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DFT vs. ML

* Traditional ML:

* Focus on static input-output mappings
* classification, regression, generation, ...

» DFT:

* Focus on neural dynamics that drive autonomous sequences
* Addresses problems ML struggles with:

* stability, continual adaptation, grounding, ...
* Useful for:

* Robotics & embodied Al

* Continuous control/online learning tasks
* Adaptive systems that must stay stable under perturbation



Typical Deep Learning XAl

DFT Models

Interpretation level

Post-hoc (e.g., Grad-CAM,
SHAP)

Intrinsic, at all time steps

Representation

Latent, often abstract

Explicit, continuous feature
maps

Explicit dynamical system

Dynamics Implicit (via layers) equations

Transparency Low (millions of params) High (few interpretable
params)

Causality Hard to infer BU|lt-|.n via dynamical
equations

Focus Explaining predictions Explaining neural processes

underlying predictions




DFT: Interpretability

* DFT models are inherently interpretable because:

* Internal state = Activation: Explicitly shows what and where the system
Is attending, what is in memory, what selection decision was made, ...

* Attractors = Decisions or Memory States: Easy to visualize as peaks
* Instabilities = Events: Detectable as transitions in activation patterns

* The entire computation is a transparent dynamical system, not a
black box



DFT: Explainability

* Mechanistic Transparency:

* Every prediction or decision is the result of explicit equations governing
neural field dynamics

* Peaks in neural fields directly represent what the system attends to,
remembers, or selects
* Process-Level Explanation:
* Explains how outcomes arise, not just what the prediction is
e State trajectories show step-by-step causal transitions

* Explicit Architecture:
* Kernels and connectivity patterns map to neural principles
* Feature dimensions are explicit



DFT: Causality

* Behavior emerges causally from explicit dynamical equations that
define how every state evolves

* Every state change is the outcome of inputs and recurrent
dynamics

* Each decision can be traced exactly to the fields, inputs,
Instabilities that caused it
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Learning

= = Learn = = Inhib. Learn —— Pepper (input) —— Pepper (concept)

Exploratory FVF Selection Attentional FVF Pepper - BCM Connection (learned output)

/\ Scene Attended Color Scene Attended Shape

Pepper - Color Guid. Hebb. (learned output) Pepper - Shape Guid. Hebb. (learned output)
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Exploration

Exploratory FVF

Exploratory FVF Selection
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Categorical visual search

- = Sgccade CoS - - - -Fixation = End Fixation Intention - CoS

= = Pepper (input) - Pepper (concept) = = Green (input) — Green (concept)

Exploratory FVF Selection (input sum) Exploratory FVF Selection (activation) Attentional FVF (sig. activation)




Combined categorical and feature search

- = Saccade CoS - - - -Fixation - End Fixation - Intention -—— CoS

= = Pepper (input) — Pepper (concept) = = Green (input) — Green (concept)

Exploratory FVF Selection (input sum) Exploratory FVF Selection (activation) Attentional FVF (sig. activation)




Memory guidance

- = Saccade CoS - - - -Fixation = End Fixation -—— Intention -—— CoS
= = Pepper (input) - Pepper (concept) = = Green (input) — Green (concept)
Exploratory FVF Selection (input sum) Exploratory FVF Selection (activation) Attentional FVF (sig. activation) Label Scene Memory (sig. activation)
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Scene grammar

- = Saccade CoS - - - -Fixation —— End Fixation - Intention -—— CoS

= = Bathroom (input) - Bathroom (concept) = = Mirror (input) = Mirror (concept) = = Sink (input) = Sink (concept)

Exploratory FVF Selection (input sum) Exploratory FVF Selection (activation) Attentional FVF (sig. activation)




Scene grammar — Memory guidance

- = Saccade CoS - - - -Fixation - End Fixation - Intention -—— CoS

= = Bathroom (input) -

-Bathroom (concept) = = Mirror (input) = Mirror (concept) = = Sink (input) = Sink (concept)

Exploratory FVF Selection (input sum) Exploratory FVF Selection (activation)

Attentional FVF (sig. activation)

Label Scene Memory (sig. activation)
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ROBOVERINE: A human-inspired neural robotic process model of
active visual search and scene grammar in naturalistic environments

Raul Grieben', Stephan Sehring', Jan Tekiilve!, John P. Spencer? and Gregor Schéner!

