, a_{lin}, \vec{0}, \vec{\sigma_{lin}}) - \psi$$

$$\phi(\Delta \chi, a, \vec{\mu}, \vec{\sigma}) = a \cdot \exp\left(-\sum_{i=1}^{|\Delta \chi|} \frac{(\Delta x_i - \mu_i)^2}{2\sigma_i^2}\right)$$



Dynamic neural node (DNN)





Connections between DNFs

$$\tau_T \dot{u}_T(\chi^T, t) = -u_T(\chi^T, t) + h_T + w_{T,\xi} \cdot \xi_T(\chi^T, t)$$

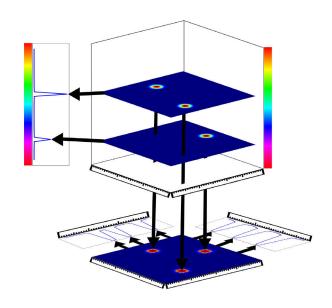
$$+ \int \cdots \int \omega_T(\chi^T - \chi^{T'}) \cdot g(u_T(\chi^{T'}, t)) \ dx_1^{T'} \dots dx_n^{T'}$$

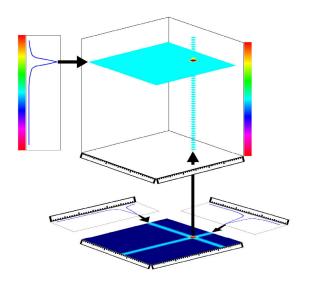
$$+ w_{S,T} \left(\int \cdots \int w_{S,T}^{\gamma} \cdot \gamma_{S,T}(\chi^S, \chi^T, t) \cdot \kappa_{S,T}(\chi^S - \chi^{\kappa}) \right)$$

$$\cdot g(u_S(\chi^{\kappa}, t)) \ dx_1^{\kappa} \dots dx_m^{\kappa} \ dx_1^{S} \dots dx_m^{S} \right)$$

$$\gamma_{S,T}^{\text{fix}}(\chi^S, \chi^T, t) = \begin{cases} 1, & \text{if } x_i^S = x_i^T, \ \forall i \in \mathbb{N}_{>0}, \ i \leq \min\{|\chi^S|, |\chi^T|\} \\ 0, & \text{otherwise} \end{cases}$$

$$\kappa_{S,T}(\Delta \chi) = \phi(\Delta \chi, a_{ex}, \vec{0}, \vec{\sigma_{ex}}) - \phi(\Delta \chi, a_{in}, \vec{0}, \vec{\sigma_{in}})$$





Hebbian connections between DNFs

$$\tau_T \dot{u}_T(\chi^T, t) = -u_T(\chi^T, t) + h_T + w_{T,\xi} \cdot \xi_T(\chi^T, t)$$

$$+ \int \cdots \int \omega_T(\chi^T - \chi^{T'}) \cdot g(u_T(\chi^{T'}, t)) \ dx_1^{T'} \dots dx_n^{T'}$$

$$+ w_{S,T} \left(\int \cdots \int w_{S,T}^{\gamma} \cdot \gamma_{S,T}(\chi^S, \chi^T, t) \cdot \kappa_{S,T}(\chi^S - \chi^{\kappa}) \right)$$

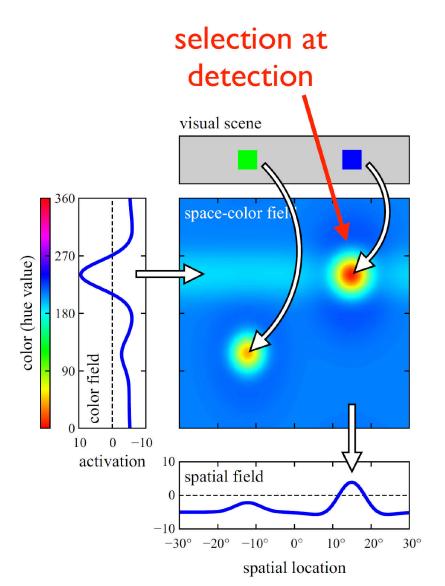
$$\cdot g(u_S(\chi^{\kappa}, t)) \ dx_1^{\kappa} \dots dx_m^{\kappa} \ dx_1^{S} \dots dx_m^{S} \right)$$

$$\gamma_{S,T}^{\text{heb}}(\chi^S, \chi^T, t) = w_{S,T}^{\gamma*}(\chi^S, \chi^T, t)$$