Abstract— We present ROBOVERINE, a neural dynamic
robotic active vision process model of selective visual attention
and scene grammar in naturalistic environments. The model

addresses significant chall for cognitive robotic del

of visual attention: combined bottom-up salience and top-
down feature guidance, combined overt and covert attention,
coordinate transformations, two forms of inhibition of return,
finding objects outside of the camera frame, integrated space-
and object-based analysis, minimally supervised few-shot con-
tinuous online learning for recognition and guidance templates,
and autonomous switching between exploration and visual
search. Furthermore, it incorporates a neural process account of
scene grammar — prior knowledge about the relation between
objects in the scene — to reduce the search space and increase
search efficiency. The model also showcases the strength of
bridging two frameworks: Deep Neural Networks for feature
extractions and Dynamic Field Theory for cognitive operations.

[. INTRODUCTION

Most goal-oriented interactions with the environment en-
tail a preceding visual search. Effective feature guidance
[1] helps reduce the number of saccades needed to find
the target object in a scene, and the combination of overt
and covert attention shifts [2] allows us to scan complex
scenes efficiently despite the visual system’s limitations.
Natural scenes tend to be cluttered but highly structured,
and humans use their knowledge about the relation between
objects in scenes - the scene grammar [3] - to reduce
the search space. Importantly, humans are not limited to
finding objects they already know. Cognitive robotics aims
to develop autonomous agents with cognitive abilities similar
to humans (see [4] for a recent overview of the state-of-the-
art in human-inspired robotic vision). Begum and Karray [5]
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Fig. 1. A simplified overview of the problem (left) and the cognitive
operations needed to solve it (right).

3) Learn an object’s visual features with minimal human
supervision from different view angles.
4) Autonomous switching between exploration and visual
search based on the task.
5) Learning while working, without needing a separate
training phase (online learning).
Here, we present ROBOVERINE, a neural robotic pro-
cess model that addresses these issues (Figure 1) building
upon our previous work on human attention ([6], [7]). We
show that it can control an autonomous agent in different
simulated environments. Furthermore, we also included a
neural process account of scene grammar (see [8] for a
related approach). Interfacing the neural architecture based
on Dynamic Field Theory (DFT; [9]) with a pre-trained
headless convolutional neural network (CNN: VGG16: [101)

J., Spencer, J. P.,, & Schoner, G.
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A Neural Dynamic Model Autonomously Drives a Robot to Perform Structured
Sequences of Action Intentions
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Abstract

We present a neural dynamic process model of an intentional
agent that carries out compositionally structured action plans
in a simulated robotic environment. The model is inspired
by proposals for a shared neural and structural basis of lan-
guage and action (Pastra & Aloimonos, 2012). Building on
neural process accounts of intentionality we propose a neural
representation of the conceptual structure of actions at a sym-
bolic level. The conceptual structure binds actions to objects
at which they are directed. In addition, it captures the com-
positional structure of action sequences in an action plan by
representing sequential order between elementary actions. We
show how such a neural system can steer motor behavior to-
ward objects by forming neural attractor states that interface
with lower-level motor representations, perceptual systems and
scene working memory. Selection decisions in the conceptual
structure enables the generation of action sequences that ad-
heres to a memorized action plan.

Keywords: neural process model; dynamic field theory; action
grammar; intention; action and language: autonomous robot

Introduction

Following instructions, or planning actions ourselves to reach
goals often requires that we generate novel sequences of ac-
tions that we never before performed in exactly the same or-
der or directed at precisely the same objects. The human fac-
ulty for intentional action comprises this remarkable ability
to form a practically unlimited set of novel actions by flex-
ibly recombining previously learned motor behaviors. Even
rather global goals may thus be ultimately achieved by com-
bining the limited set of movements available to the human

human action. It would enable an agent to represent novel
action plans that generalize beyond any specific instances it
may have learned or stored earlier.

How could a neural system implement such a representa-
tional system and how could such an implementation drive
intentional action? To address these questions we propose a
neural process account of intentional action that enables an
agent to autonomously direct action at objects in its envi-
ronment (Tekiilve & Schoner, 2019). Two key problems are
addressed. First, we propose a neural representation of the
conceptual structure of an action at a symbolic level which
binds the action to the objects at which it is directed (see the
top panel of Figure 1 for an illustration). This makes use
of earlier work on neural binding through a shared “index”
dimension (Sabinasz, Richter, & Schoner, 2023). We show
how this neural implementation of a structured representation
may guide the embodied realization of the intentional action
directed at objects. Second, we show how a neural repre-
sentation of the sequential order of elementary actions in a
“dependency graph™ may capture the compositional structure
of actions described in syntax trees. We demonstrate how this
representation may steer sequences of actions toward achiev-
ing goals.

As a proof of concept, we present a neural dynamic process
model that controls a simulated robot arm in a table-top en-
vironment that carries out pick and place actions. The model
represents action intentions as action phrases, that is, concep-
tual structures that bind action concepts to object concepts in

Sehring, S., Koebe, R., Aerdker, S., & Schoéner, G.

CogSci 2024
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