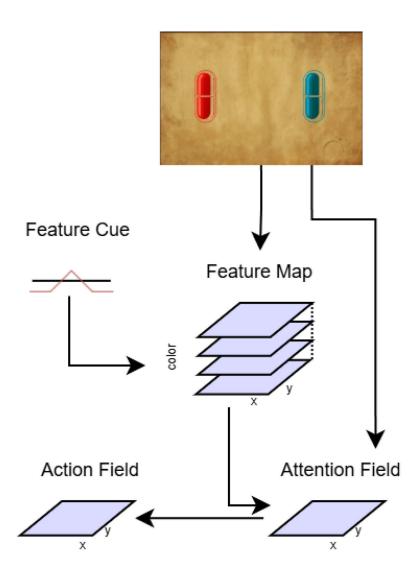
$$\tau \dot{w}_{S,T}^{\gamma*}(\chi^S, \chi^T, t) = \eta \cdot g(u_{\text{learn}}(t)) \cdot g(u_S(\chi^S, t)) \cdot (g(u_T(\chi^T, t)) - w_{S,T}^{\gamma*}(\chi^S, \chi^T, t))$$

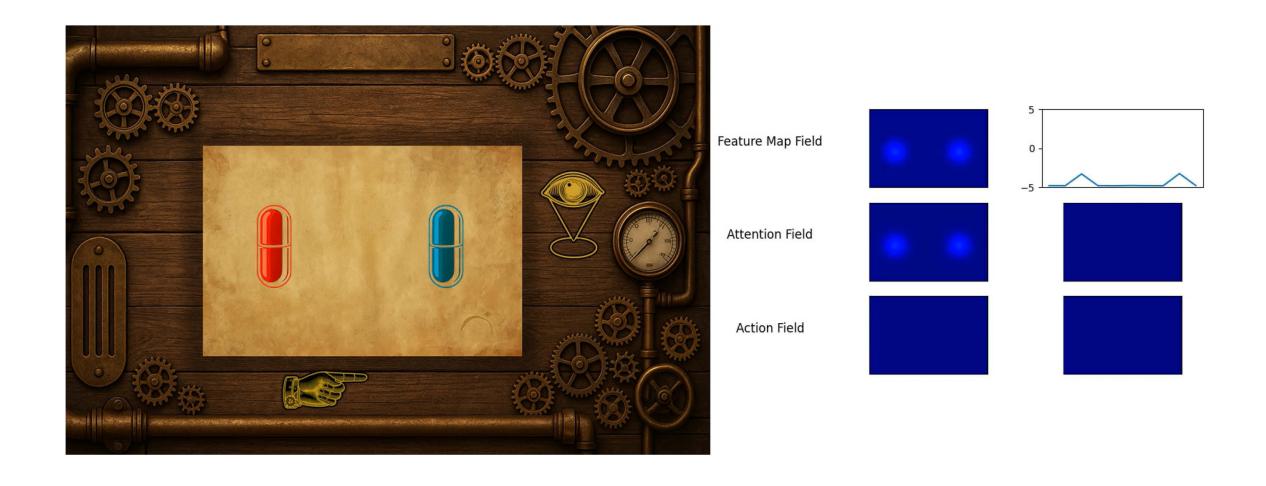
$$\kappa_{S,T}(\Delta \chi) = \phi(\Delta \chi, a_{ex}, \vec{0}, \vec{\sigma_{ex}}) - \phi(\Delta \chi, a_{in}, \vec{0}, \vec{\sigma_{in}})$$

Cued selection



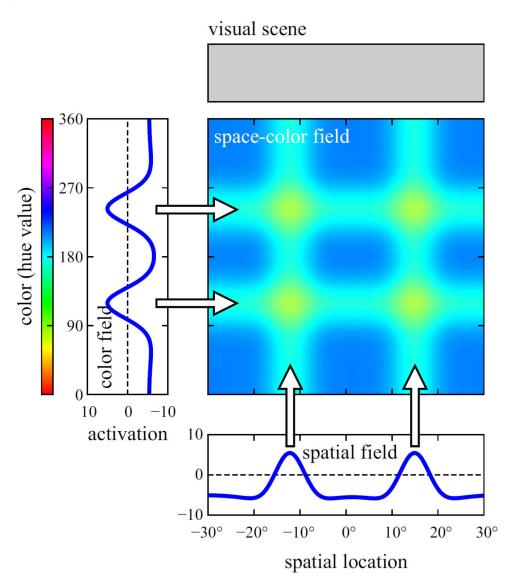
Scene



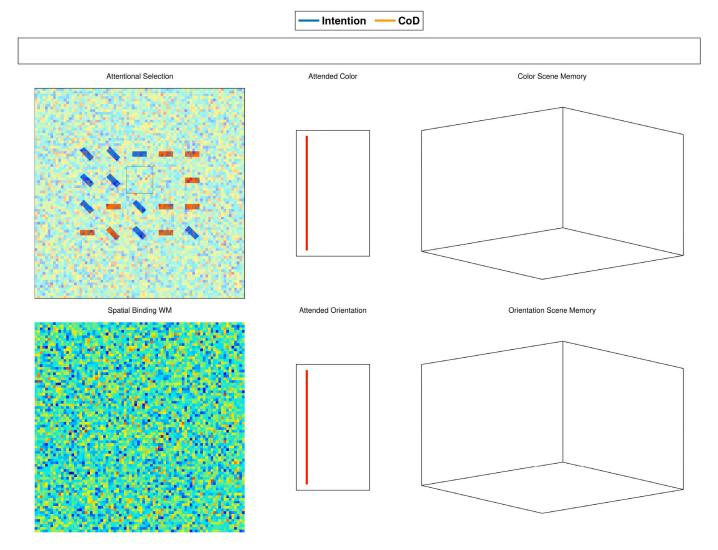


https://github.com/cedar/juniper/blob/main/demo3_cued_selection.ipynb

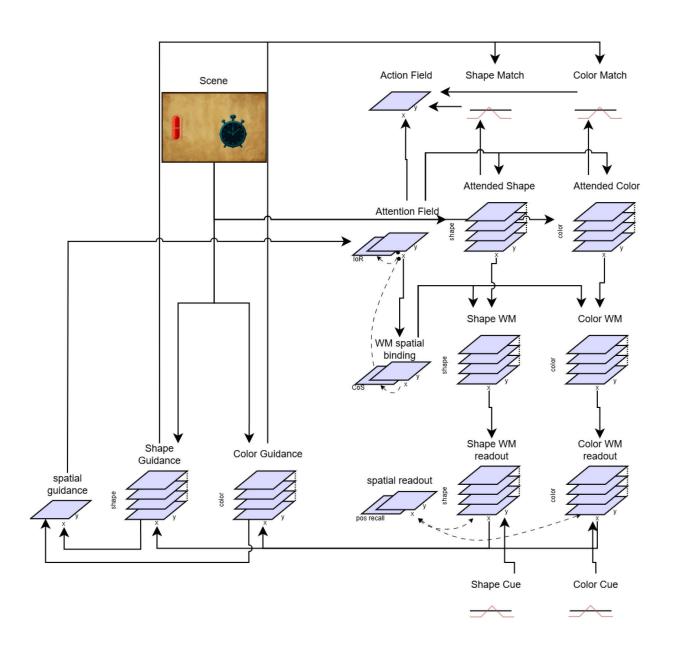
The binding problem

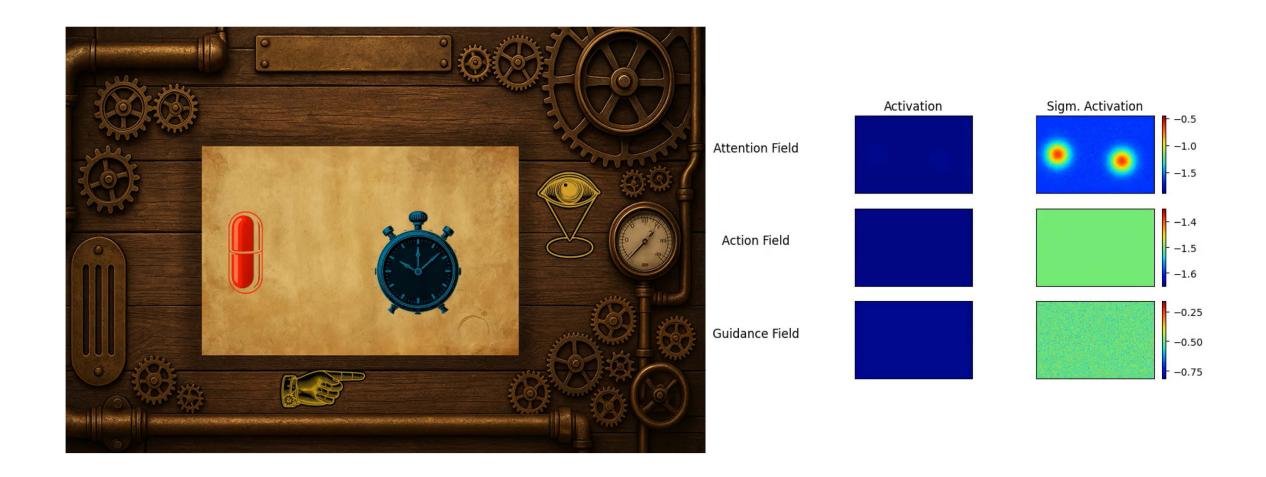


Binding through space



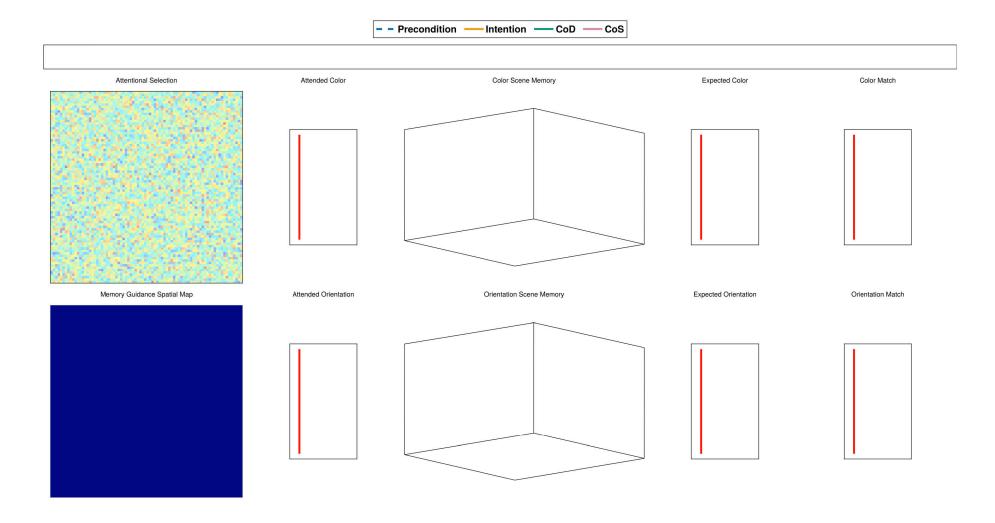
Grieben et al. (2020). Scene memory and spatial inhibition in visual search, Attention, Perception & Psychophysics



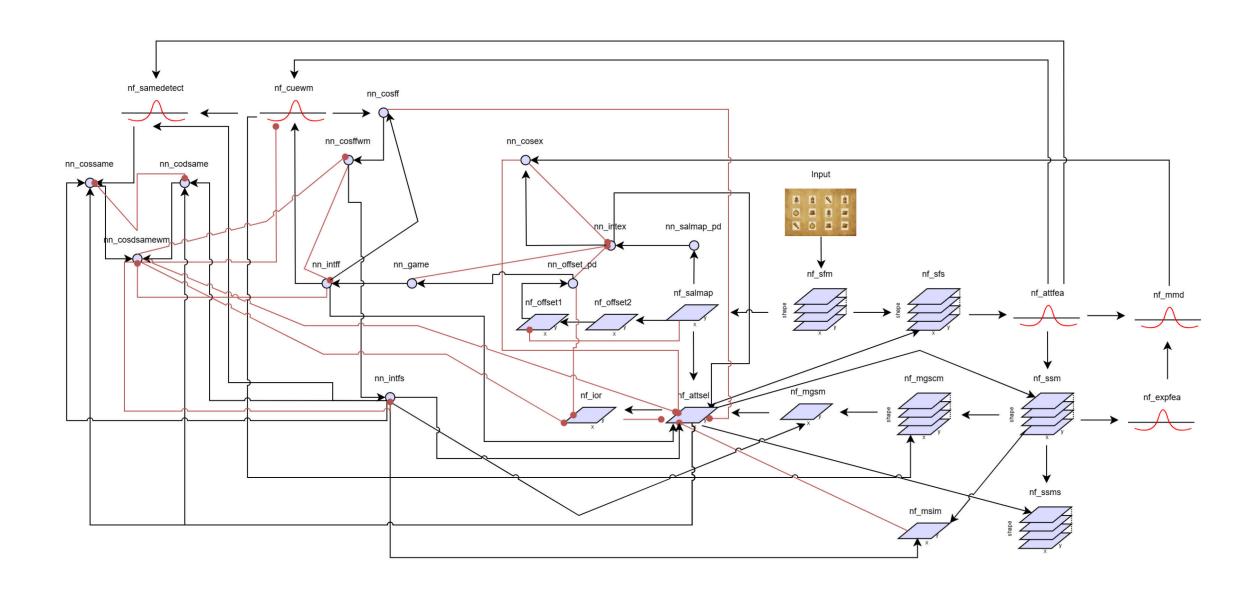


https://github.com/cedar/juniper/blob/main/demo5_binding_through_space.ipynb

Visual exploration / scene memory guidance



Grieben et al. (2020). Scene memory and spatial inhibition in visual search, Attention, Perception & Psychophysics



https://github.com/cedar/juniper/blob/main/demo6_MemoryGame.ipynb

https://github.com/cedar/juniper/blob/main/demo6_MemoryGame.ipynb

Coordinate transformation